
Using Software Containers for Privileged
Access Management in Cloud

Environments: A Novel Approach to Handle
Access Management for
Cloud-based Networks

Marleen Steinhoff

Munich University of Applied Sciences, Munich, Germany
E-mail: marleen.steinhoff@hm.edu

Received 15 July 2020; Accepted 01 September 2020;
Publication 30 January 2021

Abstract

This paper presents a novel approach for privileged access and session man-
agement using containers. Current solutions are built using proxies, proxy
suites or jump servers, but they do not cater for third party remote access
security requirements, have additional vulnerabilities and have scalabilty
limitations.

The novelty of the solution proposed in this paper is a global orchestrator
that instantiates a purpose-built container adapted to the virtual network
functions’ system. Every container has a logging function, a pre-defined
time-to-live and one-time-credentials. This approach is secure because the
containers isolate different connections, privileges are restricted, permissions
are always time-limited and the provider has full control over the sessions.
The solution brings several other security enhancements, discussed in this
paper.

Keywords: Cloud security, container, privileged access management, cloud
computing, third-party access.

Journal of NBICT, Vol. 1, 297–310.
doi: 10.13052/nbjict1902-097X.2020.013
This is an Open Access publication. © 2021 the Author(s). All rights reserved.



298 M. Steinhoff

1 Introduction

Cloud networks built with third-party solutions need to provide access to
the network functions by several parties for operations and management.
This access is necessary to perform all required actions in the software life
cycle, including deployment, operation, and maintenance [1]. However, this
access, known as privileged access management (PAM), can enable internal
and external attackers to carry out attacks.

As shown in [2], one of the main problems with PAM in cloud envi-
ronments is credential misuse. This includes external attackers as well as
attacks from malicious insiders. Over two-thirds of attacks are carried out
using stolen credentials [3]. But not only stolen credentials can be used to
carry out attacks. So-called malicious insiders already have privileged access
to the network or network functions which they can misuse and are therefore
seen as the biggest security threat in public clouds by 30% of cyber security
experts [4].

Referring to [2], another problem with PAM is the heterogeneity in cloud
networks, that comes in three aspects:

First, heterogeneity in different network functions (NFs) provided by
solution providers that are built for different purposes and therefore support
different protocols. Second, heterogeneity in different user groups including
third parties requesting access to the NFs. As the users connect to NFs
remotely, the cloud provider doesn’t know who connects to his network.
Third, heterogeneity in different software layers a cloud network comes in.
The layers all have to be accessible by users and maintainable by providers.

Solutions available to the cloud providers to given problems are still
facing attacks thus proving that they are not sufficiently secure. Therefore,
current solutions do not provide enough security. A closer look at the leading
software solutions reveals that they all use similar approach: Proxies, proxy
suites or jump servers are used to establish connections between users and
NFs. This approach leads to a single point of failure making it a valuable
target for attackers. Therefore, a novel approach is needed which solves the
current problems, which is presented in this paper.

The leading software solutions for PAM are analyzed in Section 2 and
their limitations discussed in Section 3. The limitations derived requirements
are in Section 4. Section 5 shows the novel solution using containers. This
solution is discussed in Section 6. The Paper comes to its end with Section 7
about future work and the conclusion in Section 8.



Using Software Containers for Privileged Access Management 299

2 Existing Solutions

Numerous solutions have been developed for PAM for cloud-native networks.
Six leading software solutions will be analyzed in the following subsections
regarding their implementation architecture.

CyberArk

CyberArk offers the Privileged Access Security suite together with Alero
for access through a web portal. The solution uses proxy or jump server
mechanisms [5, 6].

BeyondTrust

BeyondTrust’s Privileged Remote Access (powered by Bomgar) offers a
suite with a jump server approach. Their solution includes different software
components used for their PAM solution [5, 7].

Centrify

Centrify’s Privileged Access Service uses a jump server, so-called jump
box [8]. According to Gartner [5], these solutions can handle more connec-
tions than other solutions but are still limited in the number of requests the
solution can handle.

PrivX

PrivX from SSH Communications Security provides a solution using scalable
microservices for PAM [9]. Looking at the documentation, PrivX uses a suite
of microservices, containers and proxies [10].

PingAccess

PingAccess from Ping Identity provides access to applications and APIs
for authorized users. To achieve that, they use a proxy called PingAccess
proxy [11].

CA Technologies by Broadcom

The CA privileged access manager from CA Technology offers a suite
of PAM products and supports session management flexibly through jump
server and proxy mechanisms [5].



300 M. Steinhoff

Gartner analyzed 14 different PAM and PASM solutions in their 2018
Magic Quadrant for Privileged Access Management including the leading
software solutions and also niche players [5]. All of the solutions use a similar
architecture design: Either a proxy, a proxy suite or a jump server is used to
establish the connections and to grant privileges.

3 Limitations of Existing Solutions

In the introduction, six problems have been mentioned: External attackers
carrying out attacks (P1), attacks from malicious insiders (P2), heterogeneity
of provided network functions regarding supported protocols (P3), unknown
users connecting to network functions remotely (P4), access to different soft-
ware layers within the cloud network (P5) and the proxy solutions creating
a single point of failure (P6). But there are more limitations the current
solutions come with.

As shown in the previous section, these leading solutions use either
proxies, proxy suites or jump servers.

A proxy is a software on a server that enables the server to act as
an intermediary, processing requests from clients without connecting them
directly. Proxy suites consist of a number of proxies to increase security. As
a specialized form of proxy, a jump server is a special type of intermediate
server handling access from outside the network to systems behind firewalls.
This access allows administrators to run the systems inside the network
without exposing them.

These technologies are being used to handle access to cloud systems.
Even though PrivX uses microservices and containers in their solution, the
connection is still launched via a single proxy [10].

Using a proxy approach limits the number of possible connections (P7).
Referring to Gartner [5], the CA Privileged Access Manager from CA Tech-
nology can handle more simultaneous connections than any other product
they evaluated. However, the amount of connections is still limited by the
architecture itself.

Another problem with bundling all connections through a single server
is that an attacker can directly access any network element as soon as the
attacker has access to the connection device (P8). Therefore, proxies or jump
servers are a high-value target for attackers.

Even when PAM solutions are implemented in cloud networks,
workarounds are existing, next to the PAM solution. For example local



Using Software Containers for Privileged Access Management 301

credentials (P9) or weak fall-back solutions (P10) [2]. Reasons for existing
workarounds are changing requirements due to change in demand. If the
implemented solution is not flexible enough (P11) to be adapted to the new
requirements in time, workarounds are implemented as cloud providers have
already invested in PAM solutions. These workarounds can create vulnerabil-
ities and also lead to incomplete logging while log file integrity is mandatory
to detect attacks on a network.

4 Requirements

The requirements for the solutions are derived from the problems (P1–P11)
mentioned in the previous section and marked using an “R” followed a
number (R1–R15).

To prevent external to carry out attacks (P1), a secure PAM solution needs
to provide distinct connections between the user and NF (R1). The connection
shall grant only least privileges (R2) to avoid users from performing unau-
thorized actions. But even if a user is authenticated and the access privileged,
every action shall be logged to allow tracing back actions and detect attacks
(R3).

The logging backend should be tamper-proof and can be combined
with forensic tools to manage and analyze the logs (R4). In cloud environ-
ments, Multi-Factor-Authentication (MFA) is highly recommended against
credential misuse by external attackers [12–15] and shall be implemented to
authenticate the users (R5). Since credentials can be stolen by attackers, the
credentials should be regenerated for each connection (R6).

These requirements also help to prevent malicious insiders from carrying
out attacks (P2). To make these measures effective, connections shall only be
possible through logged containers.

Even if a user is authenticated, every action shall be logged to allow
tracing back actions and detect attacks.

Nobody should be able to connect to NFs directly (R7). This includes,
that workarounds or local credentials (P9) shall not be implemented on the
NFs (no workarounds R8, no local credentials R9).

Developing a secure solution that takes the above requirements into
account allows the cloud provider to grant access to users from different user
groups (P4). Although the cloud provider does not know who is actually using
the provided access to the cloud network, this method ensures that rights are
limited to what is necessary and all actions are logged. The solution should



302 M. Steinhoff

be reused to grant access to NFs on every software layer and in every network
segment (P5, R10). This measure makes it easier to maintain and harden PAM
for the cloud network with a single solution.

To handle the numerous protocols of the NFs a flexible, modular solution
is needed that can be modified or extended if needed. The solution should be
easily extended by further protocols and configurations (P11, R11).

In order to avoid implementing a main instance that becomes a single
point of failure, the main instance has to be well-protected and requires a
strong authentication for a selected amount of users (P6, R12). Furthermore,
the main instance must not allow direct connections without using logged
containers (P8, R13). This prevents privileged users from being able to
perform non-logged actions and to access every NF once the attacker has
access to the main instance.

Also, a single main instance limits the number of requests the solutions
can handle (P7). To solve this, the solution needs to be scalable (R14) and
extendable. In case the main instance fails, a fall-back solution is needed.
The fall-back solution should not function as a backdoor for attackers (P10)
and therefore should be well protected (R15).

The requirements resulting from the current problems with PAM and the
available solutions must be covered by a new solution. The Functionality
of the new solution is covered in the following sections, together with its
fulfillment of the requirements.

5 Solution

The key idea of the solution is to use distinct and purpose-built software
containers for every requested connection. A global service, the global
orchestrator (GO) instantiates the containers for the requested connection.
The user can connect to the container and the container connects to the
requested NF.

The relation between users and containers is 1:n, one user can connect to
n network functions using n containers, but one container is only accessible
by one user (see Figure 1).

Multiple users can access the same network function simultaneously, but
with different containers, distinct from each other to separate the connections
from each other.



Using Software Containers for Privileged Access Management 303

Figure 1 Overall idea to connect users to network functions (NF) using containers.

Figure 2 Architecture of a container.

5.1 Software Container

The software containers are instantiated and running in a container cluster.
In order to establish connections and forward commands, they have a sim-
ple architecture consisting of three layers: frontend, application layer, and
backend (see Figure 2). These layers are explained in the following.

Frontend

The frontend is the interface for the user to connect to the container (see
Figure 2). The frontend is build depending on the purpose and NF. It
could contain a virtual terminal, a login, and a logout function. It could
also contain a complete web application if required.
The virtual terminal is the interface for the user to type in the commands
he wants to execute on the NF. It might also have an integration for
needed authentication methods and single-sign-on integrations.
The connection between user and container can be HTTPS when a
virtual terminal is used. Otherwise, SSH, telnet, VNC or RDP can be
used. In that case, a virtual terminal is not needed, the container just
forwards the commands to the NF.



304 M. Steinhoff

Application layer

The application layer is the middle layer between frontend and back-
end (see Figure 2) and can be configured depending on the requested
connection.
When a virtual terminal is used in the frontend, the commands have
to be formatted into the desired connection type between container and
network element. This can be done with a command interpreter in the
application layer, translating the command from the terminal into the
format the NF supports.
Also when other connections are used between user and container than
between container and NF, the commands might have to be interpreted.
Another important function the application layer provides is logging. All
actions executed in the container and every command have to be logged.
Pushing the logs to a logging backend will be done by a separate logging
container.
The application layer sends the required information directly to the
logging container where it gets pushed to a logging backend.
Other functions can be added to the application layer if needed, such as
a filter to block certain commands that are not allowed as shutting down
network functions.

Backend

The backend establishes the connection from the container itself to
the requested NF. The kind of connection depends on what the NF is
configured for.
In order to connect to the NF, the container backend needs credentials to
authenticate against the NF. Different types of credentials can be used,
such as signed certificates, digital keys or passwords. The credentials
will be saved in the backend when the container is instantiated and
always have an expiry date. Furthermore, the backend also has a daemon
for the chosen connection type installed, such as a SSH daemon for SSH
connections.

5.2 Container Cluster

Containers used for the connections have to run in a so-called container
cluster.

The general container orchestrator (GO) is responsible for instantiating
and maintaining the desired state of the container within the cluster.



Using Software Containers for Privileged Access Management 305

Figure 3 Example of a container with permanent and temporary containers.

Its main task is to instantiate customized containers for every connection
request from a user. To achieve that, the GO needs pre- configured container
prototypes. These abstract containers can be customized for the requested
connection and NF type.

Customized containers can store data such as credentials, username
and role information or integrations for different standards as connections
protocols, authentication methods or logging databases.

Next to the container prototypes, the CO needs additional containers.
While the containers are supposed to live temporarily, other functions might
be needed permanently (see Figure 3).

Examples for permanently needed functions are authentication functions
and logging functions.

The authentication and logging shall not be defined in the containers
themselves, as containers should always be instantiated with only one appli-
cation to make the architecture modular. Also, the separation allows to
maintain different kinds of authentication methods and supported logging
frameworks as they would be configured in every single container.

The master container of the GO needs an interface to receive requests for
instantiating a customized container.

5.3 Connection Establishment

Figure 4 shows the process of a connection establishment.
In the context of a network, a global orchestrator (GO) is needed to

organize all needed actions in a centralized fashion. A certificate authority
(CA) signs generated credentials. A local orchestrator (LO) is needed to
instantiate, maintain and delete the containers inside a container cluster. The



306 M. Steinhoff

Figure 4 Process of connection establishment using a container with HTTPS frontend.

network element trusts the CA and accepts credentials that are signed by the
CA (see Figure 4). The message sequence is explained below.

(1) When a user wants to connect to an NF, he has to login to the GO and
creates a connection request for a specific element. (2) The GO then validates
the identity of the user. In order to instantiate a container customized for the
user, (3) the GO looks up the specifications of the NF from a database (DB)
for the network element including the network type, accepted credentials and
whatever is needed to instantiate the customized container. (4) Credentials
are generated and (5) get signed by a certificate authority. (6) The GO then
triggers the LO to instantiate a container for connecting the user with the
requested network and (7) sends back a link to the GO. The GO forwards
the link to the user. (8) The user can click on the link and gets access to the
container. (9) Then the container establishes the connection to the NF and
uses the credentials signed by the CA to authenticate against the NF. Trusting
the CA, the NE accepts the connection request and establishes the connection.

6 Discussion and Solution Analysis

In this section the solution is analyzed with respect to the requirements
given in Section 4. Solution specifications are referred to the Requirements
using the abbreviations from Section 4. Discussion on other benefits from the
solution are also presented in this section.



Using Software Containers for Privileged Access Management 307

Since containers are used for every requested connection, the connections
become distinct from each other (R1).

Customizing the container to the users privileges in the building process
covers (R2). With the logging function of the application layer the solution
allows a complete logging (R3). But the solution itself doesn’t provide a
tamper-proof logging backend (R4), only the interface to push logs to a
logging backend. Therefore, the requirement (R4) is partly fulfilled by the
solution and needs to be supplemented by a centralized logging backend and
forensic tools to analyze log files.

MFA can be implemented between user and frontend (R5). Credential
rotation is not necessary as the credentials in the container backend are
generated for every new container (R6). The containers connecting admin-
istrators to the GO can require a stronger authentication method (R12) to
avoid attackers from compromising the GO. In addition, a user connected to
the main instance can’t connect to the NFs directly without using containers
(R13). Therefore, all actions performed on the main instance itself get logged.

Similarly, the GO can be configured to not allow direct connections to
AFs (R7). However, it is the responsibility of the cloud provider to remove
local credentials from the NF and remove workarounds such as direct SSH
(R8, R9). This prevents attackers from bypassing the logged containers.

The modular architecture allows developers to add container prototypes to
adapt them to new NFs or to enable different authentication methods without
affecting others (R11). In this way the container prototype for accessing the
GO can define a stronger authentication method (P12) This solution can be
reused across different software layers (R10).

Scalability for the containers is given by the nature of containers them-
selves (R15). Of course, the hardware has to provide enough resources to
generate the amount of containers required to allow all requested connections.
But next to the containers, also the GO has to be scalable. To solve this,
multiple GOs can exist in a network or even in other networks. This allows
full scalability and also provides a fallback solution in case one or more
GOs fail. This in combination with (R12) provides a well-protected fall-back
solution (R15).

But not only the access should be secure, but also the solutions itself. One
factor is the needed security of the container. For example, an attacker should
not be able to change the NF or user role after the container is instantiated.
Also, the GO should not be manipulable. As the GO initiates the building
procedure of the container, it could be misused by attackers to instantiate or
manipulate the building process of a container. Therefore, access to the GO



308 M. Steinhoff

has to be strictly restricted and protected. The API used by the user should be
clearly defined and well-tested.

Another problem comes with the availability of the GO. Implementing
only one GO for handling requests, the availability is again depending on
the availability of a single point and scalability limited. Thus, the GO should
be multiplicable to handle huge amounts of requests, big data or a denial of
service attack.

When the solution is used for a network or service dealing with huge data
or a vast number of transactions giving access, transporting data and logging
actions becomes an issue.

To deal with this issue efficiently, the containers for this solution need
to be as small as possible. To achieve that, the base image for the container
has to be small, every feature that is not necessary for the main functions
or security purposes has to be deleted. Also the software in the application
layer has to be as slim as possible. This leads to the fact, that a container
with HTTPS frontend with a virtual terminal and a command interpreter in
the application layer results in a size of container that might be too big for
big data purposes. Therefore, containers for this purpose should only forward
commands and avoid any unnecessary overhead.

In conclusion, the PAM solution needs to provide a scalable and cus-
tomizable implementation, flexible enough for an always changing environ-
ment and ready for big data purposes.

7 Future Work

Future research should define more details of the solution architecture. A
prototype should be developed and tested in order to find the issues of this
solution focusing on the existing problems and requirements analyzed in this
paper.

8 Conclusion

For PAM in cloud environments are still no secure solutions available. Prob-
lems with the currently used methods are credential misuse and problems
with the number of different user groups and the different configurations of
the solutions in the cloud.



Using Software Containers for Privileged Access Management 309

The currently available solutions all use a similar approach and handle
all connections with a single proxy or jump server. Problems are mainly
scalability, weak fall-back solutions and existing workarounds.

The approach of using containers for each requested connection solves
these problems. The connections of the individual users are separated from
each other and every action is logged without exceptions. Furthermore, the
concept can be implemented in a scalable way and also takes fall back
solutions into account.

If the functions are limited and the solution is implemented in a lean
way, it is also suitable for big data applications. Therefore, the idea of using
containers for PAM is a viable approach, which should be implemented and
tested after a more detailed conceptual design.

References

[1] R. Kneuper, “Software Processes and Life Cycle Models. An Introduc-
tion to Modelling, Using and Managing Agile, Plan-Driven and Hybrid
Processes”, Springer, 2018, ISBN 978-3-319-98844-3.

[2] M. Steinhoff, “About problems and requirements with privileged
access and authorization management in cloud-based multi-tenant net-
works”, 2020, In: Proceeding: International Symposium on 5G &
Beyond for Rural Upliftment 2020. e-ISBN: 9788770222174 doi:
https://doi.org/10.13052/rp-9788770222174.

[3] Verizon, “2019 Data Breach Investigations Report”, 2019.
[4] H. Schulze, “2019 Cloud Security Report”, ISC2, 2019.
[5] Gartner, “Magic Quadrant for Privileged Access Management”, 2018.

ID G00356017
[6] CyberArk, “Privileged Access Security”, version 11.2, 2020. Url = https:

//docs.cyberark.com/Product-Doc/OnlineHelp/PAS/Latest/en/Content
/PASIMP/Introducing-the-Privileged-Account-Security-Solution-Intro
.html, 2020-02-21.

[7] BeyondTrust, “Prvileged Remote Access”, 2020. Url = https://www.be
yondtrust.com/de/remote-access, 2020-02-21.

[8] Centrify, “Centrify Privileged Access Service”, 2020. Url = https://ww
w.centrify.com/privileged-access-management/privileged-access-serv
ice/, 2020-02-21.

[9] SSH Communications Security Inc., “PrivXr – lean, modern privileged
access management”, 2020. Url = https://www.ssh.com/products/privx,
2020-02-27.

https://docs.cyberark.com/Product-Doc/OnlineHelp/PAS/Latest/en/Content/PASIMP/Introducing-the-Privileged-Account-Security-Solution-Intro.html
https://docs.cyberark.com/Product-Doc/OnlineHelp/PAS/Latest/en/Content/PASIMP/Introducing-the-Privileged-Account-Security-Solution-Intro.html
https://docs.cyberark.com/Product-Doc/OnlineHelp/PAS/Latest/en/Content/PASIMP/Introducing-the-Privileged-Account-Security-Solution-Intro.html
https://docs.cyberark.com/Product-Doc/OnlineHelp/PAS/Latest/en/Content/PASIMP/Introducing-the-Privileged-Account-Security-Solution-Intro.html
https://www.beyondtrust.com/de/remote-access
https://www.beyondtrust.com/de/remote-access
https://www.centrify.com/privileged-access-management/privileged-access-service/
https://www.centrify.com/privileged-access-management/privileged-access-service/
https://www.centrify.com/privileged-access-management/privileged-access-service/
https://www.ssh.com/products/privx


310 M. Steinhoff

[10] SSH Communications Security Inc., “Web Access Architecture”, 2020.
Url = https://help.ssh.com/support/solutions/articles/36000166941-we
b-access-architecture, 2020-02-27.

[11] Ping Identity, “PingAccess. Access security for apps and APIs”, 2020,
Url = https://www.pingidentity.com/en/software/pingaccess.html
2020-02-27

[12] OWASP, “Owasp Top 10”, report, OWASP foundation, 2017.
[13] Cloud Security Alliance, “Top Threats to Cloud Computing: Egregious

Eleven”, Report, 2019.
[14] D. Catteddu, G. Hogben, “Cloud computing - benefits, risks and

recommendations for information security, report, ENISA, 2012.
[15] M. Iorga, “Challenging security requirements for us government cloud

computing adoption, 2012.

Biography

Marleen Steinhoff is a bachelor student at the Munich University of Applied
Sciences since autumn 2017 and will receive her B.Sc. in Information
Systems and Management in March 2021. She worked as an intern at Rakuten
Mobile Inc. in Tokyo, Japan on access management for cloud-based 5G net-
works. Since September 2020, she acquires experience in incidence response
automation while working at Siemens. Her bachelor thesis at Siemens covers
the handling of cyber security playbooks for the automation of incidence
response in networks.

https://help.ssh.com/support/solutions/articles/36000166941-web-access-architecture
https://help.ssh.com/support/solutions/articles/36000166941-web-access-architecture
https://www.pingidentity.com/en/software/pingaccess.html

	Introduction
	Existing Solutions
	Limitations of Existing Solutions
	Requirements
	Solution
	Software Container
	Container Cluster
	Connection Establishment

	Discussion and Solution Analysis
	Future Work
	Conclusion

