Characterization of Emergence of the Coulomb Blockade in a Pearl-Like DNA-AuNP Assembly


  • Kosti Tapio University of Jyvaskyla, Department of Physics, Nanoscience Center, P.O. Box 35, FI-40014 University of Jyv ̈askyl ̈a, Finland
  • J. Jussi Toppari University of Jyvaskyla, Department of Physics, Nanoscience Center, P.O. Box 35, FI-40014 University of Jyv ̈askyl ̈a, Finland



DNA, gold nanoparticles, metallization, single electron transis- tor, differential conductance.


Due to its superior self-assembly properties and vast functionalization pos-
sibilities DNA has long been one of the most promising candidates for
fabrication of nanoscale electrical components using molecular building
blocks. There exist already many demonstrations on optical devices based on
organizing metallic nanoparticles (NP) via DNA self-assembly, but despite the
promises only few DNA based electrical devices or studies have been realized
so far. Here we study the gold NP conjugated and metallized DNA TX-tile-
structure, which we recently showed to exhibit the room temperature Coulomb
blockade, the pre-requisition for a single electron transistor. The properties of
the obtained Coulomb blockade are further characterized via the differential
conductance measurements at temperatures ranging from 4.2 K to 10.2 K.
The results show sharp blockade plateaus with varying threshold voltages,
which yields further evidence of a gating effect by background charges. This
strongly indicates that the DNA-NP assembly functions as a single electron
transistor. Also, the additional growth of gold NPs and electrodes via chemical
gold deposition process, needed to achieve the Coulomb blockade, is studied
here in more details, yielding more insight to the process, and thus helping to
realize better control of it.


Download data is not yet available.

Author Biographies

Kosti Tapio, University of Jyvaskyla, Department of Physics, Nanoscience Center, P.O. Box 35, FI-40014 University of Jyv ̈askyl ̈a, Finland

Kosti Tapio graduated from University of Jyväskylä as M.Sc. in experi-
mental physics in 2012 under supervision of then Academic research fellow
Dr. Toppari. He continued for his Ph.D studies the same year in the same
molecular electronics and plasmonics group, working on DNA based nano-
electronics and plasmonics structures and assemblies. He will defend his Ph.D
thesis in 2017.

J. Jussi Toppari, University of Jyvaskyla, Department of Physics, Nanoscience Center, P.O. Box 35, FI-40014 University of Jyv ̈askyl ̈a, Finland

J. Jussi Toppari is a senior university lecturer (Adjunct professor/Docent) at
Department of Physics, Nanoscience Center, University of Jyväskylä, Finland.
He received his M.Sc. (1997) and Ph.D. degrees (2003) in experimental
physics of superconducting nanostructures in University of Jyväskylä. After
that he worked as a senior assistant in a newly formed Nanoscience Center
(NSC) and in 2008 he obtained the degree of adjunct professor (docent) and
established his own independent research group in NSC. During 2011 he
worked as a senior visiting researcher at the Leibniz Institute of Photonic
Technology, Jena, Germany. His current research interest is molecular elec-
tronics and plasmonics, in particular DNA nanotechnology and strong light
matter coupling.


M. Ratner. Nat. Nanotechnol., 8, 378–381 (2013).

N. Mojarad, J. Gobrecht, and Y. Ekinci. Microelectron. Eng., 143, 55–63


Y. S. Rusli, and N. Singh. IEEE Trans. Nanotechnol., 10, 96–98 (2011).

A. V. Pinheiro, D. Han, W. M. Shih, and H. Yan. Nat. Nanotechnol., 6,

–772 (2011).

O. I. Wilner, and I. Willner, Chem. Rev., 112, 2528–2556 (2012).

V. Linko, A. Ora, and M. A. Kostiainen. Trend Biotechnol., 33, 586–594


M. L. Petrillo, C. J. Newton, R. P. Cunningham, N. R. Kallenbach, R.-I.

Ma and N. C. Seeman. Biopolymers, 27, 1337–1352 (1988).

E. Winfree, F. Liu, L. A. Wenzler, and N. C. Seeman. Nature, 394, 539–


T. H. LaBean, H. Yan, J. Kopatsch, F. Liu, E. Winfree, J. H. Reif, and N.

C. Seeman, J. Am. Chem. Soc., 122, 1848–1860 (2000).

P. W.K. Rothemund. Nature, 440, 297–302 (2006).

E. S. Andersen, M. Dong, M. M. Nielsen, K. Jahn, A. Lind-Thomsen, W.

Mamdouh, K. V. Gothelf, F. Besenbacher, and J. Kjems. ACS Nano, 2,

–1218 (2008).

B. Saccà, and C. M. Niemeyer, Angew. Chem. Int. Ed., 51, 58–66 (2012).

A.-P. Eskelinen, A. Kuzyk, T. K. Kaltiaisenaho, M. Y. Timmermans, A.

G. Nasibulin, E. I. Kauppinen, and P. Törmä, Small, 6, 746–750 (2011).

V. Linko, S. Nummelin, L. Aarnos, K. Tapio, J. J. Toppari, and M. A.

Kostiainen. Nanomaterials, 6, 139 (2016).

B. Yurke,A. J. Turberfield,A. P. Mills Jr, F. C. Simmel, and J. L. Neumann.

Nature, 406, 605–608 (2000).

Characterization of Emergence of the Coulomb Blockade 43

M. Lui, J. Fu, C. Hejesen, Y. Yang, N. W. Woodbury, K. Gothelf, Y. Liu,

and H. Yan. Nature Comm., 4, 2127 (2013).

S. D. Perrault, and W. M. Shih. ACS Nano, 8, 5132–5140 (2014).

B. Ding, Z. Deng, H. Yan, S. Cabrini, R. N. Zuckermann, and J. Bokor,

J. Am. Chem. Soc., 132, 3248–3249 (2010).

H. T. Maune, S.-P. Han, R. D. Barish, M. Bockrath, W. A. Goddard III,

P.W.K. Rothemund, and E. Winfree, Nat. Nanotechnol., 5, 61–66 (2010).

B. Shen, K. Tapio, V. Linko, M. A. Kostiainen, and J. J. Toppari.

Nanomaterials, 6, 146 (2016).

E.-M. Roller, L. K. Khorashad, M. Fedoruk, R. Schreiber, A. O. Govorov,

and T. Liedl, Nano lett., 15, 1368–1373 (2015).

X. Lan, Z. Chen, G. Dai, X. Lu, W. Ni, and Q. Wang, J. Am. Chem. Soc.,

, 11441–11444 (2013).

M. Pilo-Pais, A. Watson, S. Demers, T. H. LaBean, and G. Finkelstein.

Nano Lett., 14, 2099–2104 (2014).

X. Shen, A. Asenjo-Garcia, Q. Liu, Q. Jiang, F. J. García de Abajo,

N. Liu, and B. Ding. Nano Lett., 13, 2128–2133 (2013).

G. Maubach, and W. Fritzsche, Nano Lett., 4, 607–611 (2004).

G. Maubach, D. Born, A. Csáki, and W. Fritzsche. Small, 1, 619–624


B. Teschome, S. Facsko, T. Schönherr, J. Kerbusch, A. Keller, and A.

Erbe. Langmuir, 32, 10159–10165 (2016).

B. L. Altshuler, P. A. Lee, and R. A. Webb. Mesoscopic Phenomena in

Solids. Amsterdam: Elsevier, 173–271 (1991).

R. J. Schoelkopf, P. Wahlgren, A. A. Kozhevnikov, P. Delsing, and D. E.

Prober, Science, 280, 1238–1242 (1998).

A. Rossi, T. Tanttu, F. E. Hudson, Y. Sun, M. Möttönen, and A. S. Dzurak,

J. Vis. Exp., 100, 52852 (2015).

J. P. Kauppinen, K. T. Loberg, A. J. Manninen, J. P, Pekola, and R. A.

Vuotilainen. Rev. Sci. Instrum., 69, 4166–4175 (1998).

K. Tapio, J. Leppiniemi, B. Shen, V. P. Hytönen, W. Fritzsche, and J. J.

Toppari, Nano lett., 16, 6780–6786 (2016).

A. N. Korotkov. Int. J. Electron., 86, 511–547 (1999).

V. Linko, J. Leppiniemi, S.-T. Paasonen, V. P. Hytönen, and J. J. Toppari.

Nanotechnology, 22, 275610 (2011).

H. A. Pohl. J. Appl. Phys., 22, 869–871 (1951).

A. Kuzyk. Molecular devices for nanoelectronics and plasmonics. Ph.D.

dissertation, University of Jyväskylä, Jyväskylä.




How to Cite

Tapio, K., & Toppari, J. J. (2023). Characterization of Emergence of the Coulomb Blockade in a Pearl-Like DNA-AuNP Assembly. Journal of Self Assembly and Molecular Electronics, 5(1), 31–44.