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Abstract

Charge transport at the molecular scale builds the cornerstone of molecular
electronics (ME), a novel paradigm aiming at the realization of nanoscale
electronics via tailored molecular functionalities. Biomolecular electronics,
lying at the borderline between physics, chemistry and biology, can be con-
sidered as a sub-field of ME. In particular, the potential applications of DNA
oligomers either as template or as active device element in ME have strongly
drawn the attention of both experimentalist and theoreticians in the past years.
While exploiting the self-assembling and self-recognition properties of DNA
based molecular systems is meanwhile a well-established field, the poten-
tial of such biomolecules as active devices is much less clear mainly due to
the poorly understood charge conduction mechanisms. One key component
in any theoretical description of charge migration in biomolecular systems,
and hence in DNA oligomers, is the inclusion of conformational fluctuations
and their coupling to the transport process. The treatment of such a problem
affords to consider dynamical effects in a non-perturbative way in contrast
to, e.g., conventional bulk materials. Here we present an overview of recent
work aiming at combining molecular dynamic simulations and electronic
structure calculations with charge transport in coarse-grained effective model
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Hamiltonians. This hybrid methodology provides a common theoretical start-
ing point to treat charge transfer/transport in strongly structurally fluctuating
molecular-scale physical systems.

Keywords: Electronic structure, biomolecules, molecular dynamics,
quantum transport.

1 Introduction

Can a DNA molecular wire mediate charge transport, i.e., support an elec-
trical current? This question has attracted a considerable attention in the past
20 years, mainly triggered by two facts: first, the emergence of molecu-
lar electronics [1–4], which opened the perspective of realizing electronic
functions at the molecular level and thus of exploiting DNA self-assembling
and self-recognition properties [5–7]; second, by the demonstration of long-
range hole transfer in different DNA oligomers in solution in the groups of
Barton [8–13], Giese [14, 15], Lewis [16], Schuster [17–19], and Michel-
Beyerle [14,20]. These experiments revealed electron transfer occurring over
distances as long as 200 Å, which was in so far surprising, as the highly
disordered structure of natural DNA – related to a quasi-random base pair
sequence – should lead to a considerable degree of charge localization.
Mechanisms based on thermally activated incoherent hole hopping have been
successful in describing hole transfer in solution [20, 28–30].

However, when coming to investigate experimentally charge transport
properties, i.e. the electrical response of DNA when contacted by metallic
electrodes, the situation became considerably less clear. Indeed, a variety
of partially contradictory experimental results has been obtained in the past
years for double-strand (ds) DNA oligomers [19, 21–27]. This situation hints
not only at the difficulties encountered to carry out well-controlled transport
measurements, but also at the strong sensitivity of charge migration to several
factors, including (i) the specific base sequence of the probed molecules,
(ii) the structure of DNA (whether in A or B form) which can lead to a quantit-
ative difference in the overlap of the π -electrons of the stacked bases, (iii) the
length of the sequences – longer chains may be deformed due to structural
instability – so that any kinks and defects in the DNA structure introduced
in this way may distort the DNA π -system, and (iv) the DNA-metal contact
topology and electronic structure.

Meanwhile, some experiments [25, 26, 39] have shown in a reliable way
that charge transport can take place through single short DNA segments. Xu
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et al. [25] and Cohen et al. [26] addressed dsDNA while Liu et al. [39] fo-
cused on G4. Concerning the dsDNA, both experiments found currents of
100–150 nA at about 1 V. In [25], electrical transport through covalently Au-
contacted double-stranded DNA in aqueous solution was measured, where
the native form of the DNA is preserved. The I–V curves show a rather
smooth ohmic profile with considerably large currents up to 150 nA at 0.8 V.
The experimental approach of Cohen et al. [26] was based on measuring
current through suspended dsDNA molecules connected between a metal
substrate and a gold nanoparticle contacted to an AFM conducting tip. Cur-
rents of the order of 220 nA at 2.0 V were measured. Interestingly, the length
and base sequence of DNA in these two experiments were completely dif-
ferent. Unfortunately, systematic investigations (within a given experimental
setup) on base sequence, length, and the temperature dependence of charge
transport are still missing, so that the theoretical analysis of possible charge
transport pathways faces big challenges [40]. Initial modeling of charge
transport was mainly based on effective Hamiltonians with fixed electronic
parameters and describing e.g hole transport through the highest occupied
molecular orbitals (HOMO) of the bases [41–47] (see also [48,49] for recent
reviews). Model Hamiltonians clearly offer the possibility to explore different
charge transport scenarios in a relatively flexible way, but they also contain
usually many parameters which are difficult to estimate. This limits the pre-
dictive power of those models in case of complex biomolecular systems.
On the other hand, first-principle calculations [50–63] performed on static
structures can provide accurate values for the electronic couplings but can
hardly deal with the full transport problem. As a result, the development of
methodologies exploiting the advantages of both approaches become highly
desirable.

An important factor governing charge transfer/transport is the biomolecu-
lar structural dynamics: several important studies in the chemical physics
community have highlighted the crucial role played by dynamical fluctu-
ations in favoring or hindering hole migration [30–38, 61, 64–72]. Hence,
we may expect that transport of charges when DNA is contacted by elec-
trodes can only be understood in the context of a dynamical approach which
includes the coupling of the electronic system to conformational degrees of
freedom, resulting in fully or partially incoherent charge propagation. Indeed,
strong conformational dynamics and a related spectrum of different time
scales seem to be ubiquitous for biomolecules, as shown e.g., in the mod-
ulation of the kinetics of electron transfer during the early stages of the pho-
tosynthetic reaction cycle [73], by the analysis of dispersed kinetics [74, 75],
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or by fluorescense correlation spectroscopy [76]. The treatment of dynam-
ical effects in DNA transport calculations has been, however, addressed only
recently either in the frame of pure model Hamiltonians [47,77–80] or by in-
cluding information from first principle calculations and molecular dynamics
(MD) simulations [67, 69, 81–84].

A realistic inclusion of the influence of dynamical effects onto the
transport properties can however only be achieved in our view via hybrid
methodologies combining a reliable description of the biomolecular dynam-
ics and electronic structure with quantum transport calculations. The present
paper will introduce such a methodology which has been recently developed
[81–83, 85–88]. This approach allows to consider the influence of structural
fluctuations and solvent effects onto the electronic structure of DNA oli-
gomers. Hereby we use a density-functional (DFT) based fragment-orbital
method, which provides a very efficient way to compute the charge transfer
parameters along nanosecond molecular dynamic trajectories. Solvation ef-
fects are described using a hybrid quantum mechanics/molecular mechanics
(QM/MM) coupling scheme. The combination of the method with coarse-
grained Hamiltonian models opens the way to study charge transport in
complex systems where the interaction with dynamical degrees of freedom
plays a fundamental role.

The paper is organized as follows. In the next section we present a model
Hamiltonian approach including coupling to specific vibrational degrees of
freedom that was used to describe charge transport through standing DNA
sequences [26]. The goal of the section is twofold: first to introduce Green
function techniques and to show how to treat analytically such problems;
second to illustrate what are the intrinsic limitations of approaches based
only on model Hamiltonians. In Section 3 we shall then to introduce the com-
putational methodology combining classical molecular dynamic simulations
with DFT based electronic structure calculations along the MD trajectory.
An efficient coarse-graining is hereby achieved by using fragment orbitals.
The resulting effective electronic structure can be mapped onto a linear tight-
binding chain with time-dependent electronic parameters. Charge transport
can be then investigated along two different but complementary ways: by
computing quantum mechanical transmission probabilities along the MD
trajectory and performing time averages (Section 3.2) or by mapping the
time dependent electronic Hamiltonian onto a model describing the interac-
tion of a static (time averaged) electronic system with a dissipative bosonic
environment (Section 4). The main advantage of this second approach is
the possibility to describe charge transport beyond the coherent limit. More
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importantly, the quantities characterizing the bath (spectral density) can be
fully determined in terms of time correlation functions of the electronic
parameters.

2 Model Hamiltonian Approaches to Charge Transport in
DNA Molecular Wires: Standing DNA Oligomers

In the context of charge transport, model Hamiltonian formulations have been
extensively applied to address the role played by different physical paramet-
ers in determining the efficiency of charge migration through different DNA
oligomers. Cuniberti et al. [48] offer a recent overview of different classes of
such tight-binding based models commonly used in the past years to compute
the charge transport characteristics of DNA wires.

In this section we will present an example on how a model Hamiltonian
approach can be used to describe some experimental findings. We pursue
hereby two main goals: (i) to show how analytical methods based on Green
functions can be applied to deal with the coupling to vibrational excitations in
a typical minimal model, and (ii) to demonstrate what is the main drawback
of a model treatment of transport, namely, the appearance of a number of
free parameters, which are in general difficult to obtain from first-principle
calculations. This second aspect is crucial since the complexity of DNA mo-
lecules makes a full ab initio estimation of such parameters very challenging
and the possible transport scenarios do dramatically depend on the specific
values these parameters can take.

The reference point for the theoretical treatment were single molecule
experiments performed at the group of D. Porath [26]. In brief, a thiolated
26 bases long single-stranded DNA (ssDNA) with a non-homogeneous se-
quence was adsorbed on a gold surface to create a dense monolayer. The
ssDNA molecules had a thiol-modified linker end group (CH2)3-SH at the 3’-
end (see Figure 1(a)). The monolayer was then exposed to a solution of the
complimentary ssDNA bound to gold nanoparticles (GNP) via a thiol linker.
Upon incubation of ssDNA-GNP conjugates on ssDNA- functionalized gold
surface, a certain density of dsDNA attached at one end to the gold surface
and at the other end to GNP was formed. A metal coated AFM tip was used
to form an electrical contact to protruding GNP and perform electrical meas-
urements across dsDNA. Figure 1(b) shows an AFM image of several GNPs,
indicating the position of the hybridized dsDNA on the background of the
ssDNA monolayer. The recorded current voltage curves, shown in Figure 1(c)
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Figure 1 (a) Scheme of the experimental setup showing dithiolated dsDNA chemically bon-
ded to two metal electrodes (upper – GNP, lower – gold surface). The base sequence is given by
5’-CAT TAA TGC TAT GCA GAA AAT CTT AG-3’-(CH2)3-SH. (b) AFM topography image
showing a top view of the sample. The GNPs mark the position of the hybridized dsDNA.
(c) Collection of I–V curves from different samples. (d) An F–Z curve of one of the curves
in (c), (green – forward, red – backward) demonstrating the tip-GNP adhesion (red line)
without pressing the GNP through the monolayer. Reprinted with permission from [79]. ©
2006 American Physical Society (DOI: 10.1103/PhysRevB.74.235105).

demonstrate in a clear and reproducible way, the ability of ∼9 nm long
dsDNA to conduct relatively high currents (> 200 nA), when the molecule
is not attached to a hard surface along its backbone and when charge can be
injected efficiently through a chemical bond. Such behavior was measured
for many dsDNA molecules on tens of samples and with various tips and
humidity conditions with similar results.

From a theoretical point of view, the central aim is to formulate a minimal
model describing the DNA electronic structure and the coupling to the elec-
trodes (metallic surface and GNP modified AFM tip) [79]. For this, we adopt
the perspective that to describe low-energy quantum transport within a single-
particle picture, only the frontier π orbitals of the base pairs are relevant.
The starting point will be then a planar ladder model with a single orbital
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Figure 2 Upper panel: Schematic representation of the double-strand DNA with the exper-
imentally relevant base-pair sequence [26]. The (CH2)3-SH linker groups are omitted for
simplicity (see the text for details). Lower panel: Two-strand ladder used to mimic the double-
strand structure of a DNA molecule. L and R refer to left and right electrodes, respectively.
The coupling terms to the electrodes ��,α , � = X, X̄, α = L, R are assumed to be energy-
independent constants. Reprinted with permission from [79]. © 2006 American Physical
Society (DOI: 10.1103/PhysRevB.74.235105).

per lattice site within a nearest-neighbor tight-binding picture as shown Fig-
ure 2. Ladder models have been previously used by different authors to study
quantum transport in DNA duplexes [43, 46, 89–92]. The Hamilton operator
describing the ladder and its coupling to left (L) and right (R) electronic
reservoirs is given by

Hel =
∑

r=X,X̄

∑

�

εr,�b
†
r,�br,�

−
∑

r=X,X̄

∑

�

tr,�,�+1[b†
r,�br,�+1 + h.c.]

−
∑

�

t⊥,�[b†
X,�bX̄,� + h.c.]

+
∑

k∈L

[tk,Xc
†
kbX,1 + h.c.] +

∑

k∈L

[tk,X̄c
†
kbX̄,1 + h.c.]
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+
∑

k∈R

[tk,Xc
†
kbX,N + h.c.] +

∑

k∈R

[tk,X̄c
†
kbX̄,N + h.c.] (1)

In the above expression, X, X̄ refer to the two strands of the ladder, εr,� are
energies at site � on strand r, tr,�,�+1 are the corresponding nearest-neighbor
electronic hopping integrals along the two strands while t⊥,� describes the
inter-strand hopping. To have an estimation of the onsite energies, val-
ues obtained by Mehrez and Anantram [60] using density-functional theory
(DFT) were taken. Considering electron transport, we chose εG = 1.14 eV,
εC = −1.06 eV, εA = 0.26 eV, εT = −0.93 eV. More difficult is the
choice of the intra- and inter-strand electronic transfer integrals. They will
be more sensitive to the specific base sequence considered. For the sake of
simplicity and in order to reduce the number of model parameters a simple
parameterization is adopted taking homogeneous hopping along both strands,
i.e. tr,�,�+1 = tX = tX̄ = t ∼ 0.25–0.27 eV and t⊥,� = tXX̄ ∼ 0.2–0.3 eV.
We remark that the hopping integrals are considered as effective parameters,
thus keeping some freedom in the choice of their specific values. Electronic
correlations [46] or structural fluctuations mediated by the coupling to other
vibrational degrees of freedom (see the next paragraphs) can lead to a strong
renormalization of the bare electronic coupling. The interaction with the elec-
tronic reservoirs will be described in the most simple way by invoking the
wide-band approximation, i.e. neglecting the energy dependence of the lead
self-energies (see below).

To model the coupling to vibrational degrees of freedom we consider
the case of long-wave length optical modes with constant frequencies �α,
e.g., long wave-length torsional modes and assume they couple to the total
charge density operator N = ∑

r,� nr,� = ∑
r,� b

†
r,�br,� of the ladder. This

approximation can be justified for long-wave length distortions. In other
words, the strength of the electron-vibron interaction λ is assumed to be
site-independent. The total Hamiltonian thus reads [79]:

H = Hel +
∑

α

�αB
†
αBα +

∑

r,�,α

λαb
†
r,�br,�(Bα + B†

α) (2)

To deal with the transport problem using this Hamiltonian model we will
use Green function techniques which offer a powerful methodology to cover
different transport regimes as well as to treat the coupling between different
degrees of freedom. In a first step, a Lang–Firsov (LF) unitary transforma-
tion [93] is performed in order to remove the electron-vibron interaction. The
LF-generator is given by U = exp[−∑

α,r,� gαb
†
r,�br,�(Bα − B†

α)], which is
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basically a shift operator for the harmonic oscillator position. The parameter
gα = λα/�α gives an effective measure of the electron-vibron coupling
strength. As a result of the LF transformation, the onsite energies εr,� are
shifted to εr,� − 	 with 	 = ∑

α λ2
α/�α being the so called polaron shift.

Renormalization effects in the tunneling Hamiltonian will be neglected in the
following.

For the transport problem, the standard current expression for lead p=L,R
as derived by Meir and Wingreen [94] can be used:

Ip = 2i e

h

∫
dE Tr[�p{fp(G

> − G<) + G<}], (3)

and then the LF unitary transformation is performed under the trace going
over to transformed Green functions. In the previous equation, �p(E) =
i (
p(E) − 
†

p(E)) are the lead spectral functions, fp(E) = f (E − μp)

is the Fermi function of the p-lead and μp=L = EF + eV/2 (μp=R =
EF − eV/2) are the corresponding electrochemical potentials. Within the
wide-band limit in the electrode coupling, the following 2N ×2N ladder-lead
energy-independent coupling matrices can be defined:

(�L)nm =
⎧
⎨

⎩

�L,Xδn,1δm,1 if n,m ∈ X

�L,X̄δn,1δm,1 if n,m ∈ X̄

0 if elsewhere

(�R)nm =
⎧
⎨

⎩

�R,Xδn,Nδm,N if n,m ∈ X

�R,X̄δn,Nδm,N if n,m ∈ X̄

0 if elsewhere

Now define the fermionic vector operator (see Figure 2 for reference):

�† = (bX,1 bX,2 · · · bX,N bX̄,1 · · · bX̄,N). (4)

Lesser- and greater-matrix Green functions (GF) can then be introduced as

G>(t) = − i

h̄

〈
�(t)�†(0)

〉
,

G<(t) = i

h̄

〈
�†(0)�(t)

〉
. (5)

Since Eq. (3) does not explicitly contain information on the specific struc-
ture of the “molecular” Hamiltonian, we can now transform the lesser- and
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greater-GF as well as the lead spectral functions to the polaron repres-
entation. The operator � transforms according to �̄ = U�U† = �X ,
where X = exp[∑α(λα/�α)(Bα − B†

α)]. Thus, we obtain Ḡ>(t) =
−(i /h̄)

〈
�(t)X (t)�†(0)X †(0)

〉
and similar for Ḡ<(t). Performing an ap-

proximate decoupling in this expression into polaronic and vibronic com-
ponents one obtains:

Ḡ>(t) = − i

h̄

〈
�(t)X (t)�†(0)X †(0)

〉

≈ − i

h̄

〈
�(t)�†(0)

〉
el

〈
X (t)X †(0)

〉
B

= G>(t)
〈
X (t)X †(0)

〉
B

= G>(t)e−(t), (6)

with a similar expression holding for the lesser-than GF by changing the time
argument t by −t in (t).

For a single vibrational mode, the vibron correlation function (t) can be
exactly evaluated [93]:

e−(t) = e−g2(2N+1)

∞∑

n=−∞
In(τ)eβ�n/2e−i n�t , (7)

where τ = 2g2
√

N(N + 1) and g = λ/�. It follows then for the Fourier
transformed lesser and greater GFs:

Ḡ<(>)(E) =
∞∑

n=−∞
φn(τ)G<(>)(E + (−)n�),

φn(τ) = e−g2(2N+1) × In(τ) eβ� n/2. (8)

where +(−) corresponds to < (>). The bare lesser- and greater-GF can now
be obtained from the kinetic equation G<(>) = Gr(


<(>)

L + 

<(>)

R )Ga , since
the full electron-vibron coupling is already contained in the prefactor function
φn(τ). The leads self-energy matrices 
<

p , 
>
p are given in the wide-band

limit by i fp(E)�p and −i (1 − fp(E))�p, respectively. Using these expres-
sions, the total symmetrized current in the stationary state IT = (IL − IR)/2
is given by [79]

IT = e

2h

∞∑

n=−∞
φn(τ)

∫
dE {[fL(E) (1 − fR(E − n�))
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− fR(E) (1 − fL(E − n�))] t (E − n�)

+ [fL(E + n�) (1 − fR(E))

− fR(E + n�) (1 − fL(E))]T (E + n�)}, (9)

where T (z) = Tr[�RGr(z)�LGa(z)] is the conventional expression for the
transmission coefficient in terms of the molecular Green function G(E),
which satisfies the Dyson-equation: G−1 = G−1

0 − 
L − 
R. The above
result for the current has a clear physical interpretation. So, e.g., a term like
fL(E) (1 − fR(E − n�))T (E − n�) describes an electron in the left lead
which tunnels into the molecular region, emits n vibrons of frequency � and
tunnels out into the right lead. However, it can only go into empty states,
hence the Pauli blocking factor (1 − fR(E − n�)). Other terms can be inter-
preted along the same lines, when one additionally substitutes electrons by
holes.

Finally, a spectral density A(E,V ) can be defined as

A(E,V ) = i [Ḡ>(E) − Ḡ<(E)]
= i

∑

n

φn(τ) [G>(E − n�) − G<(E + n�)]. (10)

Figure 3(a) shows the electronic band structure of an infinite periodic
array of the 26-base-pairs DNA molecule without considering charge-vibron
interactions. The strongly fragmented energy spectrum is a result of the small
hopping integrals and the inhomogeneous onsite energy distribution. We may
thus rather speak of valence and conduction manifolds as of true dense elec-
tronic bands [56]. In Figure 3(a) we also show schematically the positions
of the conduction and valence manifolds of a periodic poly(GC) reference
system (open rectangles). Figures 3(b)–(d) show the spectral density at zero
voltage of the finite DNA ladder contacted by electrodes in three different
ways: (b) only the 3’-ends, (c) only the 5’-ends, and (d) all four ends of the
double-strand are contacted. Though the general effect consists in broaden-
ing of the electronic manifolds, we also see that depending on the way the
molecule is contacted to the leads the electronic states will be affected in
different ways. Thus, e.g., states around 1.7 eV above the Fermi level are
considerably more broadened than states closer to EF.

Considering now the coupling to vibrational degrees of freedom in the
ladder, one should notice that the probability of opening inelastic transport
channels by emission or absorption of n vibrons becomes higher with increas-
ing thermal energy kBT and/or electron-vibron coupling g. As a result, the
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Figure 3 (a) Tight-binding electronic band structure of an infinite DNA system, obtained by
a periodic repetition of the 26-base sequence of Cohen et al. [26]. The open yellow rectangles
indicate for reference the approximate position of the bands for a periodic poly(GC) oligomer.
(b)–(d) Spectral density A(E,V = 0), which at zero voltage coincides with the projected
density of states onto the molecular region, for the finite size DNA chain contacted in different
ways by left and right electrodes (see Figure 2). Reprinted with permission from [79]. © 2006
American Physical Society (DOI: 10.1103/PhysRevB.74.235105).

spectral density A(E) will consist of a series of elastic peaks (corresponding
to n = 0) plus vibron satellites (n �= 0).

Figure 4 shows the influence of the coupling to the vibron mode on the
magnitude of the current and of the zero-current gap. The slope of the I–V

curves is considerably reduced with increasing g. The corresponding spectral
densities at V ∼ 1.5 V (see Figure 4, lower panel) show broadening due to the
emergence of an increasing number of vibron satellites (inelastic channels)
with larger coupling, but at the same time a redistribution of spectral weights
takes place. This is simply the result of a sum rule

∫
dE A(E) = 2π . The

reason for the current reduction can be qualitatively understood by looking at
the spectral density. The reduction in the intensity of A(E) will clearly lead
to a reduction in the current at a fixed voltage, since it is basically the area
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Figure 4 Dependence of the current on the effective electron-vibron coupling strength g =
λ/� at room temperature. With increasing coupling the total current is reduced and the zero-
current gap is enhanced. The lower panels show the spectral density at a fixed bias voltage
V ∼ 1.5 V for different values of g. Reprinted with permission from [79]. © 2006 American
Physical Society (DOI: 10.1103/PhysRevB.74.235105).

under A(E,V = const.) within the energy window [EF − eV/2, EF + eV/2]
which really matters. Notice also the increase of the zero-current gap with
increasing electron-vibron coupling (vibron blockade), which is related to
the exponential suppression of transitions between low-energy vibronic states
[95]. Alternatively, this can be interpreted as an increase of the effective
mass of the polaron which thus leads to its localization and to a blocking
of transport at low energies.

The measured I–V characteristics [26] can be described semi-
quantitatively by reformulating the previous model to include two vibrational
excitations. The extension of the model is straightforward and details can
be found in [79]. Figure 5 shows two experimental curves and the cor-
responding theoretical I–V plots. The values used for the charge-vibron
coupling (λ1 = 15(35) meV, λ2 = 15(20) meV) and vibron frequencies
(�1 = 20 meV, �2 = 6 meV) for the yellow (black) theoretical curves have
reasonable orders of magnitude for low-frequency modes, see e.g. [96].
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Figure 5 Theoretical curves (solid lines) compared with two different I–V curves as ob-
tained on suspended double-strand DNA oligomers contacted by a GNP [26]. In both cases
the temperature and the coupling to the electrodes were kept fixed at T = 300 K and
�L,X = �R,X̄ = 250 meV, �R,X = �L,X̄ = 0, respectively. Reprinted with permission
from [79]. © 2006 American Physical Society (DOI: 10.1103/PhysRevB.74.235105).

The theoretical approach presented in this section highlights the ad-
vantages of a model based formulation: (i) low computational cost, (ii) the
possibility of obtaining analytical results to analyze limiting cases, and (iii) to
cover different physical regimes, like e.g., strong or weak coupling to vibra-
tional modes. However, also the main drawback of a pure model Hamiltonian
approach to transport in complex systems can be clearly appreciated: the res-
ults can strongly depend on the parameter choice, the number of parameters
usually growing with the increase in complexity of the models. Since a purely
ab initio based description of transport in complex biomolecular systems is
not feasible, it is thus desirable to develop methodologies able to bridge the
gap between reliable electronic structure calculations and transport models.
The next section will be devoted to present such an approach.
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3 Structural Fluctuations in Biomolecular Systems:
Bridging Molecular Dynamics with Transport Models

In this section, a methodology [81–83, 85–88] is described which uses a hy-
brid approach based on a combination of molecular dynamics simulations
and electronic structure calculations with a mapping of the time-fluctuating
electronic structure along the MD trajectory onto coarse-grained transport
models. The key issue is that in this way the number of free parameters in
the model formulation is reduced to a large extent. Moreover, the degree
of coarse-graining by the formulation of the charge transport model can be
progressively improved in a controlled way by adding stepwise information
drawn from the electronic structure calculations. In the following the trans-
port problem will be approached from two complementary points of view.
In the first one charge transport will be addressed via the computation of
time averaged transmission functions, i.e., at regular snapshots ti along the
MD trajectory the electronic structure is calculated and from there a quantum
mechanical transmission T (E, ti) is computed, thus generating a time de-
pendent T (E, ti) which is then averaged over the simulation time. In the
second approach, a model is formulated which describes the coupling of the
electronic system to a bosonic bath which comprises internal vibrations and
solvent effects. The bath encodes the dynamical information drawn from the
MD simulations. The bath spectral density can then be calculated from time
series generated during the MD run.

3.1 Electronic Structure and Fragment Orbital Approach

We will first describe the strategy used to calculate in a very efficient way
the electronic structure of an arbitrary DNA sequence (the method can be of
course applied to other biomolecular systems or to organic stacks) [81–83,
85–88]. The immediate goal is to map the electronic structure onto a tight-
binding model with time-dependent electronic coupling and onsite energies.
The tight-binding Hamiltonian takes the form

H =
∑

i

εia
†
i ai +

∑

ij

Vij (a
†
i aj + h.c.). (11)

The onsite energies εi and the nearest-neighbor hopping integrals Vij charac-
terize, respectively, effective ionization energies and electronic couplings of
the molecular fragments (see below). The evaluation of these parameters is
done by using the SCC-DFTB method [97] combined with a fragment orbital
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Figure 6 Left panel: Schematic representation of the fragment orbital method used to perform
a coarse-graining of the DNA electronic structure. A fragment consists of a single base pair
(not including the sugar phosphate backbones). As explained in the text, the hopping mat-
rix elements Vj,j+1 between nearest-neighbor fragments are computed using the molecular
orbital basis of the isolated base pairs. These calculations are then carried out at snapshots
along the molecular dynamics trajectory hence leading to time dependent electronic structure
parameters. By keeping only one relevant orbital per fragment, the electronic structure can be
mapped onto that of a linear chain (right panel). Reprinted with permission from [83]. © 2010,
Institute of Physics.

(FO) approach [87, 88, 98]:

εi = −〈φi |ĤKS|φi〉 (12)

and
Vij = 〈φi |ĤKS|φj 〉. (13)

The molecular orbitals φi and φj are, e.g., the highest-occupied molecular
orbitals (HOMO) of the DNA bases i and j . Depending on the definition of
the FOs, different tight-binding models may be designed. In our case, we use
a minimal approach where the DNA electronic structure will be mapped onto
a linear chain. The FOs are obtained by performing SCC-DFTB calculations
of the isolated fragments, i.e., the individual nucleotide pairs in this case.

Performing an LCAO expansion

φi =
∑

μ

ci
μημ, (14)
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the coupling and overlap integrals in the molecular-orbital (MO) basis can be
evaluated as

Vij =
∑

μν

ci
μcj

ν 〈ημ|ĤKS|ην〉 =
∑

μν

ci
μcj

νHμν (15)

and
Sij =

∑

μν

ci
μcj

ν 〈ημ | ην〉 =
∑

μν

ci
μcj

νSμν. (16)

Hμν and Sμν are the Hamilton and overlap matrices in the atomic basis set as
evaluated with the SCC-DFTB method [87].

The effect of environment, i.e. the electrostatic field of the DNA back-
bone, the water molecules and the counter-ions, is taken into account through
the following QM/MM Hamiltonian:

Hμν = H 0
μν + 1

2
Sαβ

μν

∑

δ

	qδ(γαδ + γβδ) +
∑

A

QA

(
1

rAα

+ 1

rAβ

)
(17)

	qδ are Mulliken charges in the QM region and QA are charges in the
MM region, i.e. the DNA backbone, counter-ions and water molecules. The
coupling to the environment is therefore explicitly described via the in-
teractions with the QA charges. In the following, the calculation scheme
based on the complete expression in Eq. (17) will be denoted as QM/MM,
while neglecting the last term will be denoted as “vacuo”. The matrix Vij

is built from non-orthogonal orbitals φi and φj , so that it will renormalized
appropriately [87, 88].

3.2 Time-Averaged Transmission Function and Charge
Transport through Linear Chains

To formulate a transport Hamiltonian, the coupling to left (L) and right (R)
electrodes needs to be included. In a standard way, a tunnel Hamiltonian is
used which will be treated later on within the wide band limit (see Section 2).
The full Hamiltonian reads as follows [82]:

H =
∑

i

εib
†
i bi +

∑

i

Vi,i+1(b
†
i bi+1 + h.c.) (18)

+
∑

k∈L

tk,L(c
†
kb1 + h.c.) +

∑

k∈R

tk,R(c
†
kbN + h.c.) +

∑

k∈L,R

εkc
†
kck.
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Within the Landauer approach, the transmission function at a given instant
of time ti along the MD trajectory T (E, ti) for the previous model can be
written as

T (E, ti) = 4γLγR|G1N(E, ti)|2, (19)

where γL and γR are effective coupling terms to the L and R electrodes
within the wide-band approximation, respectively. G1N(E, ti) is the 1, N-
matrix element of the chain Green’s function, which can be calculated via a
matrix Dyson equation:

G−1(E, ti) = E1 − H(ti) − 
L − 
R, (20)

(
L)lj = −i γLδl1δj1,

(
R)lj = −i γRδlNδjN .

Notice that the above expressions refer to transport characteristics at a given
time ti along the MD trajectory. Thus, a time series of transmission functions
will be generated which is then averaged over the simulation time.

3.3 Molecular Dynamics Methodology

There are a variety of different standard software to perform classical
MD simulations of biological systems. In the approach described here, the
AMBER-parm99 force field [99] with the parmBSC0 extension [100] as
implemented in the GROMACS [101] software package was employed.

After a standard heating procedure followed by a 1 ns of equilibration
phase which is discarded afterwards, a 30 ns MD run with a time step of 2 fs
was used. The simulations were carried out in a rectangular box with periodic
boundary conditions and filled with 5500 TIP3P [102] water molecules and
20 sodium counterions for neutralization. Snapshots of the molecular struc-
tures were saved every 1 ps, for which the charge transfer parameters were
calculated with the SCC-DFTB-FO approach as described above. To assess
the effect of environment, these parameters were computed with and without
the external charges in Eq. (17).

3.4 Charge Transport and Dynamics in Short DNA Sequences

Figure 7(a) shows the calculated transmission for various ideal (static) B-
DNA sequences. As expected, the transmission spectrum consists of a set
of resonances which can be related to the eigenvalues of the corresponding
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Figure 7 Transmission of the ideal chain (a) including dynamical effects (b) and the effect of
environment (c) for various DNA sequences. Note the broader energy range in (c). Reprinted
with permission from [82]. © 2009 American Institute of Physics.
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Table 1 Electronic couplings Vij for hole transfer in idealized static A and B-DNA without
QM/MM environemnt compared to MD averaged values with standard deviations

〈
Vij

〉 ± σ

including the QM/MM environment, for helical parameters of the idealized A and B-DNA,
see [103] and [104], all values in eV. Reprinted with permission from [82]. © 2009 American
Institute of Physics.

static B-DNA average MD values static A-DNA
XY 5’-XY-3’ 5’-YX-3’ 5’-YX-3’ 5’-XY-3’ 5’-XY-3’ 5’-YX-3’

Vij Vij

〈
Vij

〉 ± σ
〈
Vij

〉 ± σ Vij Vij

intrastrand
AA 0.013 0.058 ± 0.037 0.070
GG 0.052 0.029 ± 0.023 0.012
GA 0.053 0.026 0.034 ± 0.027 0.033 ± 0.028 0.023 0.044

interstrand
GC 0.017 0.029 0.012 ± 0.012 0.022 ± 0.016 0.006 0.054
AT 0.035 0.031 0.037 ± 0.029 0.045 ± 0.034 0.018 0.107
GT 0.020 0.005 0.016 ± 0.013 0.026 ± 0.023 0.010 0.073

Hamiltonian matrices. Due to the very small values of the electronic coupling
parameters, these resonances lie very close to the onsite energies of the re-
spective fragments. Also expected are the reduced values of the transmission
for inhomogeneous sequences due to the increased energy gaps arising from
the differences in the ionization potentials from base to base.

In a second step the coupling parameters are now evaluated along the
MD trajectories but omitting the QM/MM term (QA) in Eq. (17). Table 1
shows the MD-averaged couplings in comparison to those of the ideal A- and
B-DNA structures. Notice the differences in the coupling when comparing
with the static conformations. This results strongly suggests the averaged
MD structures being significantly different from the ideal ones [88]. The role
of fluctuations is further reflected in the variances σ which are of the same
order of magnitude as the averages themselves. These results are nearly inde-
pendent of the interaction with solvent, indicating that the electronic coupling
fluctuations are mainly dominated by the mutual orientation of the base pairs
and are not sensitive to the electrostatic coupling to the environment [88].

Figure 7(b) shows the transmission for the various sequences including
only the internal dynamics. As a result of the broad distribution of the onsite
energies, the transmission spectrum broadens. Further, the dynamical dis-
order of onsite energies increases the transmission of low-conducting (static)
structures, while it decreases it for the “high-conducting” ones. This can be
understood by taking into account that the fluctuations of the onsite ener-
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gies lead to conformations for the “mixed” sequences, such as poly(GA),
poly(GT), and the Dickerson dodecamer, where the effective energy gaps
become smaller than in the idealized static structures. Therefore, CT-active
conformations arise due to the dynamics. On the contrary, the homogeneous
sequences become effectively disordered due to the dynamical fluctuations
thus reducing the transmission.

To include the effect of DNA backbone, water and counter-ions, the
Hamiltonian in Eq. (17) is used to calculate the new electronic coupling and
onsite energy parameters. The electric field induced by the water molecules
leads to large fluctuations of the onsite energies in the order of 0.4 eV com-
pared to only 0.14 eV without the environment. Also the averages, 〈εi〉 are
shifted by 0.2–0.3 eV to lower energies. Figure 7(c) shows the transmission of
the DNA species in the presence of electrostatic field induced by the environ-
ment. Since the environment does not affect the electronic coupling strongly,
the main difference from Figure 7(b) arises from the larger fluctuations of
onsite energy values. As a result of the wider distribution of onsite energies
as well as the environment-induced energy shifts, the transmission spectra
become considerably broader.

Two interesting points can also be seen in Figure 7(c). First, poly(A)
shows the largest transmission, in contrast to the static case where poly(G)
is better conducting. Second, the transmission of the heterogeneous species
like poly(GA), poly(GT) and the Dickerson dodecamer sequence increases
substantially compared to the idealized, static case, indicating that the fluc-
tuations of onsite energies may lead to conformations with smaller effective
onsite-disorder.

3.5 Correlations Matter

Several theoretical studies of DNA conduction have used static disorder to
address the influence of the solvent or of inhomogeneous base sequences [42,
43, 45]. However, the question arises whether temporal (dynamical) correl-
ations are important in determining the charge transfer efficiency. Taking as
a en example the case of a poly(A) heptamer, this issue has been analyzed
in some detail. To progressively increase the degree of correlations, three
different cases for the probability distribution of the site energies have been
chosen: (i) the Anderson model [105], where the onsite energies are randomly
drawn from a square-box distribution of width w with uniform probability
P(ε) = 1/2w. The box width is w = √

3σ , where σ (ε) is the standard
deviation of onsite energies resulting from the MD simulations (σ ∼ 0.4 eV);
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Figure 8 Comparison of 〈T (E)〉 for the MD simulation of a poly(A) heptamer with two stat-
istical models. Top panel: The average transmission function is calculated for onsite energies
from the MD simulations time series (blue); for onsite energies drawn from the respective
probability distribution functions on each site (green); and the Anderson model (red) where all
onsite energies are randomly drawn from a square-box distribution. Bottom panel: the original
MD time series of onsite energies is used, the same for the three models, while 〈T (E)〉 is
calculated for electronic couplings Vij from the original MD time series (blue); for Vij drawn
from their respective probability distribution functions (green); and the Anderson model (red),
respectively. Reprinted with permission from [82]. © 2009 American Institute of Physics.

(ii) a PDF model where the onsite energies are drawn randomly from a normal
distribution P(εi) at each site i of the chain, but with no inter-site correlations.
These distributions were however obtained from MD simulations; (iii) the full
time series are used encoding all relevant time correlations.
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To make the results comparable, the electronic couplings are taken con-
stant Vij = 0.05 eV. The average transmission of the poly(A) heptamer for the
three cases is shown in the top panel of Figure 8. Clearly, the Anderson model
largely suppresses transport (low average transmission) hinting at the poten-
tial relevance of correlated fluctuations. Neglecting non-local correlations as
in the PDF model but still using a more realistic distribution function of the
site energies leads to an increase of the transmission probability. The maximal
transmission is obtained when including the full time series in the calculation,
which is a clear indicator that non-local (site-to-site) correlations are crucial
in determining the charge transport efficiency. Notice that the influence of
correlations in the hopping integrals does not seem to be as dramatic as for
the onsite energies (bottom panel of Figure 8).

3.6 Conformational Analysis

To analyze in more detail the role played by the conformational dynamical
disorder, two effective measures can be introduced [82]:


 =
√√√√ 1

N

N∑

i=1

(εi − 〈ε〉N)2 =
√〈

ε2
〉
N

− 〈ε〉2
N (21)

� =
N−1∏

i=1

Vi,i+1 (22)

The standard deviation 
 is calculated for the εi along the chain and
has an evident meaning. Large values of 
 indicate large differences of
neighboring site-energies. Note, the index N in 〈ε〉N and 〈ε2〉N means that
averaging is performed for the N sites along the chain. The other parameter �

is motivated by the form of Greens function matrix element G1N(E) required
to calculate the transmission function, which scales approximately as the
product of electronic couplings in the weak coupling case, i.e. when the ratio
V/	ε � 1, where V and 	ε are typical hopping matrix elements and energy
gap parameters, respectively. Thus, this quantity determines the transmission
efficiency of the system; small values of � account for conformations with
small couplings along the DNA chain. In order to reduce the complexity of
further analysis we additionally define the value Tmax as simply the maximum
of a given transmission function T (E). Note, that the value Tmax can be
located anywhere within the respective energy range. All three parameters
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Figure 9 Statistical analysis of Tmax in a poly(G) heptamer, for the 30 ns data with electronic
parameters for every ps (30,000 DNA conformations). Tmax depending on 
 and � (top);
number of conformations found in a given interval of 
 and � (bottom). Reprinted with
permission from [82]. © 2009 American Institute of Physics.


, � and Tmax are now calculated for 30,000 snapshots along the 30 ns MD
trajectory of a poly(G) heptamer.

The results are shown in Figure 9 (top panel). We see that none of the
measures 
 and � alone is able to describe the conformations of high con-
duction, but both seem to contribute nearly linearly to the transmission (note
the logarithmic scales for � and Tmax). However, for the transport active
conformations, small 
 and large � values are required.

Figure 9 (top panel) also shows that TMAX depends more strongly on
� than on 
. For instance, if � is kept fixed at 10−8, then the maximum
transmission TMAX is still at least 10−7 for all values of 
. On the other hand,
keeping the parameter 
 fixed makes Tmax decrease to almost 10−17 even for
the smallest value of 
. The bottom panel of Figure 9 shows the correspond-
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ing occupation plot. Here, it is quantified how many conformations exhibit
a certain combination of 
 and � parameters. It seems that the number
of transport active conformations with appropriate electronic couplings and
onsite energies is very small. Most conformations have � values of about
10−10 and 
 values of about 0.25 eV, and are therefore “CT-silent”. This
analysis is obviously subjected to the restriction that transport characteristics
have been calculated using (time averaged) transmission functions, which
eventually cannot catch the full transport pathways of the system (decoher-
ence effects are clearly not included here). Nevertheless, this approach is able
to shed light onto the concept of CT active or silent conformations.

4 Charge Transport in Dissipative Environments

In the previous section charge transport was treated within Landauer theory
and the influence of dynamical fluctuations was effectively included via a
time average procedure. Here, we will change the perspective and go back to
model Hamiltonian formulations where the coupling to dynamical degrees of
freedom is explicitly included. However, with the methodology presented in
the preceding section we will now be in the position to parametrize not only
the electronic structure part of the model but also the interaction with the
vibrational system. As a representative example, we focus on the Dickerson
dodecamer with the sequence 3′−GCGCTTAACGGC−5′ and for which the
effect of the dynamical fluctuations becomes very clear (see Section 3, espe-
cially Figure 7). As introduced before, the starting point is a time-dependent
electronic Hamiltonian for a linear chain where both onsite energies εj (t) and
electronic coupling terms Vj,j+1(t) are drawn from the MD simulations:

H =
∑

j

εj (t)b
†
jbj +

∑

j

Vj,j+1(t) (b
†
j bj+1 + h.c.). (23)

Since Eq. (23) contains random variables through the time series. We
are, strictly speaking, confronted with the problem of dealing with charge
transport in an stochastic Hamiltonian. This is a complex task which has
been addressed, e.g., in the context of exciton transport [106–109], but also
to some degree in electron transfer theories [110–112]. Here, we adopt a
different point of view and reformulate this model in a way that the coupling
to dynamical degrees of freedom is split off and included in a bosonic bath,
which can thus be explicitly treated. The Hamiltonian can be rewritten in the
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following way [83]:

H =
∑

j

〈
εj

〉
t
b

†
jbj −

∑

j

〈
Vj,j+1

〉
t
(b

†
j bj+1 + h.c.)

+ Hbath + Hel−bath + Htunnel + Hleads (24)

where

Hbath =
∑

α

�αB
†
αBα

Hel−bath =
∑

α,j

λαb
†
jbj (Bα + B†

α)

Htunnel =
∑

k,s,j

(tks,j c
†
ksbj + h.c.)

Hleads =
∑

k,s

εksc
†
kscks

The time averages (over the corresponding time series) of the electronic
parameters 〈εj 〉t and 〈Vj,j+1〉t have been split off to provide a zero-order
electronic Hamiltonian which contains dynamical effects on a mean-field-
like level. The effect of the fluctuations around these averages is hidden in
the vibrational bath, which is assumed to be a collection of a large (N → ∞)
number of harmonic oscillators in thermal equilibrium at temperature kBT .
The bath will be characterized by a spectral density J (ω) which can also be
extracted from the MD simulations. The model is completed by including the
interaction with electrodes along the same lines as in Eqs. (1) and (19).

The previous model relies on some basic assumptions that can be substan-
tiated by the results of the MD simulations: (i) The complex DNA dynamics
can be well mimic within the harmonic approximation by using a continuous
vibrational spectrum; (ii) the simulations show that local onsite energy fluctu-
ations are much stronger in presence of a solvent than those of the electronic
hopping integrals, so that we assume that the bath is coupled only diagonally
to the charge density fluctuations; and (iii) fluctuations on different sites dis-
play rather similar statistical properties, so that the charge-bath coupling λα

is taken to be independent of the site j . A typical correlation function of the
onsite energy fluctuations is displayed in Figure 10 for the Dickerson dode-
camer in both solvent and vacuum (no electrostatic environment) conditions
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as well as one case of off-diagonal correlations between nearest-neighbor site
energies (inset). Also shown are fits to stretched exponentials, which are in
general a compact way of representing a fit to a sum of single exponential
functions, i.e. the presence of different time scales in the problem, leading
to long time tails in the correlation functions. As extensively discussed in,
e.g., [113], the emergence of long-time tails can be generally understood
in terms of the ratio between typical charge propagation times and typical
time scales for the dynamical fluctuations of the system. Especially, long
fluctuation time scales (compared with typical charge propagation times) can
induce deviations from a purely single exponential behavior. From the figure
it becomes clear that off-diagonal correlations decay on shorter time scales as
the local ones, so that on a first approximation to neglect them can be justified
(although in general they can not be fully excluded); further, the decay of the
correlations for the vacuum simulations is considerably much faster than in
a solvent indicating the strong influence of the latter in gating the electronic
structure of the biomolecule.

Similar to Section 2, we perform a polaron transformation of the Hamilto-
nian Eq. (24), using the generator

U = exp

[
∑

�,α

gαd
†
� d�(B

†
α − Bα)

]
.

The parameter gα = λα/�α gives an effective measure of the electron-vibron
coupling strength. As a result, we obtain a Hamiltonian with decoupled
electronic and vibronic parts and where the onsite energies are shifted as

〈
εj

〉
t
→ 〈

εj

〉
t
−

∫ ∞

0
dωJ (ω)/ω.

The retarded Green function of the system is now an entangled electronic-
vibronic object that can not be treated exactly; we thus decouple it in the
approximate way, see also Eq. (6) [79, 114]:

Gnm(t, t ′) = −i θ(t − t ′)
〈[dn(t)X †(t), d†

m(t ′)X (t ′)]+
〉

(25)

≈ −i θ(t − t ′)
{〈dn(t)d

†
m(t ′)〉〈X †(t)X (t ′)〉

+ 〈d†
m(t ′)dn(t)〉〈X (t ′)X †(t)〉}

= θ(t − t ′)
{
G>

nm(t, t ′)e−φ(t−t ′) − G<
nm(t, t ′)e−φ(t ′−t )

}
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Figure 10 Normalized auto-correlation function Ci(t) = 〈δεi(t)δεi(0)〉/〈δε2
i
〉 and averaged

nearest-neighbor correlation function Ci,i+1(t) = 〈δεi (t)δεi+1(0)〉/〈δεiδεi+1〉 (inset) of the
onsite energy fluctuations. The solid lines are fits to stretched exponentials. Reprinted with
permission from [83]. © 2010 Institute of Physics.

φ(t) =
∑

α

(
λα

�α

)2 [
(1 + Nα)e

−i �αt + Nαe
+i�αt

]

In this equation, θ(t − t ′) is the Heaviside function and the pure bosonic
operator X (t) = exp[∑α gα(B

†
α − Bα)]. In the last row of Eq. (25) we can

pass to the continuum limit and express φ(t) in terms of the bath spectral
density J (ω) [115]:

φ(t) = 1

h̄

∫ ∞

0
dω

J (ω)

ω2
coth

h̄ω

kBT
(1 − cos ω t)

− i
1

h̄

∫ ∞

0
dω

J (ω)

ω2
sin ω t. (26)
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Using standard techniques [83, 94], we can then write an expression for
the electrical current:

IL = 2e

h̄

∫
dE

2π

∫
dE′

2π
T (E′)

×{
fL(E)(1 − fR(E′))(E − E′) − (1 − fL(E))fR(E′)(E′ − E)

}
,

(E)=
∫

dt

h̄
e

i
h̄
Et e−φ(t). (27)

Here, the transmission-like function T (E) is given by t (E) =
Tr{G0(E)�LG†

0(E)�R} and is calculated without including the coupling to
the bosonic bath, which is already taken into account by the (E) functions.

4.1 Getting the Bath Spectral Density from Molecular Dynamics

A central issue in the reformulation of the transport problem is how to get the
bath spectral density J (ω) from the information encoded in the time series of
the electronic parameters. We will explain this point by using a much simpler
toy model consisting of a single time dependent level whose site energy is a
Gaussian random variable:

H = δε(t)b†b + Htunnel + Hleads (28)

Using equation of motion techniques for the Green function G(t, t ′) =
−(i /h̄)θ(t − t ′)〈{b(t), b†(t ′)}〉 of the system we arrive at the following solu-
tion (within the wide band approximation in the coupling to the electrodes:

G(t, t ′) = − i

h̄
θ(t − t ′)U(t, t ′), (29)

where U(t, t ′) = exp(−(i /h̄)
∫ t

t ′ ds(δε(t) − i �). Averaging the Green func-
tion over the distribution of the random variable δε(t) and performing a
cumulant expansion up to second order (Gaussian distribution) yields now
in the energy-space:

〈G(E)〉 = − i

h̄

∫ ∞

0
dt e

i
h̄ (E+i�)t e

− 1
h̄2

∫ t
0 ds

∫ s
0 ds ′ 〈δε(s)δε(s ′)〉

, (30)

which is the formally exact solution of the problem if the correlation function
〈δε(s)δε(s′)〉 is specified. We may now look at the same problem from a
different point of view by considering the coupling of a single site with time-
independent onsite energy to a continuum of vibrational excitations. Along
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similar lines as in the previous section, we can write the retarded Green
function as

G(E) = − i

h̄

∫ ∞

0
dt e

i
h̄
(E+i�)t e−φ(t), (31)

where φ(t) has been already defined in Eq. (26). By comparison of Eqs.( 30)
and (31), it becomes clear that there should exist a relation between the (real)
correlation function and the real part of φ(t). Writing Re φ(t) as

Re φ(t) = 1

h̄

∫ ∞

0
dω

J (ω)

ω2
coth

h̄ω

kBT
(1 − cos ω t)

=
∫ t

0
ds

∫ s

0
ds′

{
1

h̄

∫ ∞

0
dω J (ω) coth

h̄ω

kBT
cos [ω (s − s′)]

}
,

we can conclude that

〈
δε(s)δε(s′)

〉 = h̄

∫ ∞

0
dω J (ω) coth

h̄ω

kBT
cos [ω (s − s′)].

Upon inversion, we get

J (ω) = 2

πh̄
tanh

h̄ω

kBT

∫ ∞

0
dt cos ωt C(t) = 2

πh̄
tanh

h̄ω

kBT
j (ω), (32)

which provides the desired relation between the bath spectral properties and
the correlation function of the onsite energy fluctuations.

4.2 Charge Transport in the Dickerson Dodecamer

We have applied this formulation to study charge transport through the
Dickerson dodecamer in presence and absence of solvent effects. To first
illustrate the influence of the solvent, in Figure 11 the time averaged onsite
energies along the chain are displayed. Remarkably, the presence of the
solvent “smoothes” the averaged energy profile (though the amplitude of the
fluctuations clearly becomes stronger).

In Figure 12 the current calculated with Eq. (27) is shown for the two
cases of interest. Due to the presence of tunnel barriers in the wire which, on
average, are not fully compensated by the gating effect of the environment,
the absolute current values are rather small when compared with those of
homogeneous sequences (not shown) [81]. However, the current including
the solvent is roughly fifteen times larger than for that obtained from the
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Figure 11 Time average of the absolute value of the onsite energies of the Dickerson dode-
camer for simulations in vacuum (upper panel) and in solvent (lower panel). Notice that the
averaged energy profile in presence of the solvent becomes smoother but also the fluctuations
around the averages are stronger. This smoothing reduces the energy barriers between the sites
and hence favors charge migration. Reprinted with permission from [83]. © 2010 Institute of
Physics.

simulations in vacuum. Although our model Hamiltonian in Eq. (25) does
not fully contain all the dynamical correlations encoded in the time dependent
electronic parameters, we nevertheless expect that their inclusion would lead
to an even further increase of the difference between solvent and vacuum
results. This nicely demonstrates that coupling to dynamical degrees of free-
dom is crucial when dealing with charge migration in soft systems and that
the basic effects can still be catch by effective model Hamiltonians whenever
appropriate (realistic) parameterizations are carried out. The possibility to
parameterize the bath spectral density J (ω) using the information obtained
from the MD time series makes our approach very efficient. We remark
that the scheme presented here is obviously not limited to the treatment of
DNA but it can equally well be applied to deal with charge migration in
other complex systems like molecular organic crystals or polymers, where
charge dynamics and coupling to fluctuating environments plays an important
role [110–112, 116–120].
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Figure 12 Electrical current for the Dickerson dodecamer in both vacuum (no solvent) and
including the solvent. The current is considerably enhanced upon inclusion of solvent fluctu-
ations, nicely demonstrating the strong gating effect of the latter onto the energy profile of the
DNA chain. Reprinted with permission from [83]. © 2010 Institute of Physics.

5 Conclusions

In contrast to hole transfer in solution, where there seems to be common
agreement about the microscopic charge migration mechanism (incoherent
hopping processes), the clarification of the most relevant charge transport
pathways in short DNA oligomers still remains elusive. This may be due to
the fact, on one side, that well-controlled electrical transport experiments are
difficult to perform with biomolecules, so that general trends and dependen-
cies on base sequences, temperature, etc. have not been fully elucidated. On
the other side, the intrinsic complexity of biomolecules make a description in
terms of simple models very challenging and as a consequence, many results
can be questionable if the physically relevant parameter region is not well
defined. The fundamental role played by the structural dynamics and the need
to include such effects in a non-perturbative way in charge transport calcu-
lations further increases the problems faced by theoreticians when dealing
with the biomolecular electrical response. In this paper, we have focused on
recently developed methodologies which try to address all these previously
mentioned problems by combining molecular dynamics simulations with
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electronic structure calculations to parameterize effective model Hamiltoni-
ans able to deal with different transport scenarios in DNA oligomers. The
main advantage of this approach is the possibility to develop a controlled
coarse-graining of the electronic structure, which in its turn allows tuning the
degree of complexity of the model Hamiltonians for transport. Additionally,
the methodology is flexible enough to be transferred to the study of charge
transport and dynamics in other systems like polymers or organic crystals,
thus providing a common platform to treat with such issues. Obviously, sev-
eral points remain still open and should be addressed in the future. We only
mention two of them: How reliable is a quantum mechanically computed
electronic structure along a classical molecular dynamic trajectory, i.e., with
geometries obtained using classical interaction potentials? How strong is the
influence of a charge injected into the system onto the underlying electronic
structure? This latter effect is usually neglected in transport calculations, but
it has been recently shown that it has an influence in the prediction of, e.g.,
the onset of diffusive transport in organic stacks [121], so that we may expect
it to play also a critical role in determining the charge migration efficiency in
biomolecular systems.
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