AFM study on amyloid peptide - graphene oxide assembly and its interaction with liposome


  • Mingdong Dong


The interaction between amyloid peptides and membrane is a broad
research topic due to the variety of biological events occurring, such as the membrane
disruption related pathogenesis of amyloid diseases or the toxicity of peptide
materials. Amyloid peptides have many structural forms, it is therefore important to
explore the interactions between the membrane and assemblies of amyloid peptides,
and to find ways to control these interactions. Herein, we utilized atomic force
microscopy (AFM) and circular dichroism spectra to explore the modulating effect of
Graphene Oxide (GO) on amyloid peptide assembly. In addition, the interaction
between liposome samples and amyloid peptide assembly modulated by GO was
investigated. It is achieved that the membrane disruption of amyloid peptide
aggregates can be fine-tuned by tweaking the GO concentration. The findings in this
work provide a better understanding of amyloid peptide and membrane interactions
and how it can be tuned.


Download data is not yet available.


S. M. Butterfield and H. A. Lashuel, Amyloidogenic protein–membrane interactions:

mechanistic insight from model systems, Angewandte Chemie International Edition,


G. G. Glenner, D. Ein, E. D. Eanes, H. A. Bladen, W. Terry and D. L. Page, Creation of

“amyloid” fibrils from Bence Jones proteins in vitro, Science, 174(4010):712-714 (1971).

G. G. Glenner, Amyloid deposits and amyloidosis. The β-fibrilloses, The New England Journal

of Medicine, 302(23), 1333-1343 (1980).

S. J. Soscia, J. E. Kirby, K. J. Washicosky, S. M. Tucker, M. Ingelsson, B. Hyman, M. A.

Burton, L.E. Goldstein, S.Duong, R. E. Tanzi and R. D. Moir, The Alzheimer's disease-associated

amyloid β-protein is an antimicrobial peptide, PlOS ONE, 5(3): e9505(2010).

E. D. Roberson and L. Mucke, 100 years and counting: prospects for defeating Alzheimer's

disease, Science, 314(5800): 781-784 (2006).

D. L. Brody, S. Magnoni, K. E. Schwetye, M. L. Spinner, T. J. Esparza, N. Stocchetti, G. J.

Zipfel and D. M. Holtzman, Amyloid-β dynamics correlate with neurological status in the injured

human brain, Science, 321(5893): 1221-1224 (2008).

E. Mikros, D. Benaki, E. Humpfer, M. Spraul, S. Loukas, C. I.Stassinopoulou and M.

Pelecanou, High-Resolution NMR Spectroscopy of the β‐Amyloid (1–28) Fibril Typical for

Alzheimer's Disease, Angewandte Chemie-International Edition, 40(19):3603-3605(2001).

M. S. R. Shearman, C. I. Ragan and L. L. Iversen, Inhibition of PC12 cell redox activity is a

specific, early indicator of the mechanism of beta-amyloid-mediated cell death, Proc. Natl. Acad,

Sci. U.S.A., 91(4): 1470-1474(1994).

L. Liu, L. Zhang, L. Niu, M. Xu, X. B. Mao, Y. L. Yang and C.Wang, Observation of reduced

cytotoxicity of aggregated amyloidogenic peptides with chaperone-like molecules, ACS Nano,

(7): 6001-6007(2011).

J. Herms, C. Priller, T. Bauer, G. Mitteregger, B. Krebs and H. A.Kretzschmar, Synapse

formation and function is modulated by the amyloid precursor protein, Journal of Neuroscience,

(27): 7212-7221 (2006).

D. J. Selkoe, Physiological production of the β-amyloid protein and the mechanism of

Alzheimer's disease, Trends in Neurosciences, 16(10): 403-409 (1993).

L. Liu, L. Zhang, X. B. Mao, L. Niu, Y. L. Yang and C. Wang, Chaperon-mediated single

molecular approach toward modulating Aβ peptide aggregation, Nano Letters,


M. Zhang, X. Mao, Y. Yu, C. X. Wang, Y. L. Yang and C. Wang, Nanomaterials for reducing

amyloid cytotoxicity, Advanced Materials, 25(28):3780-3801(2013).

C. Li and R. Mezzenga, The interplay between carbon nanomaterials and amyloid fibrils in

bio-nanotechnology,Nanoscale, 5(14): 6207-6218 (2013).

J. E. Kim and M. Lee, Fullerene inhibits β-amyloid peptide aggregation, Biochem. Biophys.

Res. Commun., 303(2):576-579(2003).

H. Li, Y. Luo, P. Derreumaux and G. Wei, Carbon nanotube inhibits the formation of

β-sheet-rich oligomers of the Alzheimer's amyloid-β (16-22) peptide, Biophysical Journal,


Z. Fu, Y. Luo, P. Derreumaux and G. Wei, Induced β-Barrel Formation of the Alzheimer's

Aβ25–35 Oligomers on Carbon Nanotube Surfaces:Implication for Amyloid Fibril Inhibition,

Biophysical Journal, 97(6): 1795-1803(2009).

A. K. Jana and N. Sengupta, Adsorption Mechanism and Collapse Propensities of the

Full-Length, Monomeric Aβ 1-42 on the Surface of a Single-Walled Carbon Nanotube: A

Molecular Dynamics Simulation Study Biophysical Journal, 102(8): 1889-1896(2012).

A. K. Jana, J. C. Jose and N. Sengupta, Critical roles of key domains in complete adsorption

of Aβ peptide on single-walled carbon nanotubes: insights with point mutations and MD

simulations, Phys.Chem. Chem. Phys, 15(3): 837-844 (2013).

V. C. Sanchez, A. Jachak, R. H. Hurt and A. B.Kane, Biological interactions of

graphene-family nanomaterials: an interdisciplinary review, Chem. Res. Toxicol, 25(1):


L. Feng and Z. Liu, Graphene in biomedicine: opportunities and challenges,

Nanomedicine ,6(2): 317-324(2011).

Z. Liu, J. T. Robinson, X. Sun and H. Dai, PEGylated nanographene oxide for delivery of

water-insoluble cancer drugs, Journal of the American Chemical Society, 130(33):


Y. Zhang, T. R. Nayak, H. Hong and W. Cai, Graphene: a versatile nanoplatform for

biomedical applications, Nanoscale, 4(13): 3833-3842(2012).

S. K. Lee, H. Kim, B. S. Shim, Graphene: an emerging material for biological tissue

engineering ,Carbon Letters, 14(2):63-75 (2013).

H. Wang, Q. Zhang, X. Chu, T. Chen, J. Ge and R. Yu, Graphene oxide–peptide conjugate as

an intracellular protease sensor for caspase-3 activation imaging in live cells, Angew.Chem. Int.

Ed. 50(31): 7065-7069 (2011).

J. Balapanuru, J.X. Yang, S.Xiao, Q. Bao, M. Jahan, L. Polavarapu, J. Wei, Q. H. Xu and K. P.

Loh, A Graphene Oxide–Organic Dye Ionic Complex with DNA‐Sensing and Optical‐Limiting

Properties ,Angewandte Chemie, 122(37): 6699-6703(2010).

C.H. Lu, H. H.Yang, C. L. Zhu, X. Chen and G.N. Chen, A graphene platform for sensing

biomolecules, Angewandte Chemie, 121(26): 4879-4881 (2009).

H. Jang, Y. K. Kim, H. M. Kwon, W. S. Yeo, D. E.Kim and D.H. Min, A Graphene-Based

Platform for the Assay of Duplex‐DNA Unwinding by Helicase, Angewandte Chemie, 122(33):


J. H.Jung, D. S. Cheon, F. Liu, K. B. Lee and T. S. Seo, A Graphene Oxide Based

Immuno-biosensor for Pathogen Detection, Angew. Chem. Int. Ed, 49(33):5708-5711(2010).

X. Wang, C. Wang, K. Qu, Y. Song, J.Ren, D. Miyoshi, N. Sugimoto and X. Qu, Ultrasensitive

and Selective Detection of a Prognostic Indicator in Early-Stage Cancer Using Graphene Oxide

and Carbon Nanotubes, Advanced Functional Materials, 20(22):3967-3971 (2010).

M. Zhang, B. C. Yin, X. F. Wang and B. C. Ye, Interaction of peptides with graphene oxide

and its application for real-time monitoring of protease activity, Chemical Communications,

(8):2399-2401 (2011).

K. S. Novoselov, V.I. Fal'ko, L. Colombo, P. R. Gellert, M. G. Schwab and K. Kim, A roadmap

for graphene, Nature, 490(7419): 192-200 (2012).

Y. Tu, M. Lv, P. Xiu, T. Huynh, M. Zhang, M. Castelli, Z. Liu, Q.Huang, C. Fan, H. Fang and

R. Zhou, Destructive extraction of phospholipids from Escherichia coli membranes by graphene

nanosheets, Nature nanotechnology, 8(8): 594-601 (2013).

Y. Li, H. Yuan, A. von dem Bussche, M. Creighton, R. H. Hurt, A. B.Kane and H. Gao,

Graphene microsheets enter cells through spontaneous membrane penetration at edge asperities

and corner sites, Proceedings of the National Academy of Sciences, 110(30): 12295-12300(2013).

T. Kowalewski and D. M. Holtzman, In situ atomic force microscopy study of Alzheimer’s

β-amyloid peptide on different substrates:New insights into mechanism of β-sheet formation,

Proceedings of the National Academy of Sciences, 96(7): 3688-3693(1999).

D. Losic, L. L. Martin, M. I. Aguilar and D. H. Small, β‐Amyloid fibril formation is

promoted by step edges of highly oriented pyrolytic graphite, Peptide Science, 84(5):519-526


R. Laghaei, N. Mousseau and G. Wei, Structure and thermodynamics of amylin dimer studied

by hamiltonian-temperature replica exchange molecular dynamics simulations, J. Phys. Chem. B,

(12): 3146-3154(2011).

X. Yu, Q. Wang, Y. Lin, J. Zhao, C. Zhao and J. Zheng, Structure, orientation, and surface

interaction of Alzheimer amyloid-β peptides on the graphite, Langmuir, 28(16): 6595-6605(2012).

M.Mahmoudi, O. Akhavan, M. Ghavami, F. Rezaee and S. M. A. Ghiasi, Graphene oxide

strongly inhibits amyloid beta fibrillation, Nanoscale, 4(23), 7322-7325 (2012).

P. Liu, S. Zhang, M. S .Chen, Q. Liu, C. Wang, Y. M. Li, F. Besenbacher and M. D. Dong,

Co-assembly of human islet amyloid polypeptide (hIAPP)/insulin, Chem Commun,


J. Adamcik, J. M. Jung, J. Flakowski, Paolo De Los Rios, G. Dietler and R. Mezzenga,

Understanding amyloid aggregation by statistical analysis of atomic force microscopy images, Nat

Nanotechnol, 5(6):423–428(2010).

M. D. Dong, M. B. Hovgaard, S. L. Xu, D. E. Otzen and F. Besenbacher, AFM study of

glucagon fibrillation via oligomeric structures resulting in interwoven fibrils, Nanotechnology,


Y.P. Yu, S. Zhang, Q. Liu, Y. M. Li, C. Wang, F. Besenbacher and M. D. Dong, 2D amyloid

aggregation of human islet amyloid polypeptide at the solid-liquid interface, Soft Matter,


A. Quist, I. Doudevski, H. Lin, R. Azimova, D. Ng, B. Frangione, B. Kagan, J. Ghiso and R.

Lal, Amyloid ion channels: A common structural link for proteinmisfolding disease, Proc Natl

Acad Sci USA, 102(30):10427–10432(2005).

J.Adamcik, V. Castelletto, S. Bolisetty, I. W. Hamley and R. Mezzenga, Direct observation of

time-resolved polymorphic states in the self-assembly of end-capped heptapeptides, Angew Chem

Int Ed Engl, 50(24):5495–5498(2011).

Q. Li, L. Liu, S. Zhang, M. Xu, X. Q. Wang, C. Wang, F. Besenbacher and M. D. Dong*,

Modulating Aβ33–42 Peptide Assembly by Graphene Oxide, Chemistry-A European Journal,

(24): 7236-7240 (2014).

E. Hellstrand, B. Boland, D. M. Walsh and S. Linse, Amyloid β-protein aggregation produces

highly reproducible kinetic data and occurs by a two-phase process, ACS Chem.Neurosci., 1(1):





How to Cite

Dong, M. (2023). AFM study on amyloid peptide - graphene oxide assembly and its interaction with liposome. Journal of Self Assembly and Molecular Electronics, 3(1), 17–32. Retrieved from