The Wnt/β-catenin pathway in human fibrotic-like diseases and its eligibility as a therapeutic target

  • Maria Enzo
  • Marco Rastrelli
  • Carlo Rossi
  • Uros Hladnik
  • Daniela Segat
Keywords: Wnt pathway, Adenomatous polyposis coli, Beta-catenin, Inflammatory factors, Fibrosis, Desmoid-like fibromatosis

Abstract

The canonical Wnt signaling pathway is involved in a variety of biological processes like cell proliferation, cell polarity, and cell fate determination. This pathway has been extensively investigated as its deregulation is linked to different diseases, including various types of cancer, skeletal defects, birth defect disorders (including neural tube defects), metabolic diseases, neurodegenerative disorders and several fibrotic diseases like desmoid tumors. In the "on state", beta-catenin, the key effector of Wnt signaling, enters the nucleus where it binds to the members of the TCF-LEF family of transcription factors and exerts its effect on gene transcription. Disease development can be caused by direct or indirect alterations of the Wnt/β-catenin signaling.

In the first case germline or somatic mutations of the Wnt components are associated to several diseases such as the familial adenomatous polyposis (FAP) - caused by germline mutations of the tumor suppressor adenomatous polyposis coli gene (APC) - and the desmoid-like fibromatosis, a sporadic tumor associated with somatic mutations of the β-catenin gene (CTNNB1).

In the second case, epigenetic modifications and microenvironmental factors have been demonstrated to play a key role in Wnt pathway activation. The natural autocrine Wnt signaling acts through agonists and antagonists competing for the Wnt receptors. Anomalies in this regulation, whichever is their etiology, are an important part in the pathogenesis of Wnt pathway linked diseases. An example is promoter hypermethylation of Wnt antagonists, such as SFRPs, that causes gene silencing preventing their function and consequently leading to the activation of the Wnt pathway. Microenvironmental factors, such as the extracellular matrix, growth factors and inflammatory mediators, represent another type of indirect mechanism that influence Wnt pathway activation. A favorable microenvironment can lead to aberrant fibroblasts activation and accumulation of ECM proteins with subsequent tissue fibrosis that can evolve in fibrotic disease or tumor.

Since the development and progression of several diseases is the outcome of the Wnt pathway cross-talk with other signaling pathways and inflammatory factors, it is important to consider not only direct inhibitors of the Wnt signaling pathway but also inhibitors of microenvironmental factors as promising therapeutic approaches for several tumors of fibrotic origin.

 

Downloads

Download data is not yet available.

References

Bafico A, Liu G, Goldin L, Harris V, Aaronson SA. An autocrine mechanism for constitutive Wnt pathway activation in human cancer cells. Cancer Cell. 2004;6:497–506.

PubMedCrossRefGoogle Scholar

Akiri G, Cherian MM, Vijayakumar S, Liu G, Bafico A, Aaronson SA. Wnt pathway aberrations including autocrine Wnt activation occur at high frequency in human non-small-cell lung carcinoma. Oncogene. 2009;28:2163–72.

PubMedCrossRefGoogle Scholar

Eisenmann DM. Wnt signaling. WormBook. 2005;25:1–17.

Google Scholar

Peifer M, Polakis P. Wnt signaling in oncogenesis and embryogenesis–a look outside the nucleus. Science. 2000;287:1606–9.

PubMedCrossRefGoogle Scholar

Hobmayer B, Rentzsch F, Kuhn K, Happel CM, von Laue CC, Snyder P, et al. WNT signalling molecules act in axis formation in the diploblastic metazoan Hydra. Nature. 2000;407:186–9.

PubMedCrossRefGoogle Scholar

Wodarz A, Nusse R. Mechanisms of Wnt signaling in development. Annu Rev Cell Dev Biol. 1998;14:59–88.

PubMedCrossRefGoogle Scholar

Komiya Y, Habas R. Wnt signal transduction pathways. Organogenesis. 2008;4:68–75.

PubMedCentralPubMedCrossRefGoogle Scholar

Semenov MV, Habas R, Macdonald BT, He X. SnapShot: noncanonical Wnt signaling pathways. Cell. 2007;131:1378.

PubMedCrossRefGoogle Scholar

Simons M, Mlodzik M. Planar cell polarity signaling: from fly development to human disease. Annu Rev Genet. 2008;42:517–40.

PubMedCentralPubMedCrossRefGoogle Scholar

Kikuchi A, Yamamoto H, Sato A. Selective activation mechanisms of Wnt signaling pathways. Trends Cell Biol. 2009;19:119–29.

PubMedCrossRefGoogle Scholar

Castanon I, Abrami L, Holtzer L, Heisenberg CP, van der Goot FG, González-Gaitán M. Anthrax toxin receptor 2a controls mitotic spindle positioning. Nat Cell Biol. 2013;15:28–39.

PubMedCrossRefGoogle Scholar

Wu J, Roman AC, Carvajal Gonzalez JM, Mlodzik M. Wg and Wnt4 provide long-range directional input to planar cell polarity orientation in Drosophila. Nat Cell Biol. 2013;15:1045–55.

PubMedCentralPubMedCrossRefGoogle Scholar

Zallen JA. Planar polarity and tissue morphogenesis. Cell. 2007;129:1051–63.

PubMedCrossRefGoogle Scholar

van Amerongen R. Alternative Wnt pathways and receptors. Cold Spring Harb Perspect Biol. 2012;1:4(10).

Google Scholar

Anastas JN, Moon RT. WNT signalling pathways as therapeutic targets in cancer. Nat Rev Cancer. 2013;13:11–26.

PubMedCrossRefGoogle Scholar

MacDonald BT, Tamai K, He X. Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell. 2009;17:9–26.

PubMedCentralPubMedCrossRefGoogle Scholar

Jamieson C, Sharma M, Henderson BR. Regulation of β-catenin nuclear dynamics by GSK-3β involves a LEF-1 positive feedback loop. Traffic. 2011;12:983–99.

PubMedCrossRefGoogle Scholar

He X, Semenov M, Tamai K, Zeng X. LDL receptor-related proteins 5 and 6 in Wnt/beta-catenin signaling: arrows point the way. Development. 2004;131:1663–77.

PubMedCrossRefGoogle Scholar

Gordon MD, Nusse R. Wnt signaling: multiple pathways, multiple receptors, and multiple transcription factors. J Biol Chem. 2006;281:22429–33.

PubMedCrossRefGoogle Scholar

Kimelman D, Xu W. beta-catenin destruction complex: insights and questions from a structural perspective. Oncogene. 2006;25:7482–91.

PubMedCrossRefGoogle Scholar

Huber AH, Weis WI. The structure of the -catenin/E-cadherin complex and the molecular basis of diverse ligand recognition by -catenin. Cell. 2001;105:391–402.

PubMedCrossRefGoogle Scholar

Xing Y, Clements WK, Kimelman D, Xu W. Crystal structure of a beta-catenin/axin complex suggests a mechanism for the beta-catenin destruction complex. Genes Dev. 2003;17:2753–64.

PubMedCentralPubMedCrossRefGoogle Scholar

Hart M, Concordet JP, Lassot I, Albert I, Del Los SR, Durand H, et al. The F-box protein beta-TrCP associates with phosphorylated beta-catenin and regulates its activity in the cell. Curr Biol. 1999;9:207–10.

PubMedCrossRefGoogle Scholar

Mao J, Wang J, Liu B, Pan W, Farr 3rd GH, Flynn C, et al. Low-density lipoprotein receptor-related protein-5 binds to Axin and regulates the canonical Wnt signaling pathway. Mol Cell. 2001;7:801–9.

PubMedCrossRefGoogle Scholar

Zeng X, Huang H, Tamai K, Zhang X, Harada Y, Yokota C, et al. Initiation of Wnt signaling: control of Wnt coreceptor Lrp6 phosphorylation/activation via frizzled, dishevelled and axin functions. Development. 2008;135:367–75.

PubMedCrossRefGoogle Scholar

Cong F, Varmus H. Nuclear-cytoplasmic shuttling of Axin regulates subcellular localization of beta-catenin. Proc Natl Acad Sci U S A. 2004;101:2882–7.

PubMedCentralPubMedCrossRefGoogle Scholar

Schwarz-Romond T, Metcalfe C, Bienz M. Dynamic recruitment of axin by Dishevelled protein assemblies. J Cell Sci. 2007;120:2402–12.

PubMedCrossRefGoogle Scholar

Reya T, Clevers H. Wnt signaling in stem cells and cancer. Nature. 2005;434:843–50.

PubMedCrossRefGoogle Scholar

van Amerongen R, Nusse R. Towards an integrated view of Wnt signalling in development. Development. 2009;136:3205–14.

PubMedCrossRefGoogle Scholar

Najdi R, Holcombe RF, Waterman ML. Wnt signaling and colon carcinogenesis: beyond APC. J Carcinog. 2011;17:10–5.

Google Scholar

Ring L, Neth P, Weber C, Steffens S, Faussner A. β-Catenin-dependent pathway activation by both promiscuous "canonical" WNT3a-, and specific "non canonical"WNT4- and WNT5a FZD receptor combinations with strong differences in LRP5 and LRP6 dependency. Cell Signal. 2014;26:260–7.

PubMedCrossRefGoogle Scholar

Logan CY, Nusse R. The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol. 2004;20:781–810.

PubMedCrossRefGoogle Scholar

Bhanot P, Brink M, Samos CH, Hsieh JC, Wang Y, Macke JP, et al. A new member of the frizzled family from Drosophila functions as a Wingless receptor. Nature. 1996;18:225–30.

CrossRefGoogle Scholar

Umbhauer M, Djiane A, Goisset C, Penzo-Méndez A, Riou JF, Boucaut JC, et al. The C-terminal cytoplasmic Lys-thr-X-X-X-Trp motif in frizzled receptors mediates Wnt/beta-catenin signalling. EMBO J. 2000;19:4944–54.

PubMedCentralPubMedCrossRefGoogle Scholar

Punchihewa C, Ferreira AM, Cassell R, Rodrigues P, Fujii N. Sequence requirement and subtype specificity in the high-affinity interaction between human frizzled and dishevelled proteins. Protein Sci. 2009;18:994–1002.

PubMedCentralPubMedCrossRefGoogle Scholar

Binnerts ME, Kim KA, Bright JM, Patel SM, Tran K, Zhou M, et al. R-Spondin1 regulates Wnt signaling by inhibiting internalization of LRP6. Proc Natl Acad Sci U S A. 2007;104:14700–5.

PubMedCentralPubMedCrossRefGoogle Scholar

Bilic J, Huang YL, Davidson G, Zimmermann T, Cruciat CM, Bienz M, et al. Wnt induces LRP6 signalosomes and promotes dishevelled-dependent LRP6 phosphorylation. Science. 2007;316:1619–22.

PubMedCrossRefGoogle Scholar

Angers S, Moon RT. Proximal events in Wnt signal transduction. Nat Rev Mol Cell Biol. 2009;10:468–77.

PubMedCrossRefGoogle Scholar

Chen S, Bubeck D, MacDonald BT, Liang WX, Mao JH, Malinauskas T, et al. Structural and functional studies of LRP6 ectodomain reveal a platform for Wnt signaling. Dev Cell. 2011;21:848–61.

PubMedCentralPubMedCrossRefGoogle Scholar

Chen J, Yan H, Ren DN, Yin Y, Li Z, He Q, et al. LRP6 dimerization through its LDLR domain is required for robust canonical Wnt pathway activation. Cell Signal. 2014;26:1068–74.

PubMedCrossRefGoogle Scholar

Wallingford JB, Habas R. The developmental biology of Dishevelled: an enigmatic protein governing cell fate and cell polarity. Development. 2005;132:4421–36.

PubMedCrossRefGoogle Scholar

Seifert JR, Mlodzik M. Frizzled/PCP signalling: a conserved mechanism regulating cell polarity and directed motility. Nat Rev Genet. 2007;8:126–38.

PubMedCrossRefGoogle Scholar

González-Sancho JM, Greer YE, Abrahams CL, Takigawa Y, Baljinnyam B, Lee KH, et al. Functional consequences of Wnt-induced dishevelled 2 phosphorylation in canonical and noncanonical Wnt signaling. J Biol Chem. 2013;288:9428–37.

PubMedCentralPubMedCrossRefGoogle Scholar

Grumolato L, Liu G, Mong P, Mudbhary R, Biswas R, Arroyave R, et al. Canonical and noncanonical Wnts use a common mechanism to activate completely unrelated coreceptors. Genes Dev. 2010;24:2517–30.

PubMedCentralPubMedCrossRefGoogle Scholar

Yanfeng WA, Berhane H, Mola M, Singh J, Jenny A, Mlodzik M. Functional dissection of phosphorylation of Disheveled in Drosophila. Dev Biol. 2011;360:132–42.

PubMedCentralPubMedGoogle Scholar

Price MA. CKI, there’s more than one: casein kinase I family members in Wnt and Hedgehog signaling. Genes Dev. 2006;20:399–410.

PubMedCrossRefGoogle Scholar

Sakanaka C, Williams LT. Functional domains of axin: importance of the C terminus as an oligomerization domain. J Biol Chem. 1999;274:14 090–3.

CrossRefGoogle Scholar

Fiedler M, Mendoza-Topaz C, Rutherford TJ, Mieszczanek J, Bienz M. Dishevelled interacts with the DIX domain polymerisation interface of Axin to interfere with its function in downregulating b-catenin. Proc Natl Acad Sci U S A. 2011;108:1937–42.

PubMedCentralPubMedCrossRefGoogle Scholar

Faux MC, Coates JL, Catimel B, Cody S, Clayton AH, Layton MJ, et al. Recruitment of Adenomatous polyposis coli and b-catenin to axin-puncta. Oncogene. 2008;27:5808–20.

PubMedCrossRefGoogle Scholar

Schwarz-Romond T, Merrifield C, Nichols BJ, Bienz M. The Wnt signalling effector Dishevelled forms dynamic protein assemblies rather than stable associations with cytoplasmic vesicles. J Cell Sci. 2005;118:5269–77.

PubMedCrossRefGoogle Scholar

Mendoza-Topaz C, Mieszczanek J, Bienz M. The Adenomatous polyposis coli tumour suppressor is essential for Axin complex assembly and function and opposes Axin's interaction with Dishevelled. Open Biol. 2011;3:110013.

CrossRefGoogle Scholar

Luo W, Zou H, Jin L, Lin S, Li Q, Ye Z, et al. Axin contains three separable domains that confer intramolecular, homodimeric, and heterodimeric interactions involved in distinct functions. J Biolo Chem. 2005;280:5054–60.

CrossRefGoogle Scholar

Schwarz-Romond T, Fiedler M, Shibata N, Butler PJ, Kikuchi A, Higuchi Y, et al. The DIX domain of Dishevelled confers Wnt signaling by dynamic polymerization. Nat Struct Mol Biol. 2007;14:484–92.

PubMedCrossRefGoogle Scholar

Behrens J, Jerchow BA, Wurtele M, Grimm J, Asbrand C, Wirtz R, et al. Functional interaction of an axin homolog, conductin, with β-catenin, APC, and GSK3b. Science. 1998;280:596–9.

PubMedCrossRefGoogle Scholar

Spink KE, Polakis P, Weis WI. Structural basis of the Axin–Adenomatous polyposis coli interaction. EMBO J. 2000;19:2270–9.

PubMedCentralPubMedCrossRefGoogle Scholar

Su Y, Fu C, Ishikawa S, Stella A, Kojima M, Shitoh K, et al. APC is essential for targeting phosphorylated beta-catenin to the SCF(beta-TrCP) ubiquitin ligase. Mol Cell. 2008;32:652–61.

PubMedCrossRefGoogle Scholar

Groden J, Thliveris A, Samowitz W, Carlson M, Gelbert L, Albertsen H, et al. Identification and characterization of the familial adenomatous polyposis coli gene. Cell. 1991;66:589–600.

PubMedCrossRefGoogle Scholar

Half E, Bercovich D, Rozen P. Familial adenomatous polyposis. Orphanet J Rare Dis. 2009;4:22.

PubMedCentralPubMedCrossRefGoogle Scholar

Schneikert J, Brauburger K, Behrens J. APC mutations in colorectal tumours from FAP patients are selected for CtBP-mediated oligomerization of truncated APC. Hum Mol Genet. 2011;20:3554–64.

PubMedCrossRefGoogle Scholar

Katsanis N, Fisher EM. A novel C-terminal binding protein (CTBP2) is closely related to CTBP1, an adenovirus E1A-binding protein, and maps to human chromosome 21q21.3. Genomics. 1998;47:294–9.

PubMedCrossRefGoogle Scholar

Cliffe A, Hamada F, Bienz M. A role of Dishevelled in relocating Axin to the plasma membrane during Wingless signaling. Curr Biol. 2003;13:960–6.

PubMedCrossRefGoogle Scholar

Valvezan AJ, Zhang F, Diehl JA, Klein PS. Adenomatous polyposis coli (APC) regulates multiple signaling pathways by enhancing glycogen synthase kinase-3 (GSK-3) activity. J Biol Chem. 2012;287:3823–32.

PubMedCentralPubMedCrossRefGoogle Scholar

Amit S, Hatzubai A, Birman Y, Andersen JS, Ben-Shushan E, Mann M, et al. Axin-mediated CKI phosphorylation of β-catenin at Ser 45: A molecular switch for the Wnt pathway. Genes Dev. 2002;16:1066–76.

PubMedCentralPubMedCrossRefGoogle Scholar

Liu C, Li Y, Semenov M, Han C, Baeg GH, Tan Y, et al. Control of β-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell. 2002;108:837–47.

PubMedCrossRefGoogle Scholar

Hino S, Michiue T, Asashima M, Kikuchi A. Casein kinase Iε enhances the binding of Dvl-1 to Frat-1 and is essential for Wnt-3a-induced accumulation of β-catenin. J Biol Chem. 2003;278:14066–73.

PubMedCrossRefGoogle Scholar

Davidson G, Wu W, Shen J, Bilic J, Fenger U, Stannek P, et al. Casein kinase 1γ couples Wnt receptor activation to cytoplasmic signal transduction. Nature. 2005;438:867–72.

PubMedCrossRefGoogle Scholar

Fodde R, Brabletz T. Wnt/beta-catenin signaling in cancer stemness and malignant behavior. Curr Opin Cell Biol. 2007;19:150–8.

PubMedCrossRefGoogle Scholar

Klaus A, Birchmeier W. Wnt signalling and its impact on development and cancer. Nat Rev Cancer. 2008;8:387–98.

PubMedCrossRefGoogle Scholar

Brown RL, Reinke LM, Damerow MS, Perez D, Chodosh LA, Yang J, et al. CD44 splice isoform switching in human and mouse epithelium is essential for epithelial-mesenchymal transition and breast cancer progression. J Clin Invest. 2011;121:1064–74.

PubMedCentralPubMedCrossRefGoogle Scholar

Dajani R, Fraser E, Roe SM, Yeo M, Good VM, Thompson V, et al. Structural basis for recruitment of glycogen synthase kinase 3beta to the axin-APC scaffold complex. EMBO J. 2003;22:494–501.

PubMedCentralPubMedCrossRefGoogle Scholar

Jope RS, Yuskaitis CJ, Beurel E. Glycogen synthase kinase-3 (GSK3): inflammation, diseases, and therapeutics. Neurochem Res. 2007;32:577–95.

PubMedCentralPubMedCrossRefGoogle Scholar

Rosenbluh J, Wang X, Hahn WC. Genomic insights into WNT/β-catenin signaling. Trends Pharmacol Sci. 2014;35:103–9.

PubMedCentralPubMedGoogle Scholar

Beyer C, Schramm A, Akhmetshina A, Dees C, Kireva T, Gelse K, et al. β-catenin is a central mediator of pro-fibrotic Wnt signaling in systemic sclerosis. Ann Rheum Dis. 2012;71:761–7.

PubMedCentralPubMedCrossRefGoogle Scholar

Conacci-Sorrell M, Zhurinsky J, Ben-Ze’ev A. The cadherin-catenin adhesion system in signaling and cancer. J Clin Invest. 2002;109:987–91.

PubMedCentralPubMedCrossRefGoogle Scholar

Jamieson C, Sharma M, Henderson BR. Targeting the β-catenin nuclear transport pathway in cancer. Semin Cancer Biol. 2014;27:20–9.

PubMedCrossRefGoogle Scholar

Huber AH, Nelson WJ, Weis WI. Three-dimensional structure of the armadillo repeat region of beta-catenin. Cell. 1997;90:871–82.

PubMedCrossRefGoogle Scholar

Xu W, Kimelman D. Mechanistic insights from structural studies of beta-catenin and its binding partners. J Cell Sci. 2007;120:3337–44.

PubMedCrossRefGoogle Scholar

Jiang J, Struhl G. Regulation of the Hedgehog and Wingless signalling pathways by the F-box/WD40-repeat protein Slimb. Nature. 1998;391:493–6.

PubMedCrossRefGoogle Scholar

Daugherty RL, Gottardi CJ. Phospho-regulation of Beta-catenin adhesion and signaling functions. Physiology. 2007;22:303–9.

PubMedCentralPubMedCrossRefGoogle Scholar

Clevers H, Nusse R. Wnt/β-catenin signaling and disease. Cell. 2012;149:1192–205.

PubMedCrossRefGoogle Scholar

Akhmetshina A, Palumbo K, Dees C, Bergmann C, Venalis P, Zerr P, et al. Activation of canonical Wnt signalling is required for TGF-β-mediated fibrosis. Nat Commun. 2012;13:3–735.

Google Scholar

Semënov MV, Zhang X, He X. DKK1 antagonizes Wnt signaling without promotion of LRP6 internalization and degradation. J Biol Chem. 2008;283:21427–32.

PubMedCentralPubMedCrossRefGoogle Scholar

Clevers H. Wnt/beta-catenin signaling in development and disease. Cell. 2006;127:469–80.

PubMedCrossRefGoogle Scholar

Guimier A, Ragazzon B, Assié G, Tissier F, Dousset B, Bertherat J, et al. AXIN genetic analysis in adrenocortical carcinomas updated. J Endocrinol Invest. 2013;36:1000–3.

PubMedGoogle Scholar

Lammi L, Arte S, Somer M, Jarvinen H, Lahermo P, Thesleff I, et al. Mutations in AXIN2 cause familial tooth agenesis and predispose to colorectal cancer. Am J Hum Genet. 2004;74:1043–50.

PubMedCentralPubMedCrossRefGoogle Scholar

Kahn M. Can we safely target the WNT pathway? Nat Rev Drug Discov. 2014;13:513–32.

PubMedCrossRefGoogle Scholar

Jin T. The WNT signalling pathway and diabetes mellitus. Diabetologia. 2008;51:1771–80.

PubMedCrossRefGoogle Scholar

Nishisho I, Nakamura Y, Miyoshi Y, Miki Y, Ando H, Horii A, et al. Mutations of chromosome 5q21 genes in FAP and colorectal cancer patients. Science. 1991;253:665–9.

PubMedCrossRefGoogle Scholar

Kinzler KW, Vogelstein B. Lessons from hereditary colorectal cancer. Cell. 1996;87:159–70.

PubMedCrossRefGoogle Scholar

Nieuwenhuis MH, Mathus-Vliegen LM, Slors FJ, Griffioen G, Nagengast FM, Schouten WR, et al. Genotype-phenotype correlations as a guide in the management of familial adenomatous polyposis. Clin Gastroenterol Hepatol. 2007;5:374–8.

PubMedCrossRefGoogle Scholar

Polakis P. The oncogenic activation of beta-catenin. Curr Opin Genet Dev. 1999;9:15–21.

PubMedCrossRefGoogle Scholar

Liu W, Dong X, Mai M, Seelan RS, Taniguchi K, Krishnadath KK, et al. Mutations in AXIN2 cause colorectal cancer with defective mismatch repair by activating beta-catenin/TCF signalling. Nat Genet. 2000;26:146–7.

PubMedCrossRefGoogle Scholar

Xie Q, Chen L, Shan X, Shan X, Tang J, Zhou F, et al. Epigenetic silencing of SFRP1 and SFRP5 by hepatitis B virus X protein enhances hepatoma cell tumorigenicity through Wnt signalling pathway. Int J Cancer. 2014;135:635–46.

PubMedCrossRefGoogle Scholar

Schiefer L, Visweswaran M, Perumal V, Arfuso F, Groth D, Newsholme P, et al. Epigenetic regulation of the secreted frizzled-related protein family in human glioblastoma multiforme. Cancer Gene Ther. 2014;21:297–303.

PubMedCrossRefGoogle Scholar

Stewart DJ, Chang DW, Ye Y, Spitz M, Lu C, Shu X, et al. Wnt signalling pathway pharmacogenetics in non-small cell lung cancer. Pharmacogenomics J. 2014;14:509–22.

PubMedCrossRefGoogle Scholar

Saito T, Mitomi H, Imamhasan A, Hayashi T, Mitani K, Takahashi M, et al. Downregulation of sFRP-2 by epigenetic silencing activates the β-catenin/Wnt signaling pathway in esophageal basaloid squamous cell carcinoma. Virchows Arch. 2014;464:135–43.

PubMedCrossRefGoogle Scholar

Schlange T, Matsuda Y, Lienhard S, Huber A, Hynes NE. Autocrine WNT signalling contributes to breast cancer cell proliferation via the canonical WNT pathway and EGFR transactivation. Breast Cancer Res. 2007;9:R63.

PubMedCentralPubMedCrossRefGoogle Scholar

Vijayakumar S, Liu G, Rus IA, Yao S, Chen Y, Akiri G, et al. High-frequency canonical Wnt activation in multiple sarcoma subtypes drives proliferation through a TCF/β-catenin target gene, CDC25A. Cancer Cell. 2011;19:601–12.

PubMedCentralPubMedCrossRefGoogle Scholar

Wynn TA. Cellular and molecular mechanisms of fibrosis. J Pathol. 2008;214:199–210.

PubMedCentralPubMedCrossRefGoogle Scholar

Kuraishy A, Karin M, Grivennikov SI. Tumor promotion via injury- and death-induced inflammation. Immunity. 2011;35:467–77.

PubMedCentralPubMedCrossRefGoogle Scholar

Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell. 2010;140:883–99.

PubMedCentralPubMedCrossRefGoogle Scholar

Widera D, Mikenberg I, Elvers M, Kaltschmidt C, Kaltschmidt B. Tumor necrosis factor alpha triggers proliferation of adult neural stem cells via IKK/NF-kappaB signaling. BMC Neurosci. 2006;20:7–64.

Google Scholar

Velnar T, Bailey T, Smrkolj V. The wound healing process: an overview of the cellular and molecular mechanisms. J Int Med Res. 2009;37:1528–42.

PubMedCrossRefGoogle Scholar

Van Linthout S, Miteva K, Tschöpe C. Crosstalk between fibroblasts and inflammatory cells. Cardiovasc Res. 2014;102:258–69.

PubMedCrossRefGoogle Scholar

Beurel E, Michalek SM, Jope RS. Innate and adaptive immune responses regulated by glycogen synthase kinase-3 (GSK3). Trends Immunol. 2010;31:24–31.

PubMedCentralPubMedCrossRefGoogle Scholar

Martin M, Rehani K, Jope RS, Michalek SM. Toll-like receptor-mediated cytokine production is differentially regulated by glycogen synthase kinase 3. Nat Immunol. 2005;6:777–84.

PubMedCentralPubMedCrossRefGoogle Scholar

Nava P, Koch S, Laukoetter MG, Lee WY, Kolegraff K, Capaldo CT, et al. Interferon-gamma regulates intestinal epithelial homeostasis through converging beta-catenin signaling pathways. Immunity. 2010;32:392–402.

PubMedCentralPubMedCrossRefGoogle Scholar

Dees C, Distler JH. Canonical Wnt signalling as a key regulator of fibrogenesis - implications for targeted therapies? Exp Dermatol. 2013;22:710–3.

PubMedCrossRefGoogle Scholar

Guo Y, Xiao L, Sun L, Liu F. Wnt/beta-catenin signaling: a promising new target for fibrosis diseases. Physiol Res. 2012;61:337–46.

PubMedGoogle Scholar

Lam AP, Gottardi CJ. β-catenin signaling: a novel mediator of fibrosis and potential therapeutic target. Curr Opin Rheumatol. 2011;23:562–7.

PubMedCentralPubMedCrossRefGoogle Scholar

Cheon SS, Cheah AY, Turley S, Nadesan P, Poon R, Clevers H, et al. beta-Catenin stabilization dysregulates mesenchymal cell proliferation, motility, and invasiveness and causes aggressive fibromatosis and hyperplastic cutaneous wounds. Proc Natl Acad Sci U S A. 2002;99:6973–8.

PubMedCentralPubMedCrossRefGoogle Scholar

Verjee LS, Verhoekx JS, Chan JK, Krausgruber T, Nicolaidou V, Izadi D, et al. Unraveling the signalling pathways promoting fibrosis in Dupuytren's disease reveals TNF as a therapeutic target. Proc Natl Acad Sci U S A. 2013;110:E928–37.

PubMedCentralPubMedCrossRefGoogle Scholar

Zhou B, Liu Y, Kahn M, Ann DK, Han A, Wang H, et al. Interactions between β-catenin and transforming growth factor-β signaling pathways mediate epithelial-mesenchymal transition and are dependent on the transcriptional co-activator cAMP-response element-binding protein (CREB)-binding protein (CBP). J Biol Chem. 2012;287:7026–38.

PubMedCentralPubMedCrossRefGoogle Scholar

Escobar C, Munker R, Thomas JO, Li BD, Burton GV. Update on desmoid tumors. Ann Oncol. 2012;23:562–9.

PubMedCrossRefGoogle Scholar

Cohen S, Ad-El D, Benjaminov O, Gutman H. Post-traumatic soft tissue tumors: case report and review of the literature a propos a post-traumatic paraspinaldesmoid tumor. World J Surg Oncol. 2008;6:28.

PubMedCentralPubMedCrossRefGoogle Scholar

Tejpar S, Nollet F, Li C, Wunder JS, Michils G, Dal Cin P, et al. Predominance of beta-catenin mutations and beta-catenin dysregulation in sporadic aggressive fibromatosis (desmoid tumor). Oncogene. 1999;18:6615–20.

PubMedCrossRefGoogle Scholar

Lazar AJ, Tuvin D, Hajibashi S, Habeeb S, Bolshakov S, Mayordomo-Aranda E, et al. Specific mutations in the beta-catenin gene (CTNNB1) correlate with local recurrence in sporadic desmoid tumors. Am J Pathol. 2008;173:1518–27.

PubMedCentralPubMedCrossRefGoogle Scholar

Meneghello C, Ousghir B, Rastrelli M, Anesi L, Sommariva A, Montesco MC, et al. Nuclear GSK-3β segregation in desmoid-type fibromatosis. Histopathology. 2013;62:1098–108.

PubMedCrossRefGoogle Scholar

Caspi M, Zilberberg A, Eldar-Finkelman H, Rosin-Arbesfeld R. Nuclear GSK-3beta inhibits the canonical Wnt signalling pathway in a beta-catenin phosphorylation-independent manner. Oncogene. 2008;27:3546–55.

PubMedCrossRefGoogle Scholar

Yook JI, Li XY, Ota I, Hu C, Kim HS, Kim NH, et al. A Wnt-Axin2-GSK3beta cascade regulates Snail1 activity in breast cancer cells. Nat Cell Biol. 2006;8:1398–406.

PubMedCrossRefGoogle Scholar

Locci P, Bellocchio S, Lilli C, Marinucci L, Cagini L, Baroni T, et al. Synthesis and secretion of transforming growth factor-b1 by human desmoid fibroblast cell line and its modulation by toremifene. J Interferon Cytokine Res. 2001;21:961–70.

PubMedCrossRefGoogle Scholar

Ferenc T, Stalińska L, Turant M, Sygut J, Tosik D, Dziki A, et al. Analysis of TGF-beta protein expression in aggressive fibromatosis (desmoid tumor). Pol J Pathol. 2006;57:77–81.

PubMedGoogle Scholar

Amini Nik S, Ebrahim RP, Van Dam K, Cassiman JJ, Tejpar S. TGFb modulates β-catenin stability and signaling in mesenchymal proliferations. Exp Cell Res. 2007;313:2887–95.

PubMedCrossRefGoogle Scholar

Mignemi NA, Itani DM, Fasig JH, Keedy VL, Hande KR, Whited BW, et al. Signal transduction pathway analysis in desmoid-type fibromatosis: transforming growth factor-β, COX2 and sex steroid receptors. Cancer Sci. 2012;103:2173–80.

PubMedCentralPubMedCrossRefGoogle Scholar

Khurana JS, Ogino S, Shen T, Parekh H, Scherbel U, DeLong W, et al. Bone morphogenetic proteins are expressed by both bone-forming and non-bone-forming lesions. Arch Pathol Lab Med. 2004;128:1267–9.

Google Scholar

Colombo C, Creighton CJ, Ghadimi MP, Bolshakov S, Warneke CL, Zhang Y, et al. Increased midkine expression correlates with desmoid tumour recurrence:a potential biomarker and therapeutic target. J Pathol. 2011;225:574–82.

PubMedCrossRefGoogle Scholar

Liegl B, Leithner A, Bauernhofer T, Windhager R, Guelly C, Regauer S, et al. Immunohistochemical and mutational analysis of PDGF and PDGFR in desmoid tumours: is there a role for tyrosine kinase inhibitors in c-kit-negative desmoid tumours? Histopathology. 2006;49:576–81.

PubMedCrossRefGoogle Scholar

Ishizuka M, Hatori M, Dohi O, Suzuki T, Miki Y, Tazawa C, et al. Expression profiles of sex steroid receptors in desmoid tumors. Tohoku J Exp Med. 2006;210:189–98.

PubMedCrossRefGoogle Scholar

Leithner A, Gapp M, Radl R, Pascher A, Krippl P, Leithner K, et al. Immunohistochemical analysis of desmoid tumours. J Clin Pathol. 2005;58:1152–6.

PubMedCentralPubMedCrossRefGoogle Scholar

Beyer C, Reichert H, Akan H, Mallano T, Schramm A, Dees C, et al. Blockade of canonical Wnt signalling ameliorates experimental dermal fibrosis. Ann Rheum Dis. 2013;72:1255–8.

PubMedCrossRefGoogle Scholar

Ren S, Johnson BG, Kida Y, Ip C, Davidson KC, Lin SL, et al. LRP-6 is a coreceptor for multiple fibrogenic signalling pathways in pericytes and myofibroblasts that are inhibited by DKK-1. Proc Natl Acad Sci U S A. 2013;110:1440–5.

PubMedCentralPubMedCrossRefGoogle Scholar

Huang SM, Mishina YM, Liu S, Cheung A, Stegmeier F, Michaud GA, et al. Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature. 2009;461:614–20.

PubMedCrossRefGoogle Scholar

Wang C, Zhu H, Sun Z, Xiang Z, Ge Y, Ni C, et al. Inhibition of Wnt/β-catenin signaling promotes epithelial differentiation of mesenchymal stem cells and repairs bleomycin-induced lung injury. Am J Physiol Cell Physiol. 2014;307:C234–44.

PubMedCrossRefGoogle Scholar

Lau Chan E, Callow M, Waaler J, Boggs J, Blake RA, Magnuson S, et al. A novel tankyrase small-molecule inhibitor suppresses APC mutation-driven colorectal tumor growth. Cancer Res. 2013;73:3132–44.

CrossRefGoogle Scholar

Abu-Baker A, Laganiere J, Gaudet R, Rochefort D, Brais B, Neri C, et al. Lithium chloride attenuates cell death in oculopharyngeal muscular dystrophy by perturbing Wnt/β-catenin pathway. Cell Death Dis. 2013;4:e821.

PubMedCentralPubMedCrossRefGoogle Scholar

Hu X, Paik PK, Chen J, Yarilina A, Kockeritz L, Lu TT, et al. IFN-γ suppresses IL-10 production and synergizes with TLR2 by regulating GSK3 and CREB/AP-1 proteins. Immunity. 2006;24:563–74.

PubMedCrossRefGoogle Scholar

Whittle BJ, Varga C, Posa A, Molnar A, Collin M, Thiemermann C. Reduction of experimental colitis in the rat by inhibitors of glycogen synthase kinase-3β. Br J Pharmacol. 2006;147:575–82.

PubMedCentralPubMedCrossRefGoogle Scholar

de Bree E, Zoras O, Hunt JL, Takes RP, Suárez C, Mendenhall WM, et al. Desmoid tumors of the head and neck: A therapeutic challenge. Head Neck. 2014;36:1517–26.

PubMedGoogle Scholar

Walczak BE, Rose PS. Desmoid: the role of local therapy in an era of systemic options. Curr Treat Options Oncol. 2013;3:465–73.

CrossRefGoogle Scholar

Bonvalot S, Ternès N, Fiore M, Bitsakou G, Colombo C, Honoré C, et al. Spontaneous regression of primary abdominal wall desmoid tumors: more common than previously thought. Ann Surg Oncol. 2013;20:4096–102.

PubMedCrossRefGoogle Scholar

Fiore M, Rimareix F, Mariani L, Domont J, Collini P, Le Péchoux C, et al. Desmoid-type fibromatosis: a front-line conservative approach to select patients for surgical treatment. Ann Surg Oncol. 2009;16:2587–93.

PubMedCrossRefGoogle Scholar

Lev D, Kotilingam D, Wei C, Ballo MT, Zagars GK, Pisters PW, et al. Optimizing treatment of desmoid tumors. J Clin Oncol. 2007;25:1785–91.

PubMedCrossRefGoogle Scholar

Ballo MT, Zagars GK, Pollack A, Pisters PW, Pollack RA. Desmoid tumor: prognostic factors and outcome after surgery, radiation therapy, or combined surgery and radiation therapy. J Clin Oncol. 1999;17:158–67.

PubMedGoogle Scholar

Melis M, Zager JS, Sondak VK. Multimodality management of desmoid tumors: how important is a negative surgical margin? J Surg Oncol. 2008;98:594–602.

PubMedCrossRefGoogle Scholar

Ballo MT, Zagars GK, Pollock RE, Benjamin RS, Feig BW, Cormier JN, et al. Retroperitoneal soft tissue sarcoma: an analysis of radiation and surgical treatment. Int J Radiat Oncol Biol Phys. 2007;67:158–63.

PubMedCrossRefGoogle Scholar

Janinis J, Patriki M, Vini L, Aravantinos G, Whelan JS. The pharmacological treatment of aggressive fibromatosis: a systematic review. Ann Oncol. 2003;14:181–90.

PubMedCrossRefGoogle Scholar

Leithner A, Schnack B, Katterschafka T, Wiltschke C, Amann G, Windhager R, et al. Treatment of extra-abdominal desmoid tumors with interferon-alpha with or without tretinoin. J Surg Oncol. 2000;73:21–5.

PubMedCrossRefGoogle Scholar

Poritz LS, Blackstein M, Berk T, Gallinger S, McLeod RS, Cohen Z. Extended follow-up of patients treated with cytotoxic chemotherapy for intra-abdominal desmoid tumors. Dis Colon Rectum. 2001;44:1268–73.

PubMedCrossRefGoogle Scholar

Penel N, Le Cesne A, Bui BN, Perol D, Brain EG, Ray-Coquard I, et al. Imatinib for progressive and recurrent aggressive fibromatosis (desmoid tumors): an FNCLCC/French Sarcoma Group phase II trial with a long-term follow-up. Ann Oncol. 2011;22:452–7.

PubMedCrossRefGoogle Scholar

Gounder MM, Lefkowitz RA, Keohan ML, D'Adamo DR, Hameed M, Antonescu CR, et al. Activity of Sorafenib against desmoid tumor/deep fibromatosis. Clin Cancer Res. 2011;17:4082–90.

PubMedCentralPubMedCrossRefGoogle Scholar

Mace J, Sybil Biermann J, Sondak V, McGinn C, Hayes C, Thomas D, et al. Response of extraabdominal desmoid tumors to therapy with imatinib mesylate. Cancer. 2002;95:2373–9.

PubMedCrossRefGoogle Scholar

Stabellini G, Balducci C, Lilli C, Marinucci L, Becchetti E, Carinci F, et al. Toremifene decreases type I, type II and increases type III receptors in desmoid and fibroma and inhibits TGFbeta1 binding in desmoid fibroblasts. Biomed Pharmacother. 2008;62:436–42.

PubMedCrossRefGoogle Scholar

Ghanbari-Azarnier R, Sato S, Wei Q, Al-Jazrawe M, Alman BA. Targeting stem cell behavior in desmoid tumors (aggressive fibromatosis) by inhibiting hedgehog signaling. Neoplasia. 2013;15:712–9.

PubMedCentralPubMedGoogle Scholar

Issakov J, Merimsky O, Gutman M, Kollender Y, Lev-Chelouche D, Abu-Abid S, et al. Hyperthermic isolated limb perfusion with tumor necrosis factor-alpha and melphalan in advanced soft-tissue sarcomas: histopathological considerations. Ann Surg Oncol. 2000;7:155–9.

PubMedCrossRefGoogle Scholar

Drouet A, Le Moigne F, Have L, Blondet R, Jacquin O, Chauvin F. Common peroneal nerve palsy following TNF-based isolated limb perfusion for irresectable extremity desmoid tumor. Orthop Traumatol Surg Res. 2009;95:639–44.

PubMedCrossRefGoogle Scholar

Bonvalot S, Rimareix F, Causeret S, Le Péchoux C, Boulet B, Terrier P, et al. Hyperthermic isolated limb perfusion in locally advanced soft tissue sarcoma and progressive desmoid-type fibromatosis with TNF 1 mg and melphalan (T1-M HILP) is safe and efficient. Ann Surg Oncol. 2009;16:3350–7.

PubMedCrossRefGoogle Scholar

Published
2019-02-07
Section
Review