Prediction Model for the Electrical Industry in Spain— The Trend Toward Renewable Energy

  • M.A. Verdejo
  • J. Fernández
Keywords: Prediction Model, Renewable Energy


During 2008-2013, the global economic crisis and financial uncertainty brought important economic adjustments in developed countries and especially in the European Union (EU). Currently, however, key national and international agencies predict the consolidation and acceleration of growth of the European economy during 2014-2015, driven by recovery of trust and improved financial conditions.

According to the report of the International Energy Agency (IEA) and the reports of Spanish energy sector, final demand for electricity dropped 3.4% in 2013 over the previous year, which was evidence of lower economic activity and structural differences in consumption. The final electricity demand in 2013 was 232,008 GWh, down 3.4% from the previous year. However, the forecast for 2014 and 2015 foresees an increase of 1.5%, which will influence the changing trend model of the electricity industry in Spain.

This model allows predicting the potential political and economic implications, which are dependant on the discussed variables. The most influential parameters that have been considered to establish the prediction model are: absorption and emission of carbon dioxide, forest cover, demand and primary energy intensity, energy carriers (coal, fuel, gas, hydro, nuclear and renewables), gross domestic product and rates, and energy vectors for all the variables in the period. The results clearly show that sustainability will be a fact when making energy efficiency programs, both in the electrical industry as in other energy sectors.

Additionally, CO2 emissions will be reduced if proper action plans and efficiency policies are developed.

In evaluating scenarios proposed in this article, the model concludes that the efficiency scenario will save 107 Mt CO2, which will save €1.07 billion, according to the average estimate of the price of emission rights in the European Union.


Download data is not yet available.

Author Biographies

M.A. Verdejo

M.A. Verdejo is a university professor and researcher in the department of electrical engineering at the Polytechnic School of Linares, University of Jaen, Spain. His research is based on energy models, distributed power generation technologies, and smart grids.

J. Fernández

J. Moreno is a university professor and researcher in the department of electrical engineering at the Polytechnic School of Linares, University of Jaen, Spain.


Subdirección General de Planificación Energética. Ministerio de Industria, Turismo y

Comercio. Evolución del consumo energético en España. (Febrero 2006).

Nieto Santamaría. Evolución de las Emisiones de Gases de Efecto Invernadero en España.


IDAE. Plan de Ahorro y Eficiencia Energética 2008-2020. Ministerio de Industria, Turismo

y Comercio. Gobierno de España. (2011).

European Commission. World energy, technology and climate policy outlook. WETO

Final report.(2010)

IEA, 2010. World Energy Outlook. Spanish Translation. 2010.

IDAE, Estrategia de ahorro y eficiencia energética en España 2004–2012. Plan de acción

–2012. Ministerio de Industria, Turismo y Comercio, Instituto para la Diversificación

y Ahorro de la Energía. (2007)

A.Z. Mech, S. Rouse. Macro and Micro Economic Principles of the Kyoto Protocol Result.

EIC Climate Change Technology. IEEE. (May 2006)

Country analysis. The European environment. State and outlook (2005).

Ministerio de Industria, Turismo y Comercio. IDAE. Estrategia de ahorro y eficiencia

energética en España, 2004-2012. E4. Plan de acción 2005-2007. Julio (2005).

Secretaría General de Energía. La energía en España. Madrid, (2004).

I. Kockar. European Union perspective on the Kyoto protocol: emissions trading

scheme and renewable resources. Power Engineering Society General Meeting. IEEE.

(June 2006).

F. Foidart, J. Oliver-Sola. How important are current energy mix choices on future sustainability?.

Case study: Belgium and Spain—projections towards2020–2030. Energy

Policy (38). 5028–5037. (2010)

Communication from the Commission to the council and the European Parliament.

The share of renewable energy in the EU. Brussels. (26.5.2004)

Secretaría del Cambio Climático. Convención Marco de las Naciones Unidas sobre el

Cambio Climático. “Los diez primeros años.” Bonn (Alemania). (2004).

J.I. Pérez Arriaga. Libro blanco sobre la refoma del marco regulatorio de la generación

eléctrica en España. Madrid. (2005).

P. Linares, F.J.Santos, I.G. Perez-Arriaga. Scenarios for the evolution of the Spanish

electricity sector: is it on the right path towards sustainability?. Energy Policy 36

(11).4057–4068. (2011)

Convenio Marco de las Naciones Unidas sobre el Cambio Climático. Instrumento de

Ratificación del Protocolo de Kioto. Diciembre. (1997).

Working Group II Contribution to the Intergovernmental Panel on Climate Change

Fourth Assessment Report. Climate Change Impacts, Adaptation and Vulnerability.


K. Blok. Enhanced policies for the improvement of electricity efficiencies, Energy Policy

1635–1641. (2005)

J.J. de Felipe Blanch., J. Xercavins y Valls. Posibles escenarios futuros mundiales de

emisiones y absorciones de CO2 y cumplimiento de los acuerdos de Kioto. UPC. (2002).

IEA, 2004. World Energy Outlook 2004. OECD/IEA, Paris.

IEA, 2005. World Energy Model 2005. OECD/IEA, Paris.

IPCC special report on emissions scenarios. The multiregional approach for resource

and industry allocation model (MARIA). (2005)

P. Frias, T. Gomez, P. Linares. Economic impact of 2020. Renewable energy scenarios

on the Spanish electricity market. Inst. de Investig. Tecnol. Univ. Pontificia Comillas,

Madrid, Spain Energy Market (EEM). 7th International Conference on the European.


Y.P. Cai, G.H. Huang. An optimization-model-based interactive decision support

system for regional energy management systems planning under uncertainty. Expert

Systems with Applications 36. 3470–3482. (2009)

Hatice Tekiner, W. David, Coit, A. Frank Felder. Multi-period multi-objective electricity

generation expansion planning problem with Monte-Carlo simulation. EPSR_Electric

Power Systems Research, Volume 80, Issue 12, December 2010, Pages 1394-1405

L.M. Romeo, E. Calvo, Valero, et al. Electricity consumption and CO2 capture potential

in Spain. Energy 34. (2009). 1341–1350.

J.B. Ang. CO2 emissions, energy consumption, and output in France. Energy Policy 35.

(2007) 4772–8.

S. Simoes, J. Cleto, et al. Cost of energy and environmental policy in Portuguese CO2.

abatement—scenario analysis to 2020. Energy Policy (36), (2008). 3598-3611.

Peter Børre Eriksen. Economic and environmental dispatch of power/CHP production

systems. Electric Power Systems Research, Volume 57, Issue 1, 31 (January 2001), Pages


Balance Energético 2006 y Perspectivas: El Sector del Petróleo. Dominique de Riberolles.

Club Español de la Energía. Abril. (2007)

A. Das, D. Rossetti di Valdalbero, M. Virdis. ACROPOLIS: an example of international

collaboration in the field of energy modeling to support greenhouse gases mitigation

policies. Energy Policy 35(2). (2007)

E. Jadraque, J. Ordóñez, A. Espín. Development of an energy model for the residential

sector: Electricity consumption in Andalusia, Spain. Energy and Buildings 43. 1315–


. International Conference on Renewable Energies and Power Quality Granada (Spain).


Transition to Low-carbon Electricity by 2020 In Guangdong, China: Pathways and

Costs. Yi Jingwei, Zhao Daiqing, Hu Xiulian, Cai Guotian Energy Engineering. Vol. 108,

Iss. 6, 2011

Spanish Office for Climate Change.(OECC)

International Energy Agency, “Key Statistics 2009-Reference Scenario 2030.”

Prospective Technological Evolution and Cost of Renewable Energy. Technical Study.

Institute for diversification and energy saving. 2011.