Polymeric nanocarriers for the treatment of systemic iron overload

  • Jasmine Hamilton
  • Jayachandran Kizhakkedathu
Keywords: Iron overload, Iron chelation therapy, Iron chelators, Desferrioxamine, Deferiprone, Desferasirox, Nanomaterials, Polymeric chelators

Abstract

Desferrioxamine (DFO), deferiprone (L1) and desferasirox (ICL-670) are clinically approved iron chelators used to treat secondary iron overload. Although iron chelators have been utilized since the 1960s and there has been much improvement in available therapy, there is still the need for new drug candidates due to limited long-term efficacy and drug toxicity. Moreover, all currently approved iron chelators are of low molecular weight (MW) (<600 Da) and the objectives reported for the “ideal” chelator of low MW, including possessing the ability to promote iron excretion without causing toxic side effects, has proven difficult to realize in practice. With prolonged iron chelator use, patients may develop toxicities or become insensitive. In contrast, the limited research that has been geared towards developing higher MW, polymeric, long circulating iron chelators has shown promise. The inherent potential of polymeric iron chelators toward longer plasma half-lives and reduction in toxicity provides optimism and may be a significant addition to the currently available low MW iron chelators. This article reviews knowledge pertaining to this theme, highlights some unique advantages that these nanomedicines have in treating systemic iron overload as well as their potential utility in the treatment of other disease states.

Downloads

Download data is not yet available.

References

Crichton RR, Boelaert JR. Inorganic biochemistry of iron metabolism: from molecular mechanisms to clinical consequences. John Wiley & Sons; 2001.

Google Scholar

Wang J, Pantopoulos K. Regulation of cellular iron metabolism. Biochem J. 2011;434:365–81.

PubMedCentralCrossRefPubMedGoogle Scholar

Aisen P, Enns C, Wessling-Resnick M. Chemistry and biology of eukaryotic iron metabolism. Int J Biochem Cell Biol. 2001;33:940–59.

CrossRefPubMedGoogle Scholar

Aisen P, Leibman A, Zweier J. Stoichiometric and site characteristics of the binding of iron to human transferrin. J Biol Chem. 1978;253:1930–7.

PubMedGoogle Scholar

Frazer DM, Anderson GJ. The regulation of iron transport. Biofactors. 2014;40(2):206–14.

CrossRefPubMedGoogle Scholar

Chasteen ND, Harrison PM. Mineralization in ferritin: an efficient means of iron storage. J Struct Biol. 1999;126(3):182–94.

CrossRefPubMedGoogle Scholar

Kehrer JP. The Haber-Weiss reaction and mechanisms of toxicity. Toxicology. 2000;149(1):43–50.

CrossRefPubMedGoogle Scholar

Hoffbrand AV, Taher A, Capellini MD. How I treat transfusional iron overload. Blood. 2012;120:3657–69.

CrossRefPubMedGoogle Scholar

Adams RJ, Brambilla D. Discontinuing prophylactic transfusions used to prevent stroke in sickle cell disease. N Engl J Med. 2005;353(26):2769–78.

CrossRefPubMedGoogle Scholar

Hershko C, Link G, Konijn AM, Cabantchik ZI. Objectives and mechanisms of iron chelation therapy. Ann NYAcadSci. 2005;1054:124–35.

CrossRefGoogle Scholar

Hershko C, Graham G, Bates GW, Rachmilewitz EA. Non-specific serum iron in thalassaemia: an abnormal serum iron fraction of potential toxicity. Brit J Haematol. 1978;40:255–63.

CrossRefGoogle Scholar

Porter JB, Garbowski M. The pathophysiology of transfusional iron overload. Hematol Oncol Clin North Am. 2014;28(4):683–701.

CrossRefPubMedGoogle Scholar

Modell B, Khan M, Darlison M. Survival in beta-thalassaemia major in the UK: data from the UK Thalassaemia Register. Lancet. 2000;355:2051–2.

CrossRefPubMedGoogle Scholar

Brittenham GM. Iron-chelating therapy for transfusional iron overload. N Engl J Med. 2011;364:146–56.

PubMedCentralCrossRefPubMedGoogle Scholar

Morehouse LA, Thomas CE, Aust SD. Superoxide generation of NADPH-cytochrome P-450 reductase: the effect of iron chelators and the role of superoxide in microsomal lipid peroxidation. Arch Biochem Biophys. 1984;232(1):366–77.

CrossRefPubMedGoogle Scholar

Link G, Athias P, Grynberg A, Pinson A, Hershko C. Effect of iron loading on transmembrane potential, contraction and automaticity of rat ventricular muscle cells in culture. J Lab Clin Med. 1989;113:103–11.

PubMedGoogle Scholar

Borgna-Pignatti C, Rugolotto S, De Stefano P, Zhao H, Cappellini MD, Del Vecchio GC, et al. Survival and complications in patients with thalassemia major treated with transfusion and deferoxamine. Haematologica. 2004;89(10):1187–93.

PubMedGoogle Scholar

Zhou T, Ma Y, Kong X, Hider RC. Design of iron chelators with therapeutic applications. Dalton Trans. 2012;41:6371–89.

CrossRefPubMedGoogle Scholar

Lee P, Mohammed N, Marshall L, Abeysinghe AD, Hider RC, Porter JB, et al. Intravenous infusion pharmacokinetics of desferrioxamine in thalassemic patients. Drug Metabolism Distri. 1993;21(4):640–4.

Google Scholar

Porter JB, Faherty A, Stallibrass L, Brookman L, Hassan I, Howes C. A trial to investigate the relationship between DFO pharmacokinetics and metabolism and DFO-related toxicity. Annals NY Acad Sci. 1998;850(1):483–7.

CrossRefGoogle Scholar

Levine JE, Cohen A, MacQueen M, Martin M, Giardina PJ. Sensorimotor neurotoxicity associated with high-dose deferoxamine treatment. J Pediatr Hematol Oncol. 1997;19:139–41.

CrossRefPubMedGoogle Scholar

Kontoghiorghes GJ, Aldouri MA, Hoffbrand AV, Barr J, Wonke B, Kourouclaris T, et al. Effective chelation of iron in beta thalassaemia with the oral chelator 1,2-dimethyl-3-hydroxypyrid-4-one. Br Med J (Clin Res Ed). 1987;295(6612):1509.

CrossRefGoogle Scholar

Motekitis RJ, Martell AE. Stabilization of the iron (III) chelates of 1,2-dimethyl-3-hydroxypyrid-4-ones and related ligands. Inorg Chim Acta. 1991;183:71–80.

CrossRefGoogle Scholar

Rombos Y, Tzanetea R, Konstantopoulos K, Simitzis S, Zervas C, Kyriaki P, et al. Chelation therapy in patients with thalassemia using the orally active iron chelator deferiprone (L1). Haematologica. 2000;85(2):115–7.

PubMedGoogle Scholar

Hoffbrand AV, Cohen A, Hershko C. Role of deferiprone in chelation therapy for transfusional iron overload. Blood. 2003;102(1):17–24.

CrossRefPubMedGoogle Scholar

Cohen AR, Galanello R, Piga A, De Sanctis V, Tricta F. Safety and effectiveness of long-term therapy with the oral iron chelator deferiprone. Blood. 2003;102(5):1583–7.

CrossRefPubMedGoogle Scholar

Galanello R. Deferiprone in the treatment of transfusion-dependent thalassemia: a review and perspective. Ther Clin Risk Manag. 2007;3(5):795–805.

PubMedCentralPubMedGoogle Scholar

Hoffbrand AV, Faris AR, Davis B, Siritanakatkul N, Jackson BF, Cochrane J, et al. Long-term trial of deferiprone in 51 transfusion-dependent iron overloaded patients. Blood. 1998;91(1):295–300.

PubMedGoogle Scholar

Nisbet-Brown E, Olivieri NF, Giardina PJ, Grady RW, Neufeld EJ, Séchaud R, et al. Effectiveness and safety of ICL670 in iron-loaded patients with thalassaemia: a randomised, double-blind, placebo-controlled, dose-escalation trial. Lancet. 2003;61:1597–602.

CrossRefGoogle Scholar

Capellini MD. Iron-chelating therapy with the new oral agent ICL670 (Exjade®). Best Pract Res Clin Haematol. 2005;18(2):289–98.

CrossRefGoogle Scholar

Galanello R1, Piga A, Alberti D, Rouan MC, Bigler H, Séchaud R. Safety, tolerability, and pharmacokinetics of ICL-670, a new orally active iron-chelating agent in patients with transfusion-dependent iron overload due to B thalassemia. J Clin Pharmacol. 2003;43:565–72.

CrossRefPubMedGoogle Scholar

Gaboriau F, Leray AM, Ropert M, Gouffier L, Cannie I, Troadec MB, et al. Effects of deferasirox and deferiprone on cellular iron load in the human hepatoma cell line HepaRG. Biometals. 2010;23(2):231–45.

CrossRefPubMedGoogle Scholar

Wei HY, Yang CP, Cheng CH, Lo FS. Fanconi syndrome in a patient with B-thalassemia major after using desferasirox for 27 months. Transfusion. 2011;51:949–54.

CrossRefPubMedGoogle Scholar

Sánchez-González PD, López-Hernandez FJ, Morales AI, Macías-Nu˜nez JF, López-Novoa JM. Effects of deferasirox on renal function and renal epithelial cell death. Toxicol Lett. 2011;203:154–61.

CrossRefPubMedGoogle Scholar

Galanello R, Campus S, Origa R. Desferasirox: pharmacokinetics and clinical experience. Expert Opin Drug Metab Toxicol. 2012;8:123–34.

CrossRefPubMedGoogle Scholar

Yoshikawa T, Hara T, Araki H, Tsurumi H, Oyama M, Moriwaki H. First report of drug-induced esophagitis by deferasirox. Int J Hematol. 2012;95(6):689–91.

CrossRefPubMedGoogle Scholar

Kontoghiorghes GJ. A record number of fatalities in many categories of patients treated with deferasirox: loopholes in regulatory and marketing procedures undermine patient safety and misguide public funds? Expert Opin Drug Saf. 2013;12(5):605–9.

CrossRefPubMedGoogle Scholar

Riva A. Comment on: a record number of fatalities in many categories of patients treated with deferasirox: loopholes in regulatory and marketing procedures undermine patient safety and misguide public funds? Expert Opin Drug Saf. 2013;12(5):793–5.

PubMedCentralCrossRefPubMedGoogle Scholar

Maxton DG, Bjarnason I, Reynolds AP, Catt SD, Peters TJ, Menzies IS. Lactulose, 51Cr-labelled ethylenediaminetetra-acetate, L-rhamnose and polyethyleneglycol 400 [corrected] as probe markers for assessment in vivo of human intestinal permeability. Clin Sci. 1986;71(1):71–80.

CrossRefPubMedGoogle Scholar

Bergeron RJ, Wiegand J, Brittenham GM. HBED: the continuing development of a potential alternative to deferoxamine for iron-chelating therapy. Blood. 1999;93(1):370–5.

PubMedGoogle Scholar

Richardson DR, Ponka P. Pyridoxal isonicotinoyl hydrazone and its analogs: potential orally effective iron-chelating agents for the treatment of iron overload disease. J Lab Clin Med. 1998;131(4):306–15.

CrossRefPubMedGoogle Scholar

Neufeld EJ, Galanello R, Viprakasit V, Aydinok Y, Piga A, Harmatz P, et al. A phase 2 study of the safety, tolerability, and pharmacodynamics of FBS0701, a novel oral iron chelator, in transfusional iron overload. Blood. 2012;119(14):3263–8.

PubMedCentralCrossRefPubMedGoogle Scholar

Srichairatanakool S, Pangjit K, Phisalaphong C, Fucharoen S. Evaluation of a novel oral iron chelator 1-(N-acetyl-6-aminohexyl)-3-hydroxypyridin-4-one (CM1) for treatment of iron overload in mice. Advances Biosci Biotechnol. 2013;4:153.

CrossRefGoogle Scholar

Hallaway PE, Eaton JW, Panter SS, Hedlund BE. Modulation of deferoxamine toxicity and clearance by covalent attachment to biocompatible polymers. Proc Natl Acad Sci U S A. 1989;86:10108–12.

PubMedCentralCrossRefPubMedGoogle Scholar

Polomoscanik SC, Cannon CP, Neenan TX, Holmes-Farley SR, Mandeville WH, Dhal PK. Hydroxamic acid-containing hydrogels for nonabsorbed iron chelation therapy: synthesis, characterization, and biological evaluation. Biomacromolecules. 2005;6:2946–53.

CrossRefPubMedGoogle Scholar

Rossi NAA, Mustafa I, Jackson JK, Burt HM, Horte SA, Scott MD, et al. In vitro chelating, cytotoxicity, and blood compatibility of degradable poly (Ethylene glycol)-based macromolecular iron chelators. Biomaterials. 2009;30:638–48.

CrossRefPubMedGoogle Scholar

Harmatz P, Grady RW, Dragsten P, Vichinsky E, Giardina P, Madden J, et al. Phase Ib clinical trial of starch-conjugated deferoxamine (40SD02): a novel long-acting iron chelator. Br J Haematol. 2007;138(3):374–81.

CrossRefPubMedGoogle Scholar

Imran ul-haq M, Hamilton JL, Lai BF, Shenoi RA, Horte S, Constantinescu I, et al. Design of long circulating nontoxic dendritic polymers for the removal of iron in vivo. ACS Nano. 2013;7(12):10704–16.

CrossRefPubMedGoogle Scholar

Kainthan RK, Muliawan EB, Hatzikiriakos SG, Brooks DE. Synthesis, characterization and viscoelastic properties of high molecular weight hyperbranched polyglycerols. Macromolecules. 2006;39:7708–17.

CrossRefGoogle Scholar

Calderon M, Quadir MA, Sharma SK, Haag R. Dendritic polyglycerols for biomedical applications. Adv Mater. 2010;22(2):190–218.

CrossRefPubMedGoogle Scholar

Kainthan RK, Janzen J, Kizhakkedathu JN, Devine DV, Brooks DE. Hydrophobically derivatized hyperbranched polyglycerol as a human serum albumin substitute. Biomaterials. 2008;29(11):1693–704.

CrossRefPubMedGoogle Scholar

Chapanian R, Constantinescu I, Brooks DE, Scott MD, Kizhakkedathu JN. In vivo circulation, clearance, and biodistribution of polyglycerol grafted functional red blood cells. Biomaterials. 2012;33(10):3047–57.

CrossRefPubMedGoogle Scholar

Winston A, Varaprasad DV, Metterville JJ, Rosenkrantz H. Evaluation of polymeric hydroxamic acid iron chelators for treatment of iron overload. J Pharmacol Exp Ther. 1985;232:644–9.

PubMedGoogle Scholar

Zhou T, Kong XL, Liu ZD, Liu DY, Hider RC. Synthesis and iron (III)-chelating properties of novel 3-hydroxypyridin-4-one hexadentate ligand-containing copolymers. Biomacromolecules. 2008;9:1372–80.

CrossRefPubMedGoogle Scholar

Zhou T, Neubert H, Liu DY, Liu ZD, Ma YM, Kong XL, et al. Iron binding dendrimers: a novel approach for the treatment of haemochromatosis. J Med Chem. 2006;49:4171–82.

CrossRefPubMedGoogle Scholar

Young SP, Baker E, Huehns ER. 1979 Liposome entrapped desferrioxamine and iron transporting ionophores: a new approach to iron chelation therapy. Br J Haematol. 1979;41:357–63.

CrossRefPubMedGoogle Scholar

Breuer W, Ronson A, Slotki IN, Abramov A, Hershko C, Cabantchik ZI. The assessment of serum nontransferrin-bound iron in chelation therapy and iron supplementation. Blood. 2000;95(9):2975–82.

PubMedGoogle Scholar

Maclean KH, Cleveland JL, Porter JB. Cellular zinc content is a major determinant of iron chelator–induced apoptosis of thymocytes. Blood. 2001;98:3831–9.

CrossRefPubMedGoogle Scholar

Cooper CE, Lynagh GR, Hoyes KP, Hider RC, Cammack R, Porter JB. The relationship of intracellular iron chelation to the inhibition and regeneration of human ribonucleotide reductase. J Biol Chem. 1996;271(34):20291–9.

CrossRefPubMedGoogle Scholar

Whitnall M, Howard J, Ponka P, Richardson DR. A class of iron chelators with a wide spectrum of potent antitumor activity that overcomes resistance to chemotherapeutics. Proc Natl Acad Sci U S A. 2006;103(40):14901–6.

PubMedCentralCrossRefPubMedGoogle Scholar

Bergan T, Klaveness J, Aasen AJ. Chelating agents. Chemotherapy. 2000;47(1):10–4.

CrossRefGoogle Scholar

Whitnall M, Richardson DR. Iron: a new target for pharmacological intervention in neurodegenerative diseases. Semin Pediatr Neurol. 2006;13(3):186–97.

CrossRefPubMedGoogle Scholar

Gordeuk VR, Thuma PE, Brittenham GM, Zulu S, Simwanza G, Mhangu A, et al. Iron chelation with desferrioxamine-B in adults with asymptomatic Plasmodium-falciparum parasitemia. Blood. 1992;79(2):308–12.

PubMedGoogle Scholar

Debebe Z, Ammosova T, Jerebtsova M, Kurantsin-Mills J, Niu X, Charles S, et al. Iron chelators ICL670 and 311 inhibit HIV-1 transcription. Virology. 2007;367(2):324–33.

PubMedCentralCrossRefPubMedGoogle Scholar

Fox ME, Szoka FC, Fréchet JMJ. Soluble polymer carriers for the treatment of cancer: the importance of polymer architecture. Acc Chem Res. 2009;42(8):1141–51.

PubMedCentralCrossRefPubMedGoogle Scholar

Published
2019-02-07
Section
Review