Biomass Supply Strategy for Building a Sustainable Cellulosic Biofuel Business

  • Rajdeep Golecha
Keywords: Corn Stover, Supply Variability, Feedstock Diversification, Biofuels, Efficient Frontier


Companies venturing into the cellulosic biofuels business will be required to make portfolio decisions based on feedstock availability and variations in biomass supplies. Fundamental differences exist in biomass supplies for first-generation corn ethanol and second-generation cellulosic biofuels. While first-generation ethanol in the U.S. is produced primarily from corn, a tradable commodity that is transported long distances, second-generation cellulosic biofuels are produced from cellulosic biomass and there are greater limitations due to transportation distances. As a result, cellulosic biofuels producers will be exposed to local variations in biomass supplies. Studies have shown that 20-30% variations in collectable stover supply are typical. Such large variations translate into business risk and impacts issues associated with sustainability. Hence, companies venturing into cellulosic biofuels will be required to develop strategies to reduce the impact of feedstock supply variations. A sustainable biomass supply chain will need strategies for developing supply market structures, contracting programs with farmers, and a feedstock diversification program that reduces the impact of these large variations. This study focuses on identifying potential options for managers to consider when developing sustainable feedstock supply programs, and key trade-offs that help reduce costs and manage feedstock supply risks.


Download data is not yet available.

Author Biography

Rajdeep Golecha

Rajdeep Golecha is an industry expert in Bioenergy. His expertise is in business portfolio development for a sustainable Biofuel business, and commercial optimization to reduce input costs. He has served as the Commercial Manager for a major energy company’s multi-billion dollar biofuel portfolio, where he led the development of Cellulosic Biofuel projects, and brought significant improvements to capital efficiency and reduction in feedstock (biomass) costs through effective feedstock supply and business strategies. His current focus is on developing optimal market structures for Cellulosic Biofuel programs.


R.E.H. Sims, W. Mabee, J.N. Saddler, M. Taylor (2010). An overview of second

generation biofuel technologies, Bioresour. Technol. 101, 1570–1580. doi:10.1016/j.


T.R. Brown, R.C. Brown (2013). A review of cellulosic biofuel commercial-scale

projects in the United States, Biofuels, Bioprod. Biorefining. 7, 235–245. doi:10.1002/


Biomass Research and Development Initiative (2008). Increasing feedstock

production for biofuels: economic drivers, environmental implications, and the

role of research. Washington, D.C. 146 pp.

W.W. Wilhelm, J.M.F. Johnson, D.T. Lightle, D.L. Karlen, J.M. Novak, N.W. Barbour,

et al. (2011). Vertical distribution of corn stover dry mass grown at several US

locations, Bioenergy Res. 4, 11–21. doi:10.1007/s12155-010-9097-z.

A.F. Turhollow, R.D. Perlack, L.M. Eaton, M.H. Langholtz, C.C. Brandt, M.E.

Downing, et al. (2014). The Updated Billion-Ton Resource Assessment, Biomass and

Bioenergy. 70, 149–164. doi:10.1016/j.biombioe.2014.09.007.

R.D. Perlack, A.F. Turhollow (2003). Feedstock cost analysis of corn stover residues

for further processing, Energy. 28,1395–1403. doi:10.1016/S0360-5442(03)00123-3.

S. Tokgoz, A. Elobeid, J. Fabiosa, D.J. Hayes, B.A. Babcock, T.H. Yu, et al. (2005).

Emerging biofuels: outlook of effects on U.S. grain, oilseed, and livestock markets.


D.R. Petrolia (2007). The economics of harvesting and transporting corn stover for

conversion to fuel ethanol: A case study for Minnesota, Biomass and Bioenergy. 32

(2008) 603–612. doi:10.1016/j.biombioe.12.012.

W. Alex Marvin, L.D. Schmidt, S. Benjaafar, D.G. Tiffany, P. Daoutidis (2012).

Economic Optimization of a Lignocellulosic Biomass-to-Ethanol Supply Chain,

Chem. Eng. Sci. 67, 68–79. doi:10.1016/j.ces.2011.05.055.

A.A. Rentizelas, A.J. Tolis, I.P. Tatsiopoulos (2009). Logistics issues of biomass: The

storage problem and the multi-biomass supply chain, Renew. Sustain. Energy Rev.

, 887–894. doi:10.1016/j.rser.2008.01.003.

L. Axelsson, M. Franzén, M. Ostwald, G. Berndes, G. Lakshmi, N.H. Ravindranath

(2012). Perspective: Jatropha cultivation in southern India: Assessing farmers’

experiences, Biofuels, Bioprod. Biorefining. 6, 246–256. doi:10.1002/bbb.

B.M. Jenkins, L.L. Baxter, T.R. Miles, T.R. Miles (1998). Combustion properties of

biomass, Fuel Process. Technol. 54, 17–46. doi:10.1016/S0378-3820(97)00059-3.

F. Preto (2007). Strategies & Techniques for Combustion of Agricultural Biomass

Fuels Advantages of Energy from Biomass.

downloads/presentations/1B3 - Fernando Preto.pdf.

M. Carriquiry, X. Du, G.R. Timilsina (2011). Second generation biofuels: Economics

and policies, Energy Policy. 39, 4222–4234. doi:10.1016/j.enpol.2011.04.036.

J.R. Hettenhaus, R. Wooley, A. Wiselogel (2000). Biomass Commercialization

Prospects in the Next 2–5 Years.

A.D. Maker (2007). Estimating a Value for Corn Stover, Iowa State Univ. Extension,

Ag Decis. Mak. Doc. FM-1698. 4–7.

J.M.F. Johnson, R.R. Allmaras, D.C. Reicosky (2006). Estimating source carbon from

crop residues, roots and rhizodeposits using the national grain-yield database,

Agron. J. 98, 622–636. doi:10.2134/agronj2005.0179.

R.L. Graham, R. Nelson, J. Sheehan, R.D. Perlack, L.L. Wright (2007). Current and

potential U.S. corn stover supplies, Agron. J. 99, 1–11. doi:10.2134/agronj2005.0222.

USDA, Crop Production Historical Track Records (2013).

W.W. Wilhelm, J.M.F. Johnson, D.L. Karlen, D.T. Lightle (2007). Corn stover to

sustain soil organic carbon further constrains biomass supply, Agron. J. 99, 1665–


F. Wirl (2009). Oligopoly meets oligopsony: The case of permits, J. Environ. Econ.

Manage. 58, 329–337. doi:10.1016/j.jeem.2009.04.006.

C.E. Ferrer (2013). Oligopsony-Oligopoly the Perfect Imperfect Competition,

Procedia Econ. Financ. 5, 269–278. doi:10.1016/S2212-5671(13)00033-6.

H. Markowitz (1952). Portfolio Selection, J. Finance. 7, 77–91. doi:10.2307/2329297.

W.F. Sharpe (1964). Capital Asset Prices: A Theory of Market Equilibrium Under

Conditions of Risk, J. Finance. 19, 425–442. doi:10.2307/2329297.

B. Blackwell (1959). Illustrative Portfolio Analysis, in: Portf. Sel. Effic. Diversif.

Investments. Wiley, Yale University Press.

E.F. Fama (1977). Risk-adjusted discount rates and capital budgeting under

uncertainty, J. Financ. Econ. 5, 3–24. doi:10.1016/0304-405X(77)90027-7.

M.A. Sanderson, R.L. Reed, S.B. McLaughlin, S.D. Wullschleger, B. V. Conger, D.J.

Parrish, et al. (1996). Switchgrass as a sustainable bioenergy crop, in: Bioresour.

Technol., pp. 83–93. doi:10.1016/0960-8524(95)00176-X.

S.B. McLaughlin, L.A. Kszos (2005). Development of switchgrass (Panicum

virgatum) as a bioenergy feedstock in the United States, Biomass and Bioenergy. 28,

–535. doi:10.1016/j.biombioe.2004.05.006.

A. Kumar, S. Sokhansanj (2007). Switchgrass (Panicum vigratum, L.) delivery to a

biorefinery using integrated biomass supply analysis and logistics (IBSAL) model,

Bioresour. Technol. 98, 1033–1044. doi:10.1016/j.biortech.2006.04.027.

G.E. Varvel, K.P. Vogel, R.B. Mitchell, R.F. Follett, J.M. Kimble (2008). Comparison

of corn and switchgrass on marginal soils for bioenergy, Biomass and Bioenergy. 32,

–21. doi:10.1016/j.biombioe.2007.07.003.

T.A. Maung, C.R. Gustafson, D.M. Saxowsky, J. Nowatzki, T. Miljkovic, D.

Ripplinger (2013). The logistics of supplying single vs. multi-crop cellulosic

feedstocks to a biorefinery in southeast North Dakota, Appl. Energy. 109, 229–238.


R.G. Nelson (2002). Resource assessment and removal analysis for corn stover and

wheat straw in the Eastern and Midwestern United States - Rainfall and windinduced

soil erosion methodology, Biomass and Bioenergy. 22, 349–363. doi:10.1016/


R.D. Perlack, B.J. Stokes, L.M. Eaton, A.F. Turnhollow (2011). U.S. Billion-Ton


F. Talebnia, D. Karakashev, I. Angelidaki (2010). Production of bioethanol from

wheat straw: An overview on pretreatment, hydrolysis and fermentation, Bioresour.

Technol. 101, 4744–4753. doi:10.1016/j.biortech.2009.11.080.