Molecular Drug Targets in Candida glabrata


  • Payal Gupta Department of Biotechnology Graphic Era University, Dehradun, India
  • Nishant Rai Department of Biotechnology Graphic Era University, Dehradun, India
  • Navin Kumar Department of Biotechnology Graphic Era University, Dehradun, India


Candida glabrata, Molecular Target, Drug Target, Kre1, Kre2, Cch1, Mid1, Cdr1, Rox1, Upc2B.


Incidence of candidiasis has increased in past decade. Epidemiology is reported shifting from albicans to non-
albicans Candida (NAC) species like C. glabrata, which is intrinsically resistant to azole drugs. No new
antifungal has come into practice from last decade. Rising resistance to existing antifungal (in clinical isolates of
Candida) have necessitated the need for new antifungals. New molecular drug targets need to be explored for
the development of novel antifungal drugs. The drug targets are oftenly the cellular proteins of various
metabolic pathways (like ergosterol synthesis-, cell wall biogenesis-, calcium-calcineurin- and DNA checkpoint
pathways etc.), having no significant similarity with host proteins to overrule the possibility of side effects. In
this review, some potential proteins of C. glabrata and their pathways are discussed in context to explore their
potential as drug target for antifungal drug development.


Download data is not yet available.


Akins, R. A. (2005). An update on antifungal targets and mechanisms of resistance in Candida albicans.

Medical Mycology, 43(4), 285-318.

Al Thaqafi, A. H., Farahat, F. M., Al Harbi, M. I., Al Amri, A. F., & Perfect, J. R. (2014). Predictors and

outcomes of Candida bloodstream infection: eight-year surveillance, western Saudi Arabia. International Journal

of Infectious Diseases, 21, 5-9.

Journal of Graphic Era University

Vol. 5, Issue 2, 112-130, 2017

ISSN: 0975-1416 (Print), 2456-4281 (Online)

Alcasabas, A. A., Osborn, A. J., Bachant, J., Hu, F., Werler, P. J., Bousset, K., Furuya, K., Diffley, J. F., Carr,

A. M., & Elledge, S. J. (2001). Mrc1 transduces signals of DNA replication stress to activate Rad53. Nature Cell

Biology, 3(11), 958-965.

Anand, J., Semwal, P., Gautam, P., Thapliyal, A., & Rai, N. (2015). Prediction of novel drug targets in

Ergosterol biosynthesis pathway: a proposed mechanism of anticandidal activity of green tea phyto compounds.

Journal of Chemical and Pharmaceutical Research, 7(2), 672-684.

Arthington, B. A., Bennett, L. G., Skatrud, P. L., Guynn, C. J., Barbuch, R. J., Ulbright, C. E., & Bard, M.

(1991). Cloning, disruption, and sequence of the gene encoding yeast C-5 sterol desaturase. Gene, 102(1), 39–

Balasubramanian, B., Lowry, C. V., & Zitomer, R. S. (1993). The Rox1 repressor of the Saccharomyces

cerevisiae hypoxic genes is a specific DNA-binding protein with a high-mobility-group motif. Molecular and

Cellular Biology, 13(10), 6071–6078.

Bard, M., Bruner, D. A., Pierson, C. A., Lees, N. D., Biermann, B., Frye, L., Koegel, C., & Barbuch, R. (1996).

Cloning and characterization of ERG25, the Saccharomyces cerevisiae gene encoding C-4 sterol methyl

oxidase. Proceedings of the National Academy of Sciences U S A, 93(1), 186-190.

Bard, M., Lees, N. D., Turi, T., Craft, D., Cofrin, L., Barbuch, R., Koegel, C., & Loper, J. C. (1993). Sterol

synthesis and viability of erg11 (cytochrome P450 lanosterol demethylase) mutations in Saccharomyces

cerevisiae and Candida albicans. Lipids, 28(11), 963–967.

Belardetti, F., & Zamponi, G. W. (2012). Calcium channels as therapeutic targets. Wiley Interdisciplinary

Reviews: Membrane Transport and Signaling, 1(4), 433–451.

Berridge, M. J., Bootman, M. D., & Roderick, H. L. (2003). Calcium signalling: dynamics, homeostasis and

remodelling. Nature Reviews Molecular Cell Biology, 4(7), 517-529.

Bonilla, M., & Cunningham, K. W. (2003). Mitogen-activated Protein Kinase stimulation of Ca2+ signaling is

required for survival of endoplasmic reticulum stress in yeast. Molecular Biology of Cell, 14(10), 4296–4305.

Boone, C., Sommer, S. S., Hensel, A., & Bussey, H. (1990). Yeast KRE genes provide evidence for a pathway

of cell wall beta-glucan assembly. Journal of Cell Biology, 110(5), 1833–1843.

Bossche, V. H. (1985). Biochemical targets for antifungal azole derivatives: hypothesis on the mode of action.

In M. R. McGinnis (ed.), Current Topics in Medical Mycology, Springer-Verlag, New York, 1, 313–351.

Bossche, V. H., Willemsens, G., & Marshall, P. (1987). Anti-Candida drugs—the biochemical basis for their

action. Critical Reviews in Microbiology, 15(1), 57–72.

Breining, F., Schleinkofer, K., & Schmitt, M. J. (2004). Yeast Kre1p is GPI-anchored and involved in both cell

wall assemble and architecture. Microbiology, 150(10), 3209-3218.

Burchmore, R. J., Wallace, L. J., Candlish, D., Al-Salabi, M. I., Beal, P. R., Barrett, M. P., Baldwin, S. A., & De

Koning, H. P. (2003). Cloning, heterologous expression, and in situ characterization of the first high affinity

nucleobase transporter from a protozoan. Journal of Biological Chemistry, 278(26), 23502–23507.

Calendrone, R. A., & Cihlar, R. L. (2002). Fungal pathogenesis: principles and clinical applications. Marcel

Dekker, Inc. New York, Basel, 14, 1-24.

Catterall, W. A. (2011). Voltage-gated calcium channel. Cold Spring Harbor Perspectives in Medicine, 3(8), 1-

Chaffin, W. L. (2008). Candida albicans cell wall proteins. Microbiology and Molecular Biology Review,

(3), 495–544.

Journal of Graphic Era University

Vol. 5, Issue 2, 112-130, 2017

ISSN: 0975-1416 (Print), 2456-4281 (Online)

Chaffin, W. L., Lopez-Ribot, J. L., Casanova, M., Gozalbo, D., & Martinez, J. P. (1998). Cell wall and secreted

proteins of Candida albicans: identification, function, and expression. Microbiology and Molecular Biology

Reviews, 62(1), 130-180.

Chiu, Y. T., Liu, J., Tang, K., Wong, Y. C., Khanna, K., & Ling, M. T. (2012). Inactivation of ATM/ATR DNA

damage check point promotes androgen induced chromosomal instability in prostate epithelial cells. Plos One,

(12), 1-12.

Clarke, M., Lohan, A. J., Liu, B., Lagkouvardos, I., Roy, S., Zafar, N., Bertelli, C., Schilde, C., Kianianmomeni,

A., Burglin, T. R., Frech, C., Turcotte, B., Kopec, K. O., Synnott, J. M., Choo, C., Paponov, I., Finkler, A., Tan,

C. S. H., Hutchins, A. P., Weinmeier, T., Rattei, T., Chu, J. S. C., Gimenez, G., Irimia, M., Rigden, D. J.,

Fitzpatrick, D. A., Lorenzo-Morales, J., Bateman, A., Chiu, C. H., Tang, P., Hegemann, P., Fromm, H., Raoult,

D., Greub, G., Miranda-Saavedra, D., Chen, N., Nash, P., Ginger, M. L., Horn, M., Schaap, P., Caler, L., &

Loftus, B. J. (2013). Genome of Acanthamoeba castellanii highlights extensive lateral gene transfer and early

evolution of tyrosine kinase signaling. Genome Biology, 14(2), 1-14.

Clerici, M., Paciotti, V., Baldo, V., Romano, M., Lucchini, G., & Longhese, M. P. (2001). Hyperactivation of

the yeast DNA damage checkpoint by TEL1 and DDC2 overexpression. EMBO Journal, 20(22), 6485–6498.

Cormack, B. P., Chori, N., & Falkow, S. (1999). An adhesin of the yeast pathogen Candida glabrata mediating

adherence to human epithelial cells. Science, 285(5427), 578-582.

Cueller-Cruz, M., Briones-Martin-del-Campo, M., Canas-Villamar, I., Montalvo-Arredondo, J., Riego-Ruiz, L.,

Castano, I., & De Las Penas, A. (2008). High Resistance to oxidative stress in the fungal pathogen Candida

glabrata is mediated by a single catalase, Cta1p, and is controlled by the transcription factors Yap1p, Skn7p,

Msn2p, and Msn4p. Eukaryotic Cell, 7(5), 814-825.

Dastidar, R. G., Hooda, J., Shah, A., Cao, T. M., Henke, R. M., & Zhang, L. (2012). The nuclear localization of

SWI/SNF proteins is subjected to oxygen regulation. Cell Bioscience, 2(1), 1-13.

De Las Peñas, A., Pan, S. J., Castaño, I., Alder, J., Cregg, R., & Cormack, B. P. (2003). Virulence-related

surface glycoproteins in the yeast pathogen Candida glabrata are encoded in subtelomeric clusters and subject

to RAP1-and SIR-dependent transcriptional silencing. Genes and Development, 17(18), 2245-2258.

De Risi, J., Van Den Hazel, B., Marc, P., Balzi, E., Brown, P., Jacq, C., & Goffeau, A. (2000). Genome

microarray analysis of transcriptional activation in multidrug resistance yeast mutants. FEBS Letters, 470(2),


De-Castro, P. A., Chiaratto, J., Winkelstroter, L. K., Pedro Bom, V. L., Ramalho, L. N. Z., Goldman, M. H. S.,

Brown, N. A., & Goldman, G. H. (2014). The involvement of the Mid1/Cch1/Yvc1 calcium channels in

Aspergillus fumigatus virulence. Plos One, 9(8), 1-12.

Deckert, J., Torres, A. M. R., Simon, J. T., & Zitomer, R. S. (1995). Mutational analysis of Rox1, a DNA-

bending repressor of hypoxic genes in Saccharomyces cerevisiae. Molecular and Cellular Biology, 15(11),


Del Aguila, E. M., Silva, J. T., & Paschoalin, V. M. F. (2003). Expression of the yeast calcineurin subunits

CNA1 and CNA2 during growth and hyper-osmotic stress. FEMS Microbiology Letters, 221(2), 197–202.

Delahodde, A., Pandjaitan, R., Corral-Debrinski, M., & Jacq, C. (2001). Pse1/Kap121-dependent nuclear

localization of the major yeast multidrug resistance (MDR) transcription factor Pdr1. Molecular Microbiology,

(2), 304–313.

Ding, X., Yu, Q., Xu, N., Wang, Y., Cheng, X., Qian, K., Zhao, Q., Zhang, B., Xing, L., & Li, M. (2013). Ecm7,

a regulator of HACS, functions in calcium homeostasis maintenance, oxidative stress response and hyphal

development in Candida albicans. Fungal Genetics and Biology, 57, 23-32.

Journal of Graphic Era University

Vol. 5, Issue 2, 112-130, 2017

ISSN: 0975-1416 (Print), 2456-4281 (Online)

Dupont, S., Lemetais, G., Ferreira, T., Cayot, P., Gervais, P., & Beney, L. (2012). Ergosterol biosynthesis: a

fungal Pathway for life on land. Evolution, 66(9), 2961-2968.

Gachotte, D., Pierson, C. A., Lees, N. D., Barbuch, R., Koegel, C., & Bard, M. (1997). A yeast sterol auxotroph

(erg25) is rescued by addition of azole antifungals and reduced levels of heme. Proceedings of the National

Academy of Sciences U S A, 94(21), 11173–11178.

Geber, A., Hitchcock, C. A., Swartz, J. E., Pullen, F. S., Marsden, K. E., Kwon-Chung, K. J., & Bennett, J. E.

(1995). Deletion of the Candida glabrata ERG3 and ERG11 genes: effect on cell viability, cell growth, sterol

composition, and antifungal susceptibility. Antimicrobial Agents and Chemotherapy, 39(12), 2708-2717.

Gil-Bona, A., Reales-Calderon, J. A., Parra-Giraldo, C. M., Martinez-Lopez, R., Monteoliva, R., & Gil, C.

(2016). The cell wall protein Ecm33 of Candida albicans is involved in chronological life span, morphogenesis,

cell wall regeneration, stress tolerance and host–cell interaction. Frontiers in Microbiology, 7, 1-14.

Giri, S., & Kindo, A. J. (2012). A review of Candida species causing blood stream infection. Indian Journal of

Medical Microbiology, 30(3), 270-278.

Gleason, J. E., Corrigan, D. J., Cox, J. E., Reddi, A. R., McGinnis, L. A., & Culotta, V. C. (2011). Analysis of

Hypoxia and Hypoxia-Like States through Metabolite Profiling. Plos One, 6(9), 1-13.

Golin, J., Ambudkar, S. V., & May, L. (2007). The yeast Pdr5p multidrug transporter: how does it recognize so

many substrates? Biochemical and Biophysical Research Communication, 356(1), 1-5.

Gozalbo, D., Roig, P., Villamon, E., & Gil, M. L. (2004). Candida and Candidiasis: The cell wall as a potential

molecular target for antifungal therapy. Current Drug Targets- Infectious Disorders, 4(2), 117-135.

Grahl, N., & Cramer Jr, R. A. (2010). Regulation of hypoxia adaptation: an overlooked virulence attribute of

pathogenic fungi. Medical Mycology, 48(1), 1-15.

Guinea, J. (2014). Global trends in the distribution of Candida species causing candidemia. Clinical

Microbiology and Infections, 20(s6), 5-10.

Gupta, P., Chanda, R., Rai, N., Kataria, V. K., & Kumar, N. (2016). Antihypertensive, amlodipine besilate

inhibits growth an biofilm of human fungal pathogen Candida. Assay and Drug Development Technologies, 14

(5), 291-297.

Harren, K., & Tudzynski, B. (2013). Cch1 and Mid1 are functionally required for vegetative growth under low-

calcium conditions in the phytopathogenic ascomycetes Botrytis cinerea. Eukaryotic Cell, 12(5), 712-724.

Hill, K., Boone, C., Goebl, M., Puccia, R., Sdicu, A., & Bussey, H. (1992).Yeast KRE2 defines a new gene

family encoding probable secretory proteins, and is required for the correct N-glycosylation of proteins.

Genetics, 130(2), 273-283.

Hong, M. P., Vu, K., Bautos, J., & Gelli, A. (2010). Cch1 restores intracellular Ca2+ in fungal cells during

endoplasmic reticulum stress. Journal of Biological Chemistry, 285(14), 10951-10958.

Iida, H., Nakamura, H., Ono, T., Okumura, M. S., & Anraku, Y. (1994). MID1, a novel Saccharomyces

cerevisiae gene encoding a plasma membrane protein, is required for Ca2+ influx and mating. Molecular and

Cell Biology, 14(12), 8259-8271.

Johnson, M. K. (1998). Iron-sulfur proteins: new roles for old clusters. Current Opinion in Chemical Biology,

(2), 173-181.

Johnston, M. (1987). A model fungal gene regulatory mechanism: the GAL genes of Saccharomyces cerevisiae.

Microbiology Review, 51(4), 458–476.

Journal of Graphic Era University

Vol. 5, Issue 2, 112-130, 2017

ISSN: 0975-1416 (Print), 2456-4281 (Online)

Kadosh, D., & Johnson, A. D. (2001). Rfg1, a protein related to the Saccharomyces cerevisiae hypoxic regulator

Rox1, controls filamentous growth and virulence in Candida albicans. Molecular and Cell Biology, 21(7),


Kalb, V. F., Woods, C. W., Dey, C. R., Sutter, T. R., Turi, T. G., & Loper, J. C. (1987). Primary structure of the

P450 lanosterol demethylase gene from Saccharomyces cerevisiae. DNA, 6(6), 529–537.

Kaur, R., Castano, I., & Cormack, B. P. (2004). Functional Genomic analysis of fluconazole susceptibility in the

pathogenic yeast Candida glabrata: roles of calcium signaling and mitochondria. Antimicrobial Agents and

Chemotherapy, 48(5), 1600–1613.

Kaur, R., Goyal, R., Dhakad, M. S., Bhalla, P., & Kumar, R. (2014). Epidemiology and virulence determinants

including biofilm profile of candida infections in an ICU in a tertiary hospital in India. Journal of Mycology,

, 1-8.

Kenna, S., Bligh, H. F. J., Watson, P. F., & Kelly, S. L. (1989). Genetic and physiological analysis of azole

sensitivity in Saccharomyces cerevisiae. Journal of Medical and Veterinay Mycology, 27(6), 397–406.

Keogh, M. C., Kim, J. A., Downey, M., Fillingham, J., Chowdhury, D., Harrison, J. C., Onishi, M., Datta, N.,

Galicia, S., Emili, A., Lieberman, J., Shen, X., Buratowski, S., Haber, J. E., Durocher, D., Greenblatt, J. F., &

Krogan N. J. (2006). A phosphatase complex that dephosphorylates hamma H2AX regulates DNA damage

checkpoint recovery. Nature, 439(7075), 497-501.

Khalaf, R. A., & Zitomer, R. S. (2001). The DNA binding protein Rfg1 is a repressor of filamentation in

Candida albicans. Genetics, 157(4), 1503-1512.

Kispal, G., Csere, P., Guiard, B., & Lill, R. (1997). The ABC transporter Atm1p is required for mitochondrial

iron homeostasis. FEBS Letter, 418(3), 346-350.

Kispal, G., Csere, P., Prohl, C., & Lill, R. (1999). The mitochondrial proteins Atm1p and Nfs1p are essential for

biogenesis of cytosolic Fe/S proteins. The EMBO Journal, 18(14), 3981-3989.

Kolodner, R. D., Putnam, C. D., & Myung, K. (2002). Maintenance of genome stability in Saccharomyces

cerevisiae. Science, 297(5581), 552-557.

Kraus, P. R., Nicholas, C. B., & Heitman, J. (2005). Calcium and calcineurin-independent roles for calmodulin

in Cryptococcus neoformans morphogenesis and high-temperature growth. Eukaryotic Cell, 4(6), 1079-1087.

Landl, K. M., Klosch, B., & Turnowsky, F. (1996). ERG1, encoding squalene epoxidase, is located on the right

arm of chromosome VII of Saccharomyces cerevisiae. Yeast, 12(6), 609-613.

Leber, R., Landl, K., Zinser, E., Ahorn, H., Spok, A., Kohlwein, S. D., Turnowsky, F., & Daum, G. (1998).

Dual localization of squalene epoxidase, Erg1p, in yeast reflects a relationship between the endoplasmic

reticulum and lipid particles. Molecular Biology of Cell, 9(2), 375-86.

Lee, J. H., Xu, B., Lee, C. H., Ahn, J. Y., Song, M. S., Lee, H., Canman, C. E., Lee, J. S., Kastan, M. B., & Lim,

D. S. (2003). Distinct functions of nijmegen breakage syndrome in ataxia telangiectasia mutated-dependent

responses to DNA damage. Molecular Cancer Research, 1(9), 674-681.

Leighton, J., & Schatz, G. (1995). An ABC transporter in the mitochondrial inner membrane is required for the

normal growth of yeast. EMBO Journal, 14(1), 188-195.

Lenardon, M. D., Munro, C. A., & Gow, N. A. R. (2010). Chitin synthesis and fungal pathogenesis. Current

Opinion in Microbiology, 13(4), 416–423.

Lesage, G., & Bussey, H. (2006). Cell wall assembly in Saccharomyces cerevisiae. Molecular Biology Review,

(2), 317-343.

Journal of Graphic Era University

Vol. 5, Issue 2, 112-130, 2017

ISSN: 0975-1416 (Print), 2456-4281 (Online)

Liang, Y., Zhang, B., Zheng, W., Xing, L., & Li, M. (2011). Alkaline stress triggers an immediate calcium

fluctuation in Candida albicans mediated by Rim101p and Crz1p transcription factors. FEMS Yeast Research,

(5), 430-439.

Lindsay, M. A. (2003). A review on target discovery. Nature Reviews Drug Discovery, 2(10), 831-838.

Lipke, P. N., & Ovalle, R. (1998). Cell wall architecture in yeast: new structure and new challenges. Journal of

Bacteriology, 180(15), 3735–3740.

Liu, S., Hou, Y., Liu, W., Lu, C., Wang, W., & Sun, S. (2015). Components of the calcium-calcineurin signaling

pathway in fungal cells and their potential as antifungal targets. Eukaryotic Cell, 14(4), 324-334.

Liu, S., Yue, L., Gu, W. Li, X., Zhang, L., & Sun, S. (2016). Synergistic effect of fluconazole and calcium

channel blockers against resistant Candida albicans. Plos One, 11(3), 1-12.

Lowman, D. W., West, L. J., Bearden, D. W., Wempe, M. F., Power, T. D., Ensley, H. E., Haynes, K.,

Williams, D. L., & Kruppa, M. D. (2011). New insights into the structure of (1R3, 1R6)-β-D-glucan side chains

in the Candida glabrata cell wall. Plos One, 6(11), 1-10.

Lowry, C. V., & Zitomer, R. S. (1984). Oxygen regulation of anaerobic and aerobic genes mediated by a

common factor in yeast. Proceedings in National Academy of Science USA, 81(19), 6129–6133.

Luan, Y., Matsuura, I., Yazawa, M., Nakamura, T., & Yagi, K. (1987). Yeast calmodulin: structural and

functional differences compared with vertebrate calmodulin. Journal of Biochemistry, 102(6), 1531-1537.

Lussier, M., Sdicu, A., Winnett, E., Vo, D. H., Sheraton, J., Dusterhoft, A., Storms, R. K., & Bussey, H. (1997).

Completion of the Saccharomyces cerevisiae genome sequence allows identification of KTR5, KTR6 and KTR7

and definition of the nine-membered KRE2/MNT1 mannosyltransferase gene family in this organism. Yeast,

(3), 267-274.

Lustig, A. J., & Petes, T. D. (1986). Identification of yeast mutants with altered telomere structure. Proceedings

in National Acadamy of Science USA, 83(5), 1398–1402.

MacPherson, S., Larochelle, M., & Turcotte, B. (2006). A fungal family of transcriptional regulators: the zinc

cluster proteins. Microbiology and Molecular Biology Review, 70(3), 583–604.

Mamnun, Y. M., Pandjaitan, R., Mahe, Y., Delahodde, A., & Kuchler, K. (2002). The yeast zinc finger

regulators Pdr1p and Pdr3p control pleiotropic drug resistance (PDR) as homo- and heterodimers in vivo.

Molecular Microbiology, 46(5), 1429–1440.

Marie, C., Leyde, S., & White, T. C. (2008). Cytoplasmic localization of sterol transcription factors Upc2p and

Ecm22p in S. cerevisiae. Fungal Genetics and Biology, 45(10), 1430-1438.

Martin, D. C., Kim, H., Mackin, N. A., Maldonado-Baez, L., Evangelista, Jr. C. C., Beaudry, V. G., Dudgeon,

D. D., Naiman, D. Q., Erdman, S. E., & Cunningham, K. W. (2011). New regulators of a high affinity Ca2+

influx system revealed through a genome-wide screen in yeast. Journal of Biological Chemistry, 286(12),


Mulu, A., Kassu, A., Anagaw, B., Moges, B., Gelaw, A., Alemayehu, M., Belyhun, Y., Biadglegne, F., Hurissa,

Z., Moges, F., & Isogai, E. (2013). Frequent detection of ‘azole’ resistant Candida species among late presenting

AIDS patients in northwest Ethiopia. BMC Infectious Disease, 13(1), 1-10.

Nagi, M., Nakayama, H., Tanabe, K., Bard, M., Aoyama, T., Okano, M., Higashi, S., Ueno, K., Chibana, H.,

Niimi, M., Yamagoe, S., Umeyama, T., Kajiwara, S., Ohno, H., & Miyazaki, Y. (2011). Transcription factors

CgUPC2A and CgUPC2B regulate ergosterol biosynthetic genes in Candida glabrata. Genes Cells, 16(1), 80-

Journal of Graphic Era University

Vol. 5, Issue 2, 112-130, 2017

ISSN: 0975-1416 (Print), 2456-4281 (Online)

Nakayama, H., Nakayama, N., Arisawa, M., & Aoki, Y. (2001). In vitro and in vivo effects of 14alpha-

demethylase (ERG11) depletion in Candida glabrata. Antimicrobial Agents and Chemotherapy, 45(11), 3037-

Nobile, C. J., & Johnson, A. D. (2015). Candida albicans biofilms and human disease. Annual Review in

Microbiology, 69, 71-92.

O'Neill, B. M., Szyjka, S. J., Lis, E. T., Bailey, A. O., Yates, J. R., Aparicio, O. M., & Romesberg, F. E. (2007).

Pph3-Psy2 is a phosphates complex required for Rad53 dephosphorylation and replication fork restart during

recovery from DNA damage. Proceedings in National Academy Science USA, 104(22), 9290-9295.

Osborn, A. J., & Elledge, S. J. (2003). Mrc1 is a replication fork component whose phosphorylation in response

to DNA replication stress activates Rad53. Genes Development, 17(14), 1755-1767.

Pardo, M., Monteoliva, L., Vazquez, P., Martınez, R., Molero, G., Nombela, C., & Gil, C. (2004). PST1 and

ECM33 encode two yeast cell surface GPI proteins important for cell wall integrity. Microbiology, 150(12),


Parks, L. W., & Casey, W. M. (1995). Physiological implications of sterol biosynthesis in yeast. Annual Review

in Microbiology, 49(1), 95–116.

Paul, S., & Moye-Rowley, W. S. (2014). Multidrug resistance in fungi regulation of transporter encoding gene

expression. Frontiers in Physiology, 5, 1-14.

Paul, S., Schmidt, J. A., & Moye-Rowley, W. S. (2011). Regulation of the CgPdr1 transcription factor from the

pathogen Candida glabrata. Eukaryotic Cell, 10(2), 187–197.

Paulsen, R. D., & Cimprich, K. A. (2007). The ATR pathway: fine-tuning the fork. DNA Repair, 6(7), 953-966.

Pfaller, M. A., & Diekema, D. J. (2010). Epidemeology of invasive mycoses in North America. Critical Review

in Microbiology, 36(1), 1-53.

Pierce, C. G., & Lopez-Ribot, J. L. (2013). Candidiasis drug discovery and development: new approaches

targeting virulence for discovering and identifying new drugs. Expert Opinion in Drug Discovery, 8(9), 1117-

Prasad, R., & Goffeau, A. (2012). Yeast ATP-binding cassette transporters conferring multidrug resistance.

Annual Review in Microbiology, 66, 39–63.

Prasad, R., Banerjee, A., Khandelwal, N. K., & Dhamgaye, S. (2015). The ABCs of Candida albicans multidrug

transporter Cdr1. Eukaryotic Cell, 14(12), 1154-1164.

Putnam, C. D., Hayes, T. K., & Kolodner, R. D. (2010). Post-replication repair suppresses duplication-mediated

genome instability. PLoS Genetics, 6(5), 1-11.

Putnam, C. D., Jaehnig, E. J., & Kolodner, R. D. (2009). Perspectives on the DNA damage and replication

checkpoint responses in Saccharomyces cerevisiae. DNA Repair, 8(9), 974–982.

Raleigh, J. M., & O'Connell, M. J. (2000). The G (2) DNA damage checkpoint targets both Wee1 and Cdc25.

Journal of Cell Science, 113(10), 1727-1736.

Ritchie, K. B., Mallory, J. C., & Petes, T. D. (1999). Interactions of TLC1 (which encodes the RNA sub-unit of

telomeres), TEL1 and MEC1 in regulating telomere length in the yeast Saccharomyces cerevisiae. Molecular

and Cell Biology, 19(9), 6065-6075.

Roemer, T., & Bussey, H. (1995). Yeast Kre1p is a cell surface O-glycoprotein. Molecular and General

Genetics, 249(2), 209-216.

Roemer, T., Jiang, B., Davison, J., Ketela, T., Veillette, K., Breton, A., Tandia, F., Linteau, A., Sillaots, S.,

Marta, C., Martel, N., Veronneau, S., Lemieux, S., Kauffman, S., Becker, J., Storms, R., Boone, C., & Bussey,

Journal of Graphic Era University

Vol. 5, Issue 2, 112-130, 2017

ISSN: 0975-1416 (Print), 2456-4281 (Online)

H. (2003). Large-scale essential gene identification in Candida albicans and applications to antifungal drug

discovery. Molecular Microbiology, 50(1), 167-181.

Ruiz-Herrea, J. (1992). Fungal cell wall: structure, synthesis and assembly. CRC press: Boca Raton, 1992, 59-

Sanchez, Y., Bachant, J., Wang, H., Hu, F., Liu, D., Tetzlaff, M., & Elledge, S. J. (1999). Control of the DNA

damage check point by chk1 and rad53 protein kinases through distinct mechanisms. Science, 286(5442), 1166-

Sangamwar, A. T., Deshpande, U. D., & Pekamwar, S. S. (2008). Antifungals: need to search for a new

molecular target. Indian Journal of Pharmaceutical Science, 70(4), 423-430.

Sanglard, D., Ischer, F., Calabrese, D., Majcherczyk, P. A., & Bille, J. (1999). The ATP binding cassette

transporter gene CgCDR1 from Candida glabrata is involved in the ressitance of clinical isolates to azole

antifungal agents. Antimicrobial Agents and Chemotherapy, 43(11), 2753-2765.

Sanjuán, R., Stock, R., De Mora, J. F., & Sentandreu, R. (1995). Identification of glucan-mannoprotein

complexes in the cell wall of Candida albicans using a monoclonal antibody that reacts with a (1, 6)-P-glucan

epitope. Microbiology, 141(7), 1545-1551.

Sanvisens, N., De.Llanos, R., & Puig, S. (2013). Function and regulation of yeast ribonucleotide reductase: cell

cycle, genotoxic stress, and iron bioavailability. Biomedical Journal, 36(2), 51-58.

Saunders, G. W., & Rank, G. H. (1982). Allelism of pleiotropic drug resistance in S. cerevisiae. Canadian

Journal of Genetics and Cytology, 24(5), 493–503.

Schjerling, P., & Holmberg, S. (1996). Comparative amino acid sequence analysis of the C6 zinc cluster family

of transcriptional regulators. Nucleic Acids Research, 24(23), 4599–4607.

Spitzer, M., Griffiths, E., Blakley, K. M., Wildenhain, J., Ejim, L., Rossi, L., De Pascele, G., Curak, J., Brown,

E., Tyers, M., & Wright, G. D. (2011). Cross-species discovery of syncretic drug combination that potentiate the

antifungal fluconazole. Molecular and Systematic Biology, 7(1), 499-513.

Sturgeon, C. M., Kemmer, D., Anderson, H. J., & Roberge, M. (2006). A review on yeast as a tool to uncover

the cellular targets of drugs. Biotechnology Journal, 2006 1(3), 289–298.

Stylianou, M., Kulessliy, E., Lopes, J. P., Granlund, M., Wennerberg, K., & Urban, C. F. (2014). Antifungal

application of nonantifungal drugs. Antimicrobial Agents and Chemotherapy, 58(2), 1055-1062.

Synnott, J. M., Guida, A., Mulhern-Haughey, S., Higgins, D. G., & Butler, G. (2010). Regulation of the hypoxic

response in Candida albicans. Eukaryotic Cell, 9(11), 1734–1746.

Szyjka, S. J., Aparicio, J. G., Viggiani, C. J., Knott, S., Xu, W., Tavare, S., & Aparicio, O. M. (2008). RAd53

reglates replication fork restart after DNA damage in Saccharomyces cerevisiae. Genes Development, 22(14),


Tada,T., Ohmori, M., & Iida, H. (2003). Molecular dissection of the hydrophobic segments H3 and H4 of the

yeast Ca2+ channel component Mid1. Journal of Biological Chemistry, 278(11), 9647-9654.

Tak, V., Mathur, P., Varghese, P., Gunjiyal, J., Xess, I., & Misra, M. C. (2014). The epidemiological profile of

Candidemia at an Indian trauma care center. Journal of Labouratory Physicians, 6(2), 96-101.

Taylor, F. R., Rodriguez, R. J., & Parks, L. W. (1983). Requirement for a second sterol biosynthetic mutation

for viability of a sterol C-14 demethylation defect in Saccharomyces cerevisiae. Journal of Bacteriology, 155(1),


Teng, J. F., Goto, R., Iida, K., Kojima, I., & Iida, H. (2008). Ion-channel blocker sensitivity of voltage-gated

calcium-channel homologue Cch1 in Saccharomyces cerevisiae. Microbiology, 154(12), 3775-3781.

Journal of Graphic Era University

Vol. 5, Issue 2, 112-130, 2017

ISSN: 0975-1416 (Print), 2456-4281 (Online)

Teng, J., Iida, K., Imai, A., Nakano, M., Tada, T., & Iida, H. (2013). Hyperactive and hypoactive mutations in

Cch1, a yeast homologue of the voltage-gated calcium-channel pore-forming subunit. Microbiology, 159(5),


Terashima, H., Hamada, K., & Kitada, K. (2003). The localization change of Ybr078w/Ecm33, a yeast GPI-

associated protein, from the plasma membrane to the cell wall, affecting the cellular function. FEMS

Microbiology Letters, 218(1), 175-180.

Thompson, D. S., Carlisle, P. L., & Kadosh, D. (2011). Coevolution of morphology and virulence in Candida

Species. Eukaryotic Cell, 10(9), 1173–1182.

Ton, V. K., & Rao, R. (2004). Functional expression of heterologous proteins in yeast: insights into Ca2+

signaling and Ca2+ -transporting ATPases. American Journal of Physiology and Cell Physiology, 287(3), C580-


Tsai, H. F., Bard, M., Izumikawa, K., Krol, A. A., Sturm, A. M., Culbertson, N. T., Pierson, C. A., & Bennett, J.

E. (2004). Candida glabrata erg1 mutant with increased sensitivity to azoles and to low oxygen tension.

Antimicrobial Agents and Chemotherapy, 48(7), 2483-2489.

Tzamarias, D., & Struhl, K. (1995). Distinct TPR motifs of Cyc8 are involved in recruiting the Cyc8-Tup1

corepressor complex to differentially regulated promoters. Genes and Development, 9(7), 821–831.

Wang, S., Cao, J., Liu, X., Hu, H., Shi, J., Zhang, S., Keller, N. P., & Lu, L. (2012). Putative calcium channels

CchA and MidA play the important roles in conidiation, hyphal polarity and cell wall components in Aspergillus

nidulans. Plos One, 7(10), 1-13.

Watson, P. F., Rose, M. E., & Kelly, S. L. (1988). Isolation and analysis of ketoconazole mutants of

Saccharomyces cerevisiae. Journal of Medical and Veterinary Mycology, 26(3), 153–162.

Weig, M., Haynes, K., Rogers, T. R., Kurzai, O., Frosch, M., & Mühlschlegel, F. A. (2001). A GAS-like gene

family in the pathogenic fungus Candida glabrata. Microbiology, 147(8), 2007-2019.

Weig, M., Jansch, L., Grob, U., De Koster, C. G., Klis, F. M., & De Groot, P. W. J. (2004). Systematic

identification in silico of covalently bound cell wall proteins and analysis of protein-polysaccharide linkages of

the human pathogen Candida glabrata. Microbiology, 150(10), 3129-3144.

Yapar, N. (2014). Epidemiology and risk factors for invasive candidiasis. Therapeutic and Clinical Risk

Management, 10, 95–105.

Yu, Q., Ding, X., Xu, N., Cheng, X., Qian. K., Zhang, B., Xing, L., & Li, M. (2013). In vitro activity if

verapamil alone and in combination with fluconazole or tunicamycin against Candida albicans biofilms.

International Journal of Antimicrobial Agents, 41(2), 179-182.

Zhou, B. B., & Elledge, S. J. (2000). The DNA damage response: putting check points in perspective. Nature,

(6811), 433-439.

Zou, L., & Elledge, S. J. (2003). Sensing DNA damage through ATRIP recognition of RPA-ss DNA complexes.

Science, 300(5625), 1542-1548.




How to Cite

Gupta, P., Rai, N., & Kumar, N. (2023). Molecular Drug Targets in Candida glabrata. Journal of Graphic Era University, 5(2), 112–130. Retrieved from