The PI3K signaling pathway as a pharmacological target in Autism related disorders and Schizophrenia

  • Lilian Enriquez-barreto
  • Miguel Morales
Keywords: Schizophrenia, Autism Spectrum Disorder, Tuberous Sclerosis Complex, PI3K Pathway, Paliperidone

Abstract

This review is focused in PI3K’s involvement in two widespread mental disorders: Autism and Schizophrenia. A large
body of evidence points to synaptic dysfunction as a cause of these diseases, either during the initial phases of
brain synaptic circuit’s development or later modulating synaptic function and plasticity. Autism related disorders
and Schizophrenia are complex genetic conditions in which the identification of gene markers has proved difficult,
although the existence of single-gene mutations with a high prevalence in both diseases offers insight into the role
of the PI3K signaling pathway. In the brain, components of the PI3K pathway regulate synaptic formation and plasticity;
thus, disruption of this pathway leads to synapse dysfunction and pathological behaviors. Here, we recapitulate recent
evidences that demonstrate the imbalance of several PI3K elements as leading causes of Autism and Schizophrenia,
together with the plausible new pharmacological paths targeting this signaling pathway.

Downloads

Download data is not yet available.

References

Samuels Y, Wang Z, Bardelli A, Silliman N, Ptak J, Szabo S, et al. High frequency of mutations of the PIK3CA gene in human cancers. Science (80- ). 2004/03/16 ed. 2004;304(5670):554.

Google Scholar

Bourgeron T. A synaptic trek to autism. Curr Opin Neurobiol. 2009/06/24 ed. 2009;19(2):231–4.

Google Scholar

Kelleher 3rd RJ, Bear MF. The autistic neuron: troubled translation? Cell. 2008/11/06 ed. 2008;135(3):401–6.

Google Scholar

Chen J, Alberts I, Li X. Dysregulation of the IGF-I/PI3K/AKT/mTOR signaling pathway in autism spectrum disorders. Int J Dev Neurosci. 2014/03/26 ed. 2014;35:35–41.

Google Scholar

Gross C, Nakamoto M, Yao X, Chan CB, Yim SY, Ye K, et al. Excess phosphoinositide 3-kinase subunit synthesis and activity as a novel therapeutic target in fragile X syndrome. J Neurosci. 2010/08/13 ed. 2010;30(32):10624–38.

Google Scholar

Castro J, Mellios N, Sur M. Mechanisms and therapeutic challenges in autism spectrum disorders: insights from Rett syndrome. Curr Opin Neurol. 2013/03/02 ed. 2013;26(2):154–9.

Google Scholar

Kalkman HO. The role of the phosphatidylinositide 3-kinase-protein kinase B pathway in schizophrenia. Pharmacol Ther. 2006/01/26 ed. 2006;110(1):117–34.

Google Scholar

Law AJ, Wang Y, Sei Y, O’Donnell P, Piantadosi P, Papaleo F, et al. Neuregulin 1-ErbB4-PI3K signaling in schizophrenia and phosphoinositide 3-kinase-p110delta inhibition as a potential therapeutic strategy. Proc Natl Acad Sci U S A. 2012/06/13 ed. 2012;109(30):12165–70.

Google Scholar

Zheng W, Wang H, Zeng Z, Lin J, Little PJ, Srivastava LK, et al. The possible role of the Akt signaling pathway in schizophrenia. Brain Res. 2012/07/10 ed. 2012;1470:145–58.

Google Scholar

Waite K, Eickholt BJ. The neurodevelopmental implications of PI3K signaling. Curr Top Microbiol Immunol. 2010/06/29 ed. 2010;346:245–65.

Google Scholar

Junttila TT, Sundvall M, Maatta JA, Elenius K. Erbb4 and its isoforms: selective regulation of growth factor responses by naturally occurring receptor variants. Trends Cardiovasc Med. 2001/05/10 ed. 2000;10(7):304–10.

Google Scholar

Silberberg G, Darvasi A, Pinkas-Kramarski R, Navon R. The involvement of ErbB4 with schizophrenia: association and expression studies. Am J Med Genet B Neuropsychiatr Genet. 2006/01/13 ed. 2006;141B(2):142–8.

Google Scholar

Seshadri S, Kamiya A, Yokota Y, Prikulis I, Kano S, Hayashi-Takagi A, et al. Disrupted-in-Schizophrenia-1 expression is regulated by beta-site amyloid precursor protein cleaving enzyme-1-neuregulin cascade. Proc Natl Acad Sci U S A. 2010/03/10 ed. 2010;107(12):5622–7.

Google Scholar

Kao WT, Wang Y, Kleinman JE, Lipska BK, Hyde TM, Weinberger DR, et al. Common genetic variation in Neuregulin 3 (NRG3) influences risk for schizophrenia and impacts NRG3 expression in human brain. Proc Natl Acad Sci U S A. 2010/08/18 ed. 2010;107(35):15619–24.

Google Scholar

Paterson C, Law AJ. Transient overexposure of neuregulin 3 during early postnatal development impacts selective behaviors in adulthood. PLoS One. 2014/08/06 ed. 2014;9(8):e104172.

Google Scholar

Emamian ES, Hall D, Birnbaum MJ, Karayiorgou M, Gogos JA. Convergent evidence for impaired AKT1-GSK3beta signaling in schizophrenia. Nat Genet. 2004/01/28 ed. 2004;36(2):131–7.

Google Scholar

Zhao Z, Ksiezak-Reding H, Riggio S, Haroutunian V, Pasinetti GM. Insulin receptor deficits in schizophrenia and in cellular and animal models of insulin receptor dysfunction. Schizophr Res. 2006/04/04 ed. 2006;84(1):1–14.

Google Scholar

Emamian ES. AKT/GSK3 signaling pathway and schizophrenia. Front Mol Neurosci. 2012/03/22 ed. 2012;5:33.

Google Scholar

Martin-Pena A, Acebes A, Rodriguez JR, Sorribes A, de Polavieja GG, Fernandez-Funez P, et al. Age-independent synaptogenesis by phosphoinositide 3 kinase. J Neurosci. 2006/10/06 ed. 2006;26(40):10199–208.

Google Scholar

Cuesto G, Enriquez-Barreto L, Carames C, Cantarero M, Gasull X, Sandi C, et al. Phosphoinositide-3-kinase activation controls synaptogenesis and spinogenesis in hippocampal neurons. J Neurosci. 2011;31(8):2721–33.

CrossRefPubMedGoogle Scholar

Enriquez-Barreto L, Cuesto G, Dominguez-Iturza N, Gavilan E, Ruano D, Sandi C, et al. Learning improvement after PI3K activation correlates with de novo formation of functional small spines. Front Mol Neurosci. 2014;6:54.

PubMedCentralCrossRefPubMedGoogle Scholar

Cuesto G, Jordán-Álvarez S, Enriquez-Barreto L, Ferrús A, Morales M, Acebes Á. GSK3β inhibition promotes synaptogenesis in Drosophila and mammalian neurons. PLoS One. 2015;10(3), e0118475.

PubMedCentralCrossRefPubMedGoogle Scholar

Whitman M, Kaplan DR, Schaffhausen B, Cantley L, Roberts TM. Association of phosphatidylinositol kinase activity with polyoma middle-T competent for transformation. Nature. 1985/05/16 ed. 1985;315(6016):239–42.

Google Scholar

Whitman M, Downes CP, Keeler M, Keller T, Cantley L. Type I phosphatidylinositol kinase makes a novel inositol phospholipid, phosphatidylinositol-3-phosphate. Nature. 1988/04/14 ed. 1988;332(6165):644–6.

Google Scholar

Vanhaesebroeck B, Guillermet-Guibert J, Graupera M, Bilanges B. The emerging mechanisms of isoform-specific PI3K signalling. Nat Rev Mol Cell Biol. 2010/04/10 ed. 2010;11(5):329–41.

Google Scholar

Gross C, Bassell GJ. Neuron-specific regulation of class I PI3K catalytic subunits and their dysfunction in brain disorders. Front Mol Neurosci. 2014/03/05 ed. 2014;7:12.

Google Scholar

Martini M, De Santis MC, Braccini L, Gulluni F, Hirsch E. PI3K/AKT signaling pathway and cancer: an updated review. Ann Med. 2014/06/06 ed. 2014;46(6):372–83.

Google Scholar

Zhao L, Vogt PK. Class I PI3K in oncogenic cellular transformation. Oncogene. 2008/09/17 ed. 2008;27(41):5486–96.

Google Scholar

Vanhaesebroeck B, Stephens L, Hawkins P. PI3K signalling: the path to discovery and understanding. Nat Rev Mol Cell Biol. 2012/02/24 ed. 2012;13(3):195–203.

Google Scholar

Tavazoie SF, Alvarez VA, Ridenour DA, Kwiatkowski DJ, Sabatini BL. Regulation of neuronal morphology and function by the tumor suppressors Tsc1 and Tsc2. Nat Neurosci. 2005/11/16 ed. 2005;8(12):1727–34.

Google Scholar

Maehama T, Dixon JE. The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem. 1998/06/05 ed. 1998;273(22):13375–8.

Google Scholar

Ali IU, Schriml LM, Dean M. Mutational spectra of PTEN/MMAC1 gene: a tumor suppressor with lipid phosphatase activity. J Natl Cancer Inst. 1999/11/24 ed. 1999;91(22):1922–32.

Google Scholar

Butler MG, Dasouki MJ, Zhou XP, Talebizadeh Z, Brown M, Takahashi TN, et al. Subset of individuals with autism spectrum disorders and extreme macrocephaly associated with germline PTEN tumour suppressor gene mutations. J Med Genet. 2005/04/05 ed. 2005;42(4):318–21.

Google Scholar

Caronna EB, Milunsky JM, Tager-Flusberg H. Autism spectrum disorders: clinical and research frontiers. Arch Dis Child. 2008/02/29 ed. 2008;93(6):518–23.

Google Scholar

CDC | Data and Statistics | Autism Spectrum Disorder (ASD) | NCBDDD [Internet]. [cited 2015 Sep 18]. Available from: http://www.cdc.gov/ncbddd/autism/data.html

Courchesne E, Carper R, Akshoomoff N. Evidence of brain overgrowth in the first year of life in autism. JAMA. 2003/07/17 ed. 2003;290(3):337–44.

Google Scholar

Amaral DG, Schumann CM, Nordahl CW. Neuroanatomy of autism. Trends Neurosci. 2008/02/09 ed. 2008;31(3):137–45.

Google Scholar

Heaton P, Wallace GL. Annotation: the savant syndrome. J Child Psychol Psychiatry. 2004/07/01 ed. 2004;45(5):899–911.

Google Scholar

Südhof TC. Neuroligins and neurexins link synaptic function to cognitive disease. Nature. 2008;455(7215):903–11.

PubMedCentralCrossRefPubMedGoogle Scholar

Huttenlocher PR, Dabholkar AS. Regional differences in synaptogenesis in human cerebral cortex. J Comp Neurol. 1997/10/23 ed. 1997;387(2):167–78.

Google Scholar

Delorme R, Ey E, Toro R, Leboyer M, Gillberg C, Bourgeron T. Progress toward treatments for synaptic defects in autism. Nat Med. 2013/06/08 ed. 2013;19(6):685–94.

Google Scholar

Jamain S, Quach H, Betancur C, Rastam M, Colineaux C, Gillberg IC, et al. Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism. Nat Genet. 2003/04/02 ed. 2003;34(1):27–9.

Google Scholar

Nelson SB, Valakh V. Excitatory/Inhibitory Balance and Circuit Homeostasis in Autism Spectrum Disorders. Neuron. 2015;87(4):684–98.

CrossRefPubMedGoogle Scholar

Durand CM, Betancur C, Boeckers TM, Bockmann J, Chaste P, Fauchereau F, et al. Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders. Nat Genet. 2006/12/19 ed. 2007;39(1):25–7.

Google Scholar

Alarcon M, Abrahams BS, Stone JL, Duvall JA, Perederiy J V, Bomar JM, et al. Linkage, association, and gene-expression analyses identify CNTNAP2 as an autism-susceptibility gene. Am J Hum Genet. 2008/01/09 ed. 2008;82(1):150–9.

Google Scholar

Kim HG, Kishikawa S, Higgins AW, Seong IS, Donovan DJ, Shen Y, et al. Disruption of neurexin 1 associated with autism spectrum disorder. Am J Hum Genet. 2008/01/09 ed. 2008;82(1):199–207.

Google Scholar

Canitano R. Epilepsy in autism spectrum disorders. Eur Child Adolesc Psychiatry. 2006/08/26 ed. 2007;16(1):61–6.

Google Scholar

Folstein S, Rutter M. Infantile autism: a genetic study of 21 twin pairs. J Child Psychol Psychiatry. 1977/09/01 ed. 1977;18(4):297–321.

Google Scholar

Sandin S, Lichtenstein P, Kuja-Halkola R, Larsson H, Hultman CM, Reichenberg A. The familial risk of autism. JAMA. 2014/05/06 ed. 2014;311(17):1770–7.

Google Scholar

Persico AM, Bourgeron T. Searching for ways out of the autism maze: genetic, epigenetic and environmental clues. Trends Neurosci. 2006/07/01 ed. 2006;29(7):349–58.

Google Scholar

Riikonen R, Makkonen I, Vanhala R, Turpeinen U, Kuikka J, Kokki H. Cerebrospinal fluid insulin-like growth factors IGF-1 and IGF-2 in infantile autism. Dev Med Child Neurol. 2006/08/15 ed. 2006;48(9):751–5.

Google Scholar

Sheikh AM, Malik M, Wen G, Chauhan A, Chauhan V, Gong CX, et al. BDNF-Akt-Bcl2 antiapoptotic signaling pathway is compromised in the brain of autistic subjects. J Neurosci Res. 2010/07/22 ed. 2010;88(12):2641–7.

Google Scholar

Jansen LA, Mirzaa GM, Ishak GE, O’Roak BJ, Hiatt JB, Roden WH, et al. PI3K/AKT pathway mutations cause a spectrum of brain malformations from megalencephaly to focal cortical dysplasia. Brain. 2015;138(Pt 6):1613–28.

CrossRefPubMedGoogle Scholar

Lee JH, Huynh M, Silhavy JL, Kim S, Dixon-Salazar T, Heiberg A, et al. De novo somatic mutations in components of the PI3K-AKT3-mTOR pathway cause hemimegalencephaly. Nat Genet. 2012/06/26 ed. 2012;44(8):941–5.

Google Scholar

Riviere JB, Mirzaa GM, O’Roak BJ, Beddaoui M, Alcantara D, Conway RL, et al. De novo germline and postzygotic mutations in AKT3, PIK3R2 and PIK3CA cause a spectrum of related megalencephaly syndromes. Nat Genet. 2012/06/26 ed. 2012;44(8):934–40.

Google Scholar

Poduri A, Evrony GD, Cai X, Elhosary PC, Beroukhim R, Lehtinen MK, et al. Somatic activation of AKT3 causes hemispheric developmental brain malformations. Neuron. 2012;74(1):41–8.

PubMedCentralCrossRefPubMedGoogle Scholar

Zurashvili T, Cordón-Barris L, Ruiz-Babot G, Zhou X, Lizcano JM, Gómez N, et al. Interaction of PDK1 with phosphoinositides is essential for neuronal differentiation but dispensable for neuronal survival. Mol Cell Biol. 2013;33(5):1027–40.

PubMedCentralCrossRefPubMedGoogle Scholar

Varga EA, Pastore M, Prior T, Herman GE, McBride KL. The prevalence of PTEN mutations in a clinical pediatric cohort with autism spectrum disorders, developmental delay, and macrocephaly. Genet Med. 2009/03/07 ed. 2009;11(2):111–7.

Google Scholar

McBride KL, Varga EA, Pastore MT, Prior TW, Manickam K, Atkin JF, et al. Confirmation study of PTEN mutations among individuals with autism or developmental delays/mental retardation and macrocephaly. Autism Res. 2010/06/10 ed. 2010;3(3):137–41.

Google Scholar

Stiles B, Groszer M, Wang S, Jiao J, Wu H. PTENless means more. Dev Biol. 2004/08/26 ed. 2004;273(2):175–84.

Google Scholar

Jaworski J, Spangler S, Seeburg DP, Hoogenraad CC, Sheng M. Control of dendritic arborization by the phosphoinositide-3’-kinase-Akt-mammalian target of rapamycin pathway. J Neurosci. 2005/12/13 ed. 2005;25(49):11300–12.

Google Scholar

Acebes A, Devaud JM, Arnes M, Ferrus A. Central adaptation to odorants depends on PI3K levels in local interneurons of the antennal lobe. J Neurosci. 2012/01/13 ed. 2012;32(2):417–22.

Google Scholar

Kwon CH, Luikart BW, Powell CM, Zhou J, Matheny SA, Zhang W, et al. Pten regulates neuronal arborization and social interaction in mice. Neuron. 2006/05/06 ed. 2006;50(3):377–88.

Google Scholar

Lugo JN, Smith GD, Arbuckle EP, White J, Holley AJ, Floruta CM, et al. Deletion of PTEN produces autism-like behavioral deficits and alterations in synaptic proteins. Front Mol Neurosci. 2014/05/06 ed. 2014;7:27.

Google Scholar

Burket JA, Benson AD, Tang AH, Deutsch SI. Rapamycin improves sociability in the BTBR T(+)Itpr3(tf)/J mouse model of autism spectrum disorders. Brain Res Bull. 2013/12/04 ed. 2014;100:70–5.

Google Scholar

Kwiatkowski DJ, Manning BD. Tuberous sclerosis: a GAP at the crossroads of multiple signaling pathways. Hum Mol Genet. 2005/10/26 ed. 2005;14 Spec No:R251–8.

Google Scholar

O’Callaghan FJ, Shiell AW, Osborne JP, Martyn CN. Prevalence of tuberous sclerosis estimated by capture-recapture analysis. Lancet (London, England). 1998;351(9114):1490.

CrossRefGoogle Scholar

Spence SJ, Sharifi P, Wiznitzer M. Autism spectrum disorder: screening, diagnosis, and medical evaluation. Semin Pediatr Neurol. 2004/12/04 ed. 2004;11(3):186–95.

Google Scholar

Ridler K, Suckling J, Higgins NJ, de Vries PJ, Stephenson CM, Bolton PF, et al. Neuroanatomical correlates of memory deficits in tuberous sclerosis complex. Cereb Cortex. 2006/04/11 ed. 2007;17(2):261–71.

Google Scholar

Ehninger D, Silva AJ. Rapamycin for treating Tuberous sclerosis and Autism spectrum disorders. Trends Mol Med. 2010/12/01 ed. 2011;17(2):78–87.

Google Scholar

Acebes A, Ferrús A. Increasing the number of synapses modifies olfactory perception in Drosophila. J Neurosci. 2001;21(16):6264–73.

PubMedGoogle Scholar

Ehninger D. From genes to cognition in tuberous sclerosis: implications for mTOR inhibitor-based treatment approaches. Neuropharmacology. 2012/05/26 ed. 2013;68:97–105.

Google Scholar

Aksamitiene E, Kiyatkin A, Kholodenko BN. Cross-talk between mitogenic Ras/MAPK and survival PI3K/Akt pathways: a fine balance. Biochem Soc Trans. 2012;40(1):139–46.

CrossRefPubMedGoogle Scholar

Atwal JK, Massie B, Miller FD, Kaplan DR. The TrkB-Shc site signals neuronal survival and local axon growth via MEK and P13-kinase. Neuron. 2000;27(2):265–77.

CrossRefPubMedGoogle Scholar

Kumar V, Zhang M-X, Swank MW, Kunz J, Wu G-Y. Regulation of dendritic morphogenesis by Ras-PI3K-Akt-mTOR and Ras-MAPK signaling pathways. J Neurosci. 2005;25(49):11288–99.

CrossRefPubMedGoogle Scholar

Medina DL, Sciarretta C, Calella AM, Von Bohlen Und Halbach O, Unsicker K, Minichiello L. TrkB regulates neocortex formation through the Shc/PLCgamma-mediated control of neuronal migration. EMBO J. 2004;23(19):3803–14.

PubMedCentralCrossRefPubMedGoogle Scholar

Rauen KA. The RASopathies. Annu Rev Genomics Hum Genet. 2013/07/24 ed. 2013;14:355–69.

Google Scholar

Rasmussen SA, Friedman JM. NF1 gene and neurofibromatosis 1. Am J Epidemiol. 2000;151(1):33–40.

CrossRefPubMedGoogle Scholar

Dasgupta B, Yi Y, Chen DY, Weber JD, Gutmann DH. Proteomic analysis reveals hyperactivation of the mammalian target of rapamycin pathway in neurofibromatosis 1-associated human and mouse brain tumors. Cancer Res. 2005/04/05 ed. 2005;65(7):2755–60.

Google Scholar

Basu TN, Gutmann DH, Fletcher JA, Glover TW, Collins FS, Downward J. Aberrant regulation of ras proteins in malignant tumour cells from type 1 neurofibromatosis patients. Nature. 1992/04/23 ed. 1992;356(6371):713–5.

Google Scholar

Kodaki T, Woscholski R, Hallberg B, Rodriguez-Viciana P, Downward J, Parker PJ. The activation of phosphatidylinositol 3-kinase by Ras. Curr Biol. 1994;4(9):798–806.

CrossRefPubMedGoogle Scholar

Rodriguez-Viciana P, Warne PH, Dhand R, Vanhaesebroeck B, Gout I, Fry MJ, et al. Phosphatidylinositol-3-OH kinase direct target of Ras. Nature. 1994;370(6490):527–32.

CrossRefPubMedGoogle Scholar

Johnson NS, Saal HM, Lovell AM, Schorry EK. Social and emotional problems in children with neurofibromatosis type 1: evidence and proposed interventions. J Pediatr. 1999/06/04 ed. 1999;134(6):767–72.

Google Scholar

Garg S, Green J, Leadbitter K, Emsley R, Lehtonen A, Evans DG, et al. Neurofibromatosis type 1 and autism spectrum disorder. Pediatrics. 2013/11/06 ed. 2013;132(6):e1642–8.

Google Scholar

Ostendorf AP, Gutmann DH, Weisenberg JL. Epilepsy in individuals with neurofibromatosis type 1. Epilepsia. 2013/09/17 ed. 2013;54(10):1810–4.

Google Scholar

Li W, Cui Y, Kushner SA, Brown RA, Jentsch JD, Frankland PW, et al. The HMG-CoA reductase inhibitor lovastatin reverses the learning and attention deficits in a mouse model of neurofibromatosis type 1. Curr Biol. 2005/11/08 ed. 2005;15(21):1961–7.

Google Scholar

Bagni C, Greenough WT. From mRNP trafficking to spine dysmorphogenesis: the roots of fragile X syndrome. Nat Rev Neurosci. 2005/04/30 ed. 2005;6(5):376–87.

Google Scholar

Coffee B, Keith K, Albizua I, Malone T, Mowrey J, Sherman SL, et al. Incidence of fragile X syndrome by newborn screening for methylated FMR1 DNA. Am J Hum Genet. 2009;85(4):503–14.

PubMedCentralCrossRefPubMedGoogle Scholar

Brown V, Jin P, Ceman S, Darnell JC, O’Donnell WT, Tenenbaum SA, et al. Microarray identification of FMRP-associated brain mRNAs and altered mRNA translational profiles in fragile X syndrome. Cell. 2001/11/24 ed. 2001;107(4):477–87.

Google Scholar

Tassone F, Hagerman PJ, Hagerman RJ. Fragile x premutation. J Neurodev Disord. 2014;6(1):22.

PubMedCentralCrossRefPubMedGoogle Scholar

Osterweil EK, Krueger DD, Reinhold K, Bear MF. Hypersensitivity to mGluR5 and ERK1/2 leads to excessive protein synthesis in the hippocampus of a mouse model of fragile X syndrome. J Neurosci. 2010/11/19 ed. 2010;30(46):15616–27.

Google Scholar

Qin M, Schmidt KC, Zametkin AJ, Bishu S, Horowitz LM, Burlin T V, et al. Altered cerebral protein synthesis in fragile X syndrome: studies in human subjects and knockout mice. J Cereb Blood Flow Metab. 2013/01/10 ed. 2013;33(4):499–507.

Google Scholar

Reiss AL, Abrams MT, Greenlaw R, Freund L, Denckla MB. Neurodevelopmental effects of the FMR-1 full mutation in humans. Nat Med. 1995/02/01 ed. 1995;1(2):159–67.

Google Scholar

Schapiro MB, Murphy DG, Hagerman RJ, Azari NP, Alexander GE, Miezejeski CM, et al. Adult fragile X syndrome: neuropsychology, brain anatomy, and metabolism. Am J Med Genet. 1995/12/18 ed. 1995;60(6):480–93.

Google Scholar

Huber KM, Gallagher SM, Warren ST, Bear MF. Altered synaptic plasticity in a mouse model of fragile X mental retardation. Proc Natl Acad Sci U S A. 2002/05/29 ed. 2002;99(11):7746–50.

Google Scholar

Bear MF, Huber KM, Warren ST. The mGluR theory of fragile X mental retardation. Trends Neurosci. 2004/06/29 ed. 2004;27(7):370–7.

Google Scholar

Krueger DD, Bear MF. Toward fulfilling the promise of molecular medicine in fragile X syndrome. Annu Rev Med. 2010/11/26 ed. 2010;62:411–29.

Google Scholar

Pop AS, Levenga J, de Esch CE, Buijsen RA, Nieuwenhuizen IM, Li T, et al. Rescue of dendritic spine phenotype in Fmr1 KO mice with the mGluR5 antagonist AFQ056/Mavoglurant. Psychopharmacol. 2012/12/21 ed. 2014;231(6):1227–35.

Google Scholar

Yan QJ, Rammal M, Tranfaglia M, Bauchwitz RP. Suppression of two major Fragile X Syndrome mouse model phenotypes by the mGluR5 antagonist MPEP. Neuropharmacology. 2005/08/02 ed. 2005;49(7):1053–66.

Google Scholar

Zhang J, Hou L, Klann E, Nelson DL. Altered hippocampal synaptic plasticity in the FMR1 gene family knockout mouse models. J Neurophysiol. 2009/02/27 ed. 2009;101(5):2572–80.

Google Scholar

Sharma A, Hoeffer CA, Takayasu Y, Miyawaki T, McBride SM, Klann E, et al. Dysregulation of mTOR signaling in fragile X syndrome. J Neurosci. 2010/01/15 ed. 2010;30(2):694–702.

Google Scholar

Niere F, Wilkerson JR, Huber KM. Evidence for a fragile X mental retardation protein-mediated translational switch in metabotropic glutamate receptor-triggered Arc translation and long-term depression. J Neurosci. 2012/04/28 ed. 2012;32(17):5924–36.

Google Scholar

Hoeffer CA, Sanchez E, Hagerman RJ, Mu Y, Nguyen D V, Wong H, et al. Altered mTOR signaling and enhanced CYFIP2 expression levels in subjects with fragile X syndrome. Genes Brain Behav. 2012/01/25 ed. 2012;11(3):332–41.

Google Scholar

Busquets-Garcia A, Gomis-Gonzalez M, Guegan T, Agustin-Pavon C, Pastor A, Mato S, et al. Targeting the endocannabinoid system in the treatment of fragile X syndrome. Nat Med. 2013/04/02 ed. 2013;19(5):603–7.

Google Scholar

Gross C, Bassell GJ. Excess protein synthesis in FXS patient lymphoblastoid cells can be rescued with a p110beta-selective inhibitor. Mol Med. 2011/12/31 ed. 2012;18:336–45.

Google Scholar

Kozinetz CA, Skender ML, MacNaughton N, Almes MJ, Schultz RJ, Percy AK, et al. Epidemiology of Rett syndrome: a population-based registry. Pediatrics. 1993;91(2):445–50.

PubMedGoogle Scholar

Amir RE, Van den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet. 1999/10/03 ed. 1999;23(2):185–8.

Google Scholar

Shahbazian MD, Sun Y, Zoghbi HY. Balanced X chromosome inactivation patterns in the Rett syndrome brain. Am J Med Genet. 2002/09/05 ed. 2002;111(2):164–8.

Google Scholar

Yasui DH, Xu H, Dunaway KW, Lasalle JM, Jin LW, Maezawa I. MeCP2 modulates gene expression pathways in astrocytes. Mol Autism. 2013/01/29 ed. 2013;4(1):3.

Google Scholar

Chen RZ, Akbarian S, Tudor M, Jaenisch R. Deficiency of methyl-CpG binding protein-2 in CNS neurons results in a Rett-like phenotype in mice. Nat Genet. 2001/03/10 ed. 2001;27(3):327–31.

Google Scholar

Kishi N, Macklis JD. Dissecting MECP2 function in the central nervous system. J Child Neurol. 2005/10/18 ed. 2005;20(9):753–9.

Google Scholar

Tognini P, Putignano E, Coatti A, Pizzorusso T. Experience-dependent expression of miR-132 regulates ocular dominance plasticity. Nat Neurosci. 2011/09/06 ed. 2011;14(10):1237–9.

Google Scholar

Lonze BE, Ginty DD. Function and regulation of CREB family transcription factors in the nervous system. Neuron. 2002/08/27 ed. 2002;35(4):605–23.

Google Scholar

Im HI, Hollander JA, Bali P, Kenny PJ. MeCP2 controls BDNF expression and cocaine intake through homeostatic interactions with microRNA-212. Nat Neurosci. 2010/08/17 ed. 2010;13(9):1120–7.

Google Scholar

Li Y, Wang H, Muffat J, Cheng AW, Orlando DA, Loven J, et al. Global transcriptional and translational repression in human-embryonic-stem-cell-derived Rett syndrome neurons. Cell Stem Cell. 2013/10/08 ed. 2013;13(4):446–58.

Google Scholar

Ricciardi S, Boggio EM, Grosso S, Lonetti G, Forlani G, Stefanelli G, et al. Reduced AKT/mTOR signaling and protein synthesis dysregulation in a Rett syndrome animal model. Hum Mol Genet. 2011/01/08 ed. 2011;20(6):1182–96.

Google Scholar

Dastidar SG, Bardai FH, Ma C, Price V, Rawat V, Verma P, et al. Isoform-specific toxicity of Mecp2 in postmitotic neurons: suppression of neurotoxicity by FoxG1. J Neurosci. 2012/02/24 ed. 2012;32(8):2846–55.

Google Scholar

Kolbeck R, Bartke I, Eberle W, Barde YA. Brain-derived neurotrophic factor levels in the nervous system of wild-type and neurotrophin gene mutant mice. J Neurochem. 1999/04/27 ed. 1999;72(5):1930–8.

Google Scholar

Chang Q, Khare G, Dani V, Nelson S, Jaenisch R. The disease progression of Mecp2 mutant mice is affected by the level of BDNF expression. Neuron. 2006/02/01 ed. 2006;49(3):341–8.

Google Scholar

Deng V, Matagne V, Banine F, Frerking M, Ohliger P, Budden S, et al. FXYD1 is an MeCP2 target gene overexpressed in the brains of Rett syndrome patients and Mecp2-null mice. Hum Mol Genet. 2007/02/21 ed. 2007;16(6):640–50.

Google Scholar

Deogracias R, Yazdani M, Dekkers MP, Guy J, Ionescu MC, Vogt KE, et al. Fingolimod, a sphingosine-1 phosphate receptor modulator, increases BDNF levels and improves symptoms of a mouse model of Rett syndrome. Proc Natl Acad Sci U S A. 2012/08/15 ed. 2012;109(35):14230–5.

Google Scholar

Schmid DA, Yang T, Ogier M, Adams I, Mirakhur Y, Wang Q, et al. A TrkB small molecule partial agonist rescues TrkB phosphorylation deficits and improves respiratory function in a mouse model of Rett syndrome. J Neurosci. 2012/02/04 ed. 2012;32(5):1803–10.

Google Scholar

Tropea D, Giacometti E, Wilson NR, Beard C, McCurry C, Fu DD, et al. Partial reversal of Rett Syndrome-like symptoms in MeCP2 mutant mice. Proc Natl Acad Sci U S A. 2009/02/12 ed. 2009;106(6):2029–34.

Google Scholar

Castro J, Garcia RI, Kwok S, Banerjee A, Petravicz J, Woodson J, et al. Functional recovery with recombinant human IGF1 treatment in a mouse model of Rett Syndrome. Proc Natl Acad Sci U S A. 2014/06/25 ed. 2014;111(27):9941–6.

Google Scholar

Khwaja OS, Ho E, Barnes K V, O’Leary HM, Pereira LM, Finkelstein Y, et al. Safety, pharmacokinetics, and preliminary assessment of efficacy of mecasermin (recombinant human IGF-1) for the treatment of Rett syndrome. Proc Natl Acad Sci U S A. 2014/03/14 ed. 2014;111(12):4596–601.

Google Scholar

Maki P, Veijola J, Jones PB, Murray GK, Koponen H, Tienari P, et al. Predictors of schizophrenia--a review. Br Med Bull. 2005/06/11 ed. 2005;73–74:1–15.

Google Scholar

Saha S, Chant D, Welham J, McGrath J. A systematic review of the prevalence of schizophrenia. PLoS Med. 2005/05/27 ed. 2005;2(5):e141.

Google Scholar

Karam CS, Ballon JS, Bivens NM, Freyberg Z, Girgis RR, Lizardi-Ortiz JE, et al. Signaling pathways in schizophrenia: emerging targets and therapeutic strategies. Trends Pharmacol Sci. 2010/06/29 ed. 2010;31(8):381–90.

Google Scholar

Barch DM, Ceaser A. Cognition in schizophrenia: core psychological and neural mechanisms. Trends Cogn Sci. 2011/12/16 ed. 2012;16(1):27–34.

Google Scholar

Rapoport JL, Giedd JN, Gogtay N. Neurodevelopmental model of schizophrenia: update 2012. Mol Psychiatry. 2012/04/11 ed. 2012;17(12):1228–38.

Google Scholar

Duan S, Gao R, Xing Q, Du J, Liu Z, Chen Q, et al. A family-based association study of schizophrenia with polymorphisms at three candidate genes. Neurosci Lett. 2005/04/09 ed. 2005;379(1):32–6.

Google Scholar

Stopkova P, Saito T, Papolos DF, Vevera J, Paclt I, Zukov I, et al. Identification of PIK3C3 promoter variant associated with bipolar disorder and schizophrenia. Biol Psychiatry. 2004/05/04 ed. 2004;55(10):981–8.

Google Scholar

Middleton FA, Pato CN, Gentile KL, McGann L, Brown AM, Trauzzi M, et al. Gene expression analysis of peripheral blood leukocytes from discordant sib-pairs with schizophrenia and bipolar disorder reveals points of convergence between genetic and functional genomic approaches. Am J Med Genet B Neuropsychiatr Genet. 2005/05/14 ed. 2005;136B(1):12–25.

Google Scholar

Rico B. Finding a druggable target for schizophrenia. Proc Natl Acad Sci U S A. 2012/07/11 ed. 2012;109(30):11902–3.

Google Scholar

Caren H, Fransson S, Ejeskar K, Kogner P, Martinsson T. Genetic and epigenetic changes in the common 1p36 deletion in neuroblastoma tumours. Br J Cancer. 2007/10/18 ed. 2007;97(10):1416–24.

Google Scholar

Fransson S, Martinsson T, Ejeskar K. Neuroblastoma tumors with favorable and unfavorable outcomes: Significant differences in mRNA expression of genes mapped at 1p36.2. Genes Chromosom Cancer. 2006/10/18 ed. 2007;46(1):45–52.

Google Scholar

Beaulieu JM, Gainetdinov RR. The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev. 2011/02/10 ed. 2011;63(1):182–217.

Google Scholar

Seeman P, Weinshenker D, Quirion R, Srivastava LK, Bhardwaj SK, Grandy DK, et al. Dopamine supersensitivity correlates with D2High states, implying many paths to psychosis. Proc Natl Acad Sci U S A. 2005/02/18 ed. 2005;102(9):3513–8.

Google Scholar

Ikeda M, Iwata N, Suzuki T, Kitajima T, Yamanouchi Y, Kinoshita Y, et al. Association of AKT1 with schizophrenia confirmed in a Japanese population. Biol Psychiatry. 2004/11/04 ed. 2004;56(9):698–700.

Google Scholar

Thiselton DL, Vladimirov VI, Kuo PH, McClay J, Wormley B, Fanous A, et al. AKT1 is associated with schizophrenia across multiple symptom dimensions in the Irish study of high density schizophrenia families. Biol Psychiatry. 2007/09/11 ed. 2008;63(5):449–57.

Google Scholar

Ryan MC, Collins P, Thakore JH. Impaired fasting glucose tolerance in first-episode, drug-naive patients with schizophrenia. Am J Psychiatry. 2003/02/04 ed. 2003;160(2):284–9.

Google Scholar

Harris LW, Guest PC, Wayland MT, Umrania Y, Krishnamurthy D, Rahmoune H, et al. Schizophrenia: metabolic aspects of aetiology, diagnosis and future treatment strategies. Psychoneuroendocrinology. 2012/10/23 ed. 2013;38(6):752–66.

Google Scholar

Lai WS, Xu B, Westphal KG, Paterlini M, Olivier B, Pavlidis P, et al. Akt1 deficiency affects neuronal morphology and predisposes to abnormalities in prefrontal cortex functioning. Proc Natl Acad Sci U S A. 2006/11/02 ed. 2006;103(45):16906–11.

Google Scholar

Peng L, Zhu D, Feng X, Dong H, Yue Q, Zhang J, et al. Paliperidone protects prefrontal cortical neurons from damages caused by MK-801 via Akt1/GSK3beta signaling pathway. Schizophr Res. 2013/04/16 ed. 2013;147(1):14–23.

Google Scholar

Selemon LD. A role for synaptic plasticity in the adolescent development of executive function. Transl Psychiatry. 2013/03/07 ed. 2013;3:e238.

Google Scholar

Lohmann C, Kessels HW. The developmental stages of synaptic plasticity. J Physiol. 2013/10/23 ed. 2014;592(Pt 1):13–31.

Google Scholar

Toro R, Konyukh M, Delorme R, Leblond C, Chaste P, Fauchereau F, et al. Key role for gene dosage and synaptic homeostasis in autism spectrum disorders. Trends Genet. 2010/07/09 ed. 2010;26(8):363–72.

Google Scholar

Penzes P, Cahill ME, Jones KA, VanLeeuwen JE, Woolfrey KM. Dendritic spine pathology in neuropsychiatric disorders. Nat Neurosci. 2011/02/25 ed. 2011;14(3):285–93.

Google Scholar

Bock HH, Jossin Y, Liu P, Forster E, May P, Goffinet AM, et al. Phosphatidylinositol 3-kinase interacts with the adaptor protein Dab1 in response to Reelin signaling and is required for normal cortical lamination. J Biol Chem. 2003/07/29 ed. 2003;278(40):38772–9.

Google Scholar

Acebes A, Morales M. At a PI3K crossroads: lessons from flies and rodents. Rev Neurosci. 2012/06/22 ed. 2012;23(1):29–37.

Google Scholar

Arendt KL, Royo M, Fernandez-Monreal M, Knafo S, Petrok CN, Martens JR, et al. PIP3 controls synaptic function by maintaining AMPA receptor clustering at the postsynaptic membrane. Nat Neurosci. 2009/12/17 ed. 2010;13(1):36–44.

Google Scholar

Jurado S, Benoist M, Lario A, Knafo S, Petrok CN, Esteban JA. PTEN is recruited to the postsynaptic terminal for NMDA receptor-dependent long-term depression. EMBO J. 2010/07/16 ed. 2010;29(16):2827–40.

Google Scholar

Sanna PP, Cammalleri M, Berton F, Simpson C, Lutjens R, Bloom FE, et al. Phosphatidylinositol 3-kinase is required for the expression but not for the induction or the maintenance of long-term potentiation in the hippocampal CA1 region. J Neurosci. 2002/04/30 ed. 2002;22(9):3359–65.

Google Scholar

Home - ClinicalTrials.gov [Internet]. [cited 2015 Sep 18]. Available from: https://www.clinicaltrials.gov/

Yang Q, Modi P, Newcomb T, Quéva C, Gandhi V. Idelalisib: First-in-Class PI3K Delta Inhibitor for the Treatment of Chronic Lymphocytic Leukemia, Small Lymphocytic Leukemia, and Follicular Lymphoma. Clin Cancer Res. 2015;21(7):1537–42.

CrossRefPubMedGoogle Scholar

Hoeffer CA, Klann E. mTOR signaling: at the crossroads of plasticity, memory and disease. Trends Neurosci. 2010;33(2):67–75.

PubMedCentralCrossRefPubMedGoogle Scholar

Published
2016-02-11
Section
Research Article