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Abstract

The canonical Wnt signaling pathway is involved in a variety of biological processes like cell proliferation, cell polarity,
and cell fate determination. This pathway has been extensively investigated as its deregulation is linked to different
diseases, including various types of cancer, skeletal defects, birth defect disorders (including neural tube defects),
metabolic diseases, neurodegenerative disorders and several fibrotic diseases like desmoid tumors. In the "on state",
beta-catenin, the key effector of Wnt signaling, enters the nucleus where it binds to the members of the TCF-LEF
family of transcription factors and exerts its effect on gene transcription. Disease development can be caused by
direct or indirect alterations of the Wnt/β-catenin signaling.
In the first case germline or somatic mutations of the Wnt components are associated to several diseases such as
the familial adenomatous polyposis (FAP) - caused by germline mutations of the tumor suppressor adenomatous
polyposis coli gene (APC) - and the desmoid-like fibromatosis, a sporadic tumor associated with somatic mutations
of the β-catenin gene (CTNNB1).
In the second case, epigenetic modifications and microenvironmental factors have been demonstrated to play a
key role in Wnt pathway activation. The natural autocrine Wnt signaling acts through agonists and antagonists
competing for the Wnt receptors. Anomalies in this regulation, whichever is their etiology, are an important part in
the pathogenesis of Wnt pathway linked diseases. An example is promoter hypermethylation of Wnt antagonists,
such as SFRPs, that causes gene silencing preventing their function and consequently leading to the activation of
the Wnt pathway. Microenvironmental factors, such as the extracellular matrix, growth factors and inflammatory
mediators, represent another type of indirect mechanism that influence Wnt pathway activation. A favorable
microenvironment can lead to aberrant fibroblasts activation and accumulation of ECM proteins with subsequent
tissue fibrosis that can evolve in fibrotic disease or tumor.
Since the development and progression of several diseases is the outcome of the Wnt pathway cross-talk with
other signaling pathways and inflammatory factors, it is important to consider not only direct inhibitors of the Wnt
signaling pathway but also inhibitors of microenvironmental factors as promising therapeutic approaches for several
tumors of fibrotic origin.
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Introduction
The Wnt signaling pathway is involved in several essential
biological processes in both embryonic development and
in adult cell maintenance and regeneration.
The canonical or Wnt/β-catenin dependent pathway

controls key developmental gene expression programs
by modulating the amount of β-catenin through regulating
its degradation or accumulation and its translocation from
the adherens junction and cytoplasm to the nucleus. In
the absence of a Wnt signal, the cytoplasmic β-catenin is
tightly maintained at a low level by a multiprotein destruc-
tion complex consisting of Axin, the adenomatous
polyposis coli protein (APC), casein kinase 1α (CK1α),
and Glycogen Synthase Kinase 3β (GSK3β). The complex
phosphorylates cytoplasmic β-catenin leading to its deg-
radation by the ubiquitin-proteasomal system. The con-
tinuous elimination of β-catenin prevents its accumulation
in the cytoplasm and the consequent translocation into
the nucleus. In the presence of a Wnt signal, the destruc-
tion complex is disassembled leading to an increment of
β-catenin levels and allowing its translocation into the
nucleus where it activates Wnt target gene expression.
The aberrant regulation of the Wnt/β-catenin pathway
plays a role in the pathogenesis of several diseases includ-
ing cancer, birth defect disorder, skeletal diseases, and
fibrotic diseases. For this reason Wnt/β-catenin signaling
is tightly regulated and kept under strict control at differ-
ent levels of the Wnt cascade. Wnt activation is tempor-
ally and spatially tuned by autocrine Wnt signaling that is
associated with extracellular Wnt agonists and antago-
nists. The agonists activate the Wnt cascade while the
antagonists inhibit Wnt signaling at the level of ligand/re-
ceptor [1,2]. However, Wnt/β-catenin signaling deregula-
tion can occur via several mechanisms. In particular,
germline mutations of the tumor suppressor gene APC
are associated with familial adenomatous polyposis (FAP),
and somatic mutations of the β-catenin gene (CTNNB1)
are associated with sporadic desmoid tumors. In the first
case the disease is caused by a transmissible genetic defect,
in the second case the pathology is linked to a somatic
mutation that makes β-catenin unable to be completely
phosphorylated and degraded.
Wnt/β-catenin signaling can be also indirectly altered by

epigenetic modifications that cause silencing of Wnt
endogenous brakes, and by the effect of microenviron-
mental factors, such as the extracellular matrix, hormones
and growth factors. Of particular interest is the involve-
ment of inflammatory factors in the modulation of the
Wnt/β-catenin pathway and its association with fibrotic
disease as well as tumor development.
Either direct or indirect Wnt pathway alterations can

cause an increase of β-catenin levels and its accumula-
tion into the nucleus, activating the signaling cascade.
The cross-talk between these extracellular stimuli and
intracellular signals highlights the complex interaction
of the numerous factors involved in the development of
the Wnt pathway linked pathologies and are well repre-
sented in fibrotic disease and in particular in the sporadic
desmoid tumors.
Many studies describe the use of small synthetic mole-

cules for inhibiting the β-catenin as therapeutic approach.
Among these, there are molecules that target the inter-
action of β-catenin with co-activators disabling the forma-
tion of an active transcriptional complex. Recently GSK3β
inhibitors have been described as promising drugs for
several pathologies such as diabetes, stroke, mood dis-
orders, inflammation, and Alzheimer’s disease. The use
of specific inhibitors of the Wnt signaling molecules
or/and inhibitors of other signaling pathways associated
to β-catenin pathway may help to find the key steps of
the different pathologies linked to the Wnt pathway.

Review
Wnt pathway
The Wnt pathway is one of the evolutionarily-conserved
cell signaling pathways used both during embryogenesis
and in developed organism’s homeostasis to regulate cell
proliferation, cell polarity, and cell fate determination
[3-6]. The extracellular Wnt signal stimulates several
intracellular signal transduction cascades, including the
non-canonical or β-catenin-independent pathways and
the canonical or β-catenin dependent pathway [7].

Non-canonical pathway
The non-canonical Wnt pathways, defined as Wnt- or
Frizzled-mediated (Fzd) signaling independent of β-
catenin transcriptional activity [8], are diverse and in-
clude the Wnt polarity, Wnt-Ca2+, and Wnt-atypical
protein kinase C pathways. These pathways have been
reported to contribute to developmental processes such
as planar cell polarity (PCP), convergent extension
movements during gastrulation, neuronal and epithelial
cell migration [8-13].
Wnt/Ca2+ signaling, in particular, activates heterotrimeric

G proteins that stimulate phospholipase C (PLC). The sig-
naling activation results in intracellular Ca2+ mobilization
with activation of Ca2+-dependent effectors that include
protein kinase C (PKC), calcium calmodulin mediated kin-
ase II (CAMKII), and calcineurin [14].

Canonical pathway
The canonical pathway is the most studied Wnt signaling
pathway as it is involved in a variety of biological pro-
cesses and integrates signals from other cellular pathways.
It controls different processes throughout embryonic
development, such as stem cell pluripotency, cell prolifera-
tion, differentiation, and cell migration. In adult cells,
Wnt signaling contributes to maintain somatic stem cells,
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regulates cell fate decisions and it is involved in tissue
regenerative processes following injury [15].
The hallmark of the canonical Wnt pathway is tran-

scriptional activation by β-catenin. The pathway regu-
lates the amount of β-catenin through its degradation or
its accumulation and translocation from the adherens
junction and cytoplasm into the nucleus. In this way it
controls key developmental gene expression programs
[7,16,17]. In the absence of Wnt signaling, cytoplasmic
β-catenin is constantly degraded by the ubiquitin–prote-
asome system. This negative regulation involves the
multiprotein complex, composed of Axin, adenomatous
polyposis coli (APC), casein kinase 1 (CK1), protein
phosphatase 2A (PP2A), and glycogen synthase kinase
3β (GSK3β) [18,19]. Axin interacts with the different
components of the complex and coordinates sequential
phosphorylation of β-catenin. Initially CK1α phosphory-
lates β-catenin at serine 45 which enables the phosphor-
ylation performed by GSK3β at threonine 41, serine 37,
and serine 33 (Figure 1A) [20]. Subsequently, phosphoryl-
ation of APC by CK1α and GSK3β leads to an increased
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affinity between APC and β-catenin triggering a transfer
of β-catenin from Axin to APC and to β-Trcp (β-transdu-
cin-repeat-containing protein) [21], an E3 ubiquitin ligase
subunit that carries out ubiquitination of β-catenin for the
proteasome destruction [16,18,22,23].
The Wnt/β-catenin pathway is activated when specific

extracellular molecules, Wnt ligands, bind to a receptor
complex consisting of a seven-pass transmembrane
Frizzled (Fzd) receptor and its co-receptor, low-density
lipoprotein receptor related protein 6 (LRP6) or its close
relative LRP5. The activated receptors recruit the scaf-
folding protein Dishevelled (Dvl), which leads to LRP5/6
phosphorylation, mediated by either CK1γ or GSK3β.
These events trigger the translocation of Axin to the
membrane where it binds to a conserved sequence in
the cytoplasmic tail of LRP5/6 [24,25]. Consequently,
the APC/Axin/GSK3β complex is destabilized and β-
catenin is released allowing it to translocate to the nu-
cleus by a mechanism that is still poorly understood
(Figure 1B) [26,27]. In the nucleus, β-catenin binds to
the members of the lymphoid enhancer factor T cell
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(TCF/LEF) DNA-binding transcription factors and in-
duces the expression of downstream targets including
c-Myc, cyclin D1, the matrix metalloproteinase MMP-7,
the Ets family transcription factor PEA3 and Axin2
[26,28]. In the absence of the Wnt signal, TCF/LEF
factors bind DNA at Wnt-responsive genes and interact
with other factors (e.g. Groucho, histone deacetylase) to
repress gene transcription.

Ligands and the main constituents of the
Wnt/β-catenin pathway
The Wnt/β-catenin pathway’s complexity derives from
the high number of ligands and receptors involved in
Wnt signal transduction that can elicit a variety of intra-
cellular responses [10,29].

Wnt ligands
Wnt ligands comprise a large family of 19 highly con-
served cysteine-rich proteins of approximately 350–400
amino acids that contain an N-terminal signal peptide
for secretion [16].
Wnt ligands are involved in both the canonical and

the non-canonical pathways. Traditionally some ligands
(WNT1, WNT3a, and WNT8) have been classified as
canonical ligands and others (WNT4, WNT5a, and
WNT11) as non-canonical ligands but this classification
is now viewed as obsolete. Single Wnt ligands can be in-
volved in multiple intracellular cascades and activate
both types of pathways with opposing outcomes. The
Wnt outcome depends on the receptor status and on
the cellular and microenvironmental context [30,31].

Receptor and co-receptor: Frizzled and LRP
The activation of Wnt/β-catenin signaling requires the
cooperation and the aggregation of two types of transmem-
brane receptors: the Frizzled (Fzd) seven-pass transmem-
brane G-protein-coupled receptors [32] and the LRP5 and
LRP6 [18]. The binding site for Wnt ligands is the extracel-
lular cysteine-rich domain (CRD) that is well conserved
between Fzd members [33]. The intracellular C-domain
shows sequence diversity among Fzds but a KTxxxW
domain is associated with Wnt/β-catenin transduction
[31,34,35] and most of Fzd receptors can activate β-catenin
signaling [32,36]. In addition to the Fzd-LRP5/6 heterodi-
merization, Wnt ligands induce LRP5/6 dimerization/
oligomerization [26,37] that seems crucial for the canon-
ical pathway activation [16,38]. The ectodomain of LRP5/
6 is composed of three LDL repeats (LDLR) and four β-
propeller/epidermal growth factor (EGF) repeats (E1-4)
that are the binding domain of canonical Wnt ligands and
canonical pathway inhibitor Dkk1 [33,38,39]. Chen et al.
demonstrated that the receptor complex is maintained in
an inactive state when LRP5/6 associates with Fzd. When
a Wnt ligand binds to LRP5/6 and Fzd, it is believed to
induce a conformational change leading the LRP5/6
dimerization necessary for normal signal transduction [40].

Dvl
Dishevelled (Dvl) proteins are multifunctional intracellular
proteins involved in both canonical and non-canonical
pathways and have numerous putative binding partners
[41]. In mammals there are three isoforms, Dvl-1, 2, and
3, with a modular structure that contains four distinct
domains, a DIX, a PDZ and a DEP domain followed by a
C-terminal domain (CTD) [42,43]. The DIX and PDZ do-
mains mediate canonical WNT signaling while the PDZ
and DEP domains participate in non-canonical pathways.
This suggests that Dvl might function as molecular
switch regulated by other extracellular signals [41,44].
Indeed Dvl functions are modulated by several phos-
phorylation sites that are targets of specific kinases
and phosphatases [43,45,46].

Axin
Axin is a scaffold protein that acts as a constitutive
negative regulator of Wnt signaling by forming a com-
plex with β-catenin, APC, and GSK3β. In particular, this
function is carried out by the Axin C-terminal DIX do-
main (DAX domain) [47-49]. The promotion of rapid
and reversible homotypic DAX-DAX polymerization
[50] allows the assembly of a dynamic interaction plat-
form that increases the binding affinity for other compo-
nents such as APC and GSK3β [51]. The Axin-DAX
domain can also interact with Dvl-DIX domain forming
heterotypic Axin-Dvl interactions: this heteropolymeri-
zation switches the Wnt/β-catenin state to being active
[52,53]. Axin has another structural domain in its N-
terminus (the RGS domain), through which it binds dir-
ectly to APC [51,54,55]. Axin can be phosphorylated by
GSK3 and CK1, and this is believed to increase its asso-
ciation with β-catenin. On the other hand, two serine/
threonine phosphatases (PP1 and PP2A) hinder the
action of GSK3 and CK1 in the Axin complex redu-
cing the β-catenin degradation. In particular, PP1 de-
phosphorylates Axin and promotes the disassembly of
the Axin complex [16,56].

APC
APC is a tumor suppressor gene located on the long
arm of chromosome 5 (5q21). APC has multiple do-
mains that mediate oligomerization as well as binding to
a variety of other proteins [57], which have an important
role in cell adhesion, signal transduction and transcrip-
tional activation [58]. APC is indispensable for Axin’s ac-
tivity in assembling the destruction complex [51]. APC
may cluster multiple Axin molecules directly, through
its multiple Axin-binding sites [55], or indirectly through
additional factors (such as CtBP) [59]. Mendoza et al.
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speculated that APC competes with Dvl for association
with Axin, displacing it from Axin protein complex.
Wnt signaling may overcome the competition between
APC and Dvl for their binding to Axin, allowing simul-
taneous interaction of all three proteins [37,51,60,61].
APC can be phosphorylated by CK1/GSK3 increasing

its affinity for the same β-catenin domain as Axin, sug-
gesting the role of APC in removing the phosphorylated
β-catenin molecules from the complex [20,22,62].
Another study suggested that APC protects β-catenin
from dephosphorylation by PP2A thereby enhancing
β-catenin phosphorylation/degradation [16,56].

CK1
CK1 is a monomeric serine/threonine kinase involved
in many different cell functions. There are seven mem-
bers with high homology: α, β, γ1, γ2, γ3, δ, and ε. Each
isoform is involved in different steps of Wnt pathway,
with different effects. CKIα is the kinase that first phos-
phorylates β-catenin at S45, preparing the molecule for
the following phosphorylations by GSK3β [46,63,64].
CKIε promotes the activation of Wnt pathway. It phos-
phorylates Dvl on multiple sites enhancing the binding
of GSK3-binding protein/Frat (GBP/Frat) to Dvl [46,65].
CKIε also phosphorylates TCF3 increasing its affinity for
β-catenin. CKIγ is anchored on the plasma membrane
and it interacts with LRP6 [46,66].

GSK3β
GSK3β is a serine/threonine kinase that is highly con-
served from yeast to mammals. In mammals two distinct
genes encode two GSK3 isoforms, α (51 kDa) and β
(47 kDa), which share 97% amino acid sequence identity
within their catalytic domains. The two GSK3 isoforms
are ubiquitously expressed and they are involved in a
wide variety of essential biological processes such as tis-
sue patterning, glucose metabolism, apoptosis, stem cell
homeostasis, and cell cycle regulation [67]. GSK3 has
over 40 known direct substrates, and regulates many sig-
naling pathways including the Wnt, MAPK/ERK, BMP,
mTOR, and insulin pathways [68,69]. In Wnt signaling,
GSK3β is recruited to a multiprotein complex via inter-
action with Axin, where it phosphorylates β-catenin,
marking it for ubiquitination and destruction. Quantitative
analysis suggests that the interaction of GSK3β with the
Axin enhances phosphorylation of β-catenin by >20000-
fold [70]. GSK3 has been proposed to play important roles
in human disorders such as bipolar disorder, schizophre-
nia, Alzheimer disease. It also contributes to neoplastic
transformation as it belongs to both the canonical Wnt/β-
catenin and the PI3K/Akt signaling systems, two major
pathways often dysregulated in cancer [71]. However, to
date mutations of GSK3β have not been found in human
cancer [72].
CTNNB1 β-catenin
β-catenin has a dual role in the cells: (a) it is a structural
protein, stabilizing cell-cell adhesions, which are essen-
tial for normal cell physiology and tissue architecture
[73,74]; (b) it is the key mediator of canonical Wnt
signal transduction from membrane to nucleus, where
it operates as a transcriptional co-activator of the T
cell factor (TCF) family of DNA-binding proteins [75].
β-catenin provides a direct connection between extra-
cellular signals, gene transcription and cell cycle con-
trol [29,73].
β-catenin protein has three domains: the N-terminal

domain, the armadillo domain consisting of 12 armadillo
repeats (residues 141–664), and a C-terminal domain.
The positively charged armadillo (Arm) repeat is the
binding site for most β-catenin binding partners [76,77].
Local charge alterations of β-catenin through phosphor-
ylation at multiple sites have the ability to regulate its af-
finity to specific protein partners. Phosphorylation at the
C-terminal domain decreases the binding of β-catenin to
the cadherin adhesion complex, while the N-terminal
domain is the site of GSK3 and CK1 phosphorylation
which is recognized by the β-TrCP ubiquitin ligase for
the β-catenin degradation [78,79].

Endogenous inhibitors of Wnt
Wnt/β-catenin signaling is endogenously regulated by
secreted proteins that antagonize the Wnt ligands and
act at the cell surface level in order to inhibit the path-
way [80]. Among these, there are secreted frizzled-
related proteins (sFRP) and Wnt inhibitor proteins
(WIF) that inhibit the interaction between Wnt and its
receptors. Another inhibitor, the Dickkopf related pro-
tein 1 (DKK-1), is a ligand for the Wnt coreceptors
LRP5/6 [81]. DKK-1 antagonizes LRP6 function by dis-
rupting Fzd-LRP6 complex or by interacting with LRP6
and consequently promoting its internalization and deg-
radation (Figure 1A) [82].

Role of the Wnt pathway in human pathology
Deregulations of the Wnt pathway are linked to several
human diseases comprising various types of cancer (in-
cluding skin, breast and colon cancers), skeletal defects,
birth defect disorders (including neural tube defects),
fibrotic diseases, metabolic diseases, neurodegenerative
disorders and others [7,83]. Several causes can lead to
alterations in the Wnt pathway including germline and
somatic mutations, epigenetic modifications as well as
microenvironmental factors.

Wnt pathway and genetic disorders
The Wnt pathway has been extensively investigated for
its involvement in many types of cancer [28]. Several
studies with experimental models demonstrated that a
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high level of β-catenin activity is required for tumor
initiation [70]. In particular, colorectal cancer, desmoid
tumor, gastric cancer, melanoma, hepatocellular, pros-
tate, thyroid, ovarian, endometrial cancer, and some
subsets of breast cancers harbour β-catenin-stabilizing
mutations, including germline APC gene and somatic
CTNNB1 gene mutations [30,72,75]. Genetic alterations
of Axin2 has been described in adrenocortical carcinoma
[84], hepatocellular carcinoma and it may predispose to
colorectal cancer [80,85]. Patients with distinct types of her-
editary high bone mass diseases were found to carry muta-
tions in the LRP5 extracellular domain, while mutations in
LRP6 are linked to hereditary disorders as osteoporosis,
coronary artery disease, and metabolic syndrome [80].
Mutations in LRP5 and TCF7L2 genes may lead to the
development of obesity and mellitus diabetes [86,87].

APC gene mutations
The association between colon cancer and the aberrant
regulation of the Wnt pathway has been known since
the identification of alterations of chromosome 5q as an
early event in the carcinogenic process for hereditary
colon tumors (Familial Adenomatous Polyposis, FAP),
and the discovery, through different linkage studies, of
the APC gene at this chromosomal site [88,89].
FAP is a colon cancer predisposition syndrome, which

is inherited in an autosomal dominant manner. Clinical
diagnosis of FAP can be made when more than 100
adenomatous polyps are identified in the colorectum. FAP
patients present not only colorectal adenomas but also
various extracolonic manifestations, including desmoid
tumors, osteomas, dental abnormalities, congenital hyper-
trophy of the retinal pigment epithelium, lipomas, epi-
dermoid cysts and upper gastrointestinal polyps.
To date, more than 300 different APC gene mutations

are recognized as the cause of FAP. Most of these muta-
tions (insertions, deletions, nonsense mutations, etc.)
cause a truncated or inactive protein [58]. APC muta-
tions have been subsequently found in ~80% of sporadic
colorectal tumors, confirming that APC acts as a central
gatekeeper protein in colorectal tumorigenesis [90].
Inherited or somatic mutations that inactivate or destroy

APC function prevent effective degradation of β-catenin,
promoting the aberrant activation of canonical Wnt signal-
ing. This leads to the development of non-invasive colonic
adenomas (polyps) because β-catenin nuclear accumulation
causes the overexpression of growth-promoting genes [91].
The same outcome can arise through mutations in
CTNNB1 and AXIN2, though these are significantly less
frequent than mutations in APC [92].

Epigenetic modifications affecting the Wnt pathway
In addition to the genetic mutations, epigenetic modifica-
tions can contribute to aberrant activation of the canonical
Wnt pathway. This can occur at various levels and
determines the silencing or promoting of specific genes. In
particular, aberrant methylation of CpG islands within
gene promoter regions represents one of the most studied
mechanisms of gene silencing and it is associated with
selective transcriptional inactivation.
Many evidences indicate, for example, that almost

complete loss of SFRPs at the protein levels are fre-
quently correlated with gene promoter hypermethylation
in several pathologies such as colon carcinomas, hepato-
carcinomas [93], prostate cancer, human brain cancers
[94], non-small cell lung cancer [95], esophageal carcin-
oma [96], myeloproliferative neoplasms.
A loss of SFRP expression, through epigenetic

silencing, contributes to the constitutive activation of
autocrine Wnt signaling affecting cell proliferation and
potentially enhancing the cell growth and promoting
malignant transformation and cancer cell survival
[1,2,97,98].

Wnt pathway’s interaction with the microenvironment
Regulators of the microenvironment, such as the extra-
cellular matrix, growth factors and inflammatory factors,
are associated with the aberrant activation of Wnt path-
way and the promotion of several diseases.

Inflammation and Wnt pathway signaling
Inflammation is a critical defense mechanism against
various harmful stimuli, although aberrant regulation
may lead to diseases. The inflammation process, caused
by injury, leads to wound healing, tissue repair and
regeneration. Damaged epithelial and endothelial cells
release inflammatory factors, growth factors, cytokines,
and chemokines, which subsequently initiate an influx of
neutrophils and monocytes to the site of the damaged
tissue. Macrophages secrete platelet-derived growth fac-
tor (PDGF), connective tissue growth factor (CTGF) and
transforming growth factor-β (TGF-β). They also acti-
vate and convert fibroblasts into myofibroblasts, which
are engaged in extracellular matrix (ECM) deposition
and scar formation [99,100]. Cytokines activate gene
transcription regulators that are involved in stem cell re-
newal and proliferation, critical for tissue repair [100-103].
In case of repetitive injuries or unresolved damage, the in-
flammatory process can lead to aberrant fibroblast activa-
tion and excessive ECM accumulation with subsequent
tissue fibrosis that can evolve into fibrotic disease and po-
tential tumor initiation [100,101,104].
GSK3 has a crucial role in inflammation because it

promotes pro-inflammatory cytokine production (IL-6,
IL-1β and TNF-α) and cell migration [71,105,106]. Fur-
thermore, two major pro-inflammatory cytokines, IFNγ
and TNFα, are key regulators of β-catenin signaling and
the most highly induced mediators in the inflamed tissue
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[107]. Thus there is a lasting involvement of Wnt/β-
catenin signaling during the inflammation process that is
associated with pathogenic disorder.

Wnt pathway and fibro-proliferative diseases
The development and progression of several fibrotic dis-
eases is the outcome of the Wnt pathway cross-talk with
other signaling pathways and pro-inflammatory media-
tors [108].
In general, aberrant Wnt/β-catenin signaling activation

drives fibrogenesis through interaction with profibrotic
growth factors, epithelial cell transformation, myofibro-
blasts activation and proliferation [109]. Mutant mice
models demonstrate the involvement of β-catenin signal-
ing in fibroproliferative diseases [110,111]. Furthermore,
in fibrotic diseases, Wnts and positive regulators of β-
catenin are upregulated, whereas inhibitors of Wnt/β-
catenin signaling are downregulated [110].
The cross-talk between Wnt/β-catenin and TGF-β

pathways has been demonstrated in several fibroproli-
ferative disorders such as Dupuytren’s disease and pul-
monary fibrosis [112,113]. TGF-β regulates the fibroblast
activation to myofibroblast [81,108]. Wei et al. showed
that Wnt3a activates the TGF-β cascade inducing the
expression of pro-fibrotic genes [81,108]. On the other
hand, TGF-β signaling seems to up-regulate Wnt/β-
catenin pathway by decreasing the expression of Dkk-1,
which in turn, inhibits the canonical Wnt pathway [81].

Desmoid-type fibromatosis: A pathology arising
from Wnt pathway genetic alteration and
microenvironmental factors
Desmoid-type fibromatosis (DFs) can be an example of
pathology arising from direct Wnt/β-catenin signaling
alteration (Wnt mediator mutations) as well as indirect
Wnt deregulation by involvement of the microenviron-
ment. DF is a rare myofibroblastic neoplasm arising
from a defect in connective tissue regulation, the neopla-
sia is unable to metastasize but it shows marked local
aggression and a high recurrence rate. Some DFs are
consequence of local trauma including pregnancies and
surgical treatments [114,115]; repeated injuries also
might increase the risk of DF recurrence.

Genetic cause of desmoid-type fibromatosis: mutations of
CTNNB1 gene
Desmoid-type fibromatosis might be one of the manifesta-
tions of the APC gene linked FAP but they are generally
sporadic tumors. A range from 50% to 87% of sporadic
DFs are characterized by mutations in codons 41 and 45
of exon 3 (p.Thr41Ala, p.Ser45Phe, and p.Ser45Pro) of the
gene encoding β-catenin, CTNNB1. These codons are the
serine and threonine phosphorylation sites required
for β-catenin degradation [116,117]. Therefore, these
mutations make phosphorylation impossible and promote
β-catenin nuclear translocation [118]. A high level of nu-
clear β-catenin staining is the conventional diagnostic
marker for DFs. Nuclear β-catenin is detected in almost
90% of the desmoid cells (Figure 2A). However, the abnor-
mal expression of β-catenin is independent of CTNNB1
mutations, suggesting that other factors might be involved
in the alteration of the Wnt/β-catenin pathway in DFs. In-
triguingly, in all DF cells, we have also noticed a very
marked increase in nuclear GSK3β (95%) associated to β-
catenin, suggesting that other changes involving the multi-
protein complex are involved with the disease (Figure 2B)
[118]. In addition, Caspi et al. demonstrated that GSK3β
may have a nuclear function that impairs the Wnt path-
way by a mechanism that does not involve phosphoryl-
ation and degradation of β-catenin [119,120]. These
results support the potential significance of nuclear
GSK3β as an additional marker for DF cells [118].

Microenvironmental origin of desmoid-type fibromatosis
Nuclear accumulation of β-catenin in DFs can be also
caused by microenvironmental factors such as inflamma-
tion, growth factors or hormones. Immunohistochemis-
try studies demonstrated that EGF, TGF-β, TNF-α,
VEGF, phosphorylated SMAD2/3, COX2, and androgen
receptor were significantly increased in desmoid tumors
compared with healing scar tissue and quiescent fibrous
tissue [121-124].
TGF-β is a modulator of β-catenin levels. Cultured fi-

broblasts, stimulated with TGF-β, induced nuclear accu-
mulation of β-catenin and increased the activity of TCF/
LEF reporter and transcription of the target gene AXIN2
[81,108]. Expression of TGF-β-related cytokines has also
been described in desmoid tumors [121,123-125].
Human DF samples also showed expression of the

PDGFα and PDGFRα, metalloproteinases, ADAM12 and
MMP2, and midkine, heparin-binding growth factor
[126,127]. Expression of progesteron receptors has been
reported in DFs samples, while they were negative for
the estrogen receptor alpha [128,129].

Perspectives of therapeutic approaches
Wnt pathway inhibitors
As the canonical Wnt signaling is one of the central profi-
brotic signaling pathways [130] its inhibition on different
levels (from ligand secretion to intracellular mediators)
might be an effective antifibrotic treatment. Overexpres-
sion of the endogenous inhibitor Dkk-1 strongly amelio-
rated fibrosis in in vitro models mimicking early or later
stages of human disease [108]. Thus it may be an attract-
ive target for treating fibrosis, microvascular inflammation,
tubule injury, and microvascular rarefaction [131]. How-
ever, the most effective therapy would be targeted the
downstream complex in the pathway by using TCF/β-



Figure 2 Nuclear localization of GSK-3β and β-catenin in desmoid-type fibromatosis (DF) cells. A) DF cells and control cells (ctr) were
immunostained with anti-β-catenin (red). The nucleus was stained with DAPI (blue). The pictures show the nuclear localization of β-catenin in
DF cells, and cytoplasmic staining in control cells. B) DF cells were immunostained with anti-β-catenin (green) and GSK-3β (red) antibodies. The
nucleus was stained with DAPI. The merged picture shows colocalization of β-catenin and GSK-3β.
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catenin antagonist that inhibits protein-protein interaction
between TCF and β-catenin. Beyer and collaborators
evaluated the antifibrotic effects of two small molecules,
PKF118-310 and ICG-001, in the inflammatory model of
bleomycin-induced dermal fibrosis. While PKF118-310
inhibits the β-catenin/TCF interaction, ICG-001 interferes
with the recruitment of co-activators to β-catenin. The
treatment with PKF118-310 and ICG-001 effectively
inhibited canonical Wnt signaling reducing mRNA ex-
pression of Axin-2 (Figure 1B) [130]. These compounds
prevent and reverse inflammation-driven fibrosis and
reduce TGF-β dependent fibrosis.
Another mechanism for decreasing canonical Wnt sig-

nalling is to target the PDZ domain of DVL. Three com-
pounds (NSC 668036, FJ9 and 3289–8625) have been
identified to in vitro inhibit the Frizzled receptor-PDZ
domain interaction.
Furthermore, the level of Axin in the β-catenin de-

struction complex is controlled by tankyrases, members
of the PARP-family of poly-ADP-ribosylation enzymes.
Small molecules, inhibiting the tankyrase 1 and tankyr-
ase 2 enzymes, stabilize the level of Axin and promote
the phosphorylation-dependent degradation of β-catenin
by increasing the activity of the destruction complex
[132]. Among these molecules Wang and collaborators
demonstrated that XAV939 significantly inhibited the
activation of Wnt/β-catenin signalling and attenuated
bleomycin-induced lung fibrosis in mice [133]. The
reduction of Wnt/β-catenin signaling, by the tankyrase in-
hibitors G007-LK and G244-LM, has been also demon-
strated in APC mutant colorectal cancer (CRC) cell lines
[134]. However, the clinical use of these inhibitors may be
limited by the intestinal toxicity in APC-mutant CRC
models and local or systemic toxicity in the fibrotic tissue
of systemic sclerosis [134]. Intriguing, the pharmacological
manipulation of Wnt pathway, using GSK3β inhibitors
(lithium chloride, SB216763) (Figure 1A), is a promising
therapeutic approach for several pathologies such as
diabetes, stroke, mood disorders, inflammation, and
Alzheimer’s disease [135].
Moreover, as GSK3 is a vital factor in inflammatory

processes, inhibitors of GSK3 provide strong anti-
inflammatory protection. GSK3 inhibitors were reported to
reduce the inflammatory response in induced colitis in rats,
as well as in arthritis and peritonitis in mice highlighting
the potential therapeutic treatments in pathological condi-
tions associated to inflammation [71,136,137].

Therapeutic treatments described in desmoid-type
fibromatosis
DF treatment is complicated by its recurrence, invasive-
ness, and persistence. Due to the heterogeneity of the
desmoid-type fibromatosis and to the unpredictable clin-
ical course, at the moment, the treatment is given on a
case-by-case multimodal basis [138-140]. For this reason
and for the absence of metastatic potential the “wait and
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see approach” is preferred when the tumors are asymp-
tomatic and not located in area that could lead to
functional limitations [141]. On the other hand, when
the tumour mass causes discomfort, affects the function
of involved organs or causes severe cosmetic damage,
surgery is the preferred option, in association with radio-
therapy and/or chemotherapy [142-144]. When the tu-
mors are unresectable, radiotherapy is recommended
[145,146]. For abdominal tumors, systemic therapy with
non steroidal anti-inflammatory drugs, hormonal or bio-
logical agents, and cytotoxic drugs, is suggested. Different
drugs have been used in clinics with different outcomes
including Tamoxifen, Interferon-α, Doxorubicin, Ima-
tinib and Sorafenib [146-150]. In particular, Imatinib
mesylate has been reported to inhibit receptor tyrosine
kinases, including PDGFR-α and PDGFR-β, as well as
c-kit [151]. As desmoid tumor cells produce high levels
of TGF-β, Toremifene which is an antiestrogen that in-
hibits collagen and TGF-β synthesis, has been used for
in vitro desmoid cells. The results showed the reduction
of receptor number only in desmoid cells, suggesting
that Toremifene may reduce TGF-β's affinity for its re-
ceptors [121,152]. Toremifene also modifies the ECM
components that regulate cytokine activity and cell
migration.
An experimental animal model demonstrated that Apc

(+)/Apc(1638 N) mice treated with Triparanol, an inhibi-
tor of Hedgehog (Hh) signaling, develop few and smaller
desmoid tumors compared with the untreated mice
[153]. These data provide functional evidence that Hh
pathway, associated with aberrant Wnt pathway, plays a
key role in the maintenance of normal cells as the
modulation of this pathway influences desmoid tumor
behaviour. It also suggests Hh blockade as a therapeutic
approach for this tumor type [153]. Hyperthermic iso-
lated limb perfusion with TNF-α and Melphalan resulted
to be an effective treatment in desmoid tumor recur-
rence of the limb or where resection threatens loss of
function [154-156].

Conclusions
The Wnt/β-catenin pathway is a great example of heavily
context dependent cellular pathways with several ligands,
receptors, transmitters and modulators. In general the
interactions of the Wnt/β-catenin pathway with the other
cellular processes clearly state its importance for the cell
and the entire organism.
The most direct therapeutic approach against the de-

regulation of the Wnt/β-catenin pathway is to target the
components of the pathways themselves or their closest
interactors.
The dependence of the Wnt/β-catenin pathway on its

microenvironment can be exploited as a potential target for
therapeutic approaches in particular the host’s response to
pathological cells including inflammation and the various
growth factors produced in the attempt to “heal” the organ-
ism. This approach could also lead to a faster individuation
of a valid treatment as several compounds are already
commercialized, even if they are developed for completely
unrelated diseases.
In synthesis, we need to continue studying on two

fronts in order to find effective treatments for Wnt/β-
catenin pathway related pathologies: the Wnt/β-catenin
pathway itself and its role in the network comprising
other pathways associated to the microenvironment.

Consent
An informed written consent was obtained from the
persons whose cell culture images were included in
this review.
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