Interleukin 20 regulates dendritic cell migration and expression of co-stimulatory molecules

  • Rikke Bech
  • Babak Jalilian
  • Ralf Agger
  • Lars Iversen
  • Mogens Erlandsen
  • Kristian Otkjaer
  • Claus Johansen
  • Søren Paludan
  • Carina Rosenberg
  • Knud Kragballe
  • Thomas Vorup-Jensen
Keywords: Dendritic cells, Psoriasis, Interleukin (IL)-20, CD18 integrins, Cell migration

Abstract

Abstract Background

Psoriasis is an inflammatory disease characterized by leukocyte skin infiltration. Interestingly, recent works suggest that the migration of dendritic cells (DCs) is abnormal in psoriatic skin. DCs have significant role in regulating the function of T lymphocytes, at least in part influenced by the local environment of cytokines. In psoriatic skin lesions the expression of IL-20 is highly up-regulated. It is unclear if this cytokine has any influence on DCs.

Methods

Here, we investigated the influence of IL-20 in monocyte-derived dendritic cell (MDDCs) in vitro. This work addressed IL-20 effects on DC maturation, receptor expression and signaling. By use of extra cellular matrix components mimicking the skin environment, we also studied the functional effects of IL-20 on the chemotactic migration of DCs. Based on the recent finding that CD18 integrin are shed during migration of myeloid leukocytes, the concentration of these adhesion molecules was measured in MDDCs culture supernatants post migration.

Results

Following stimulation with IL-20, immature human MDDCs enhanced the expression of the co-stimulatory molecule CD86, further enabling activation of the p38 MAPK, but not the STAT3, pathway. IL-20 increased the migration of MDDCs in a biphasic response narrowly controlled by the interleukin concentration. A concomitant change in the shedding of CD18 integrins suggested that these adhesion molecules play a role in the migration of the MDDCs through the extracellular matrix layer.

Downloads

Download data is not yet available.

References

Ouyang W, Rutz S, Crellin NK, Valdez PA, Hymowitz SG. Regulation and functions of the IL-10 family of cytokines in inflammation and disease. Annu Rev Immunol. 2011;29:71–109. doi: 10.1146/annurev-immunol-031210-101312.

CrossRefPubMedGoogle Scholar

Sabat R, Philipp S, Hoflich C, Kreutzer S, Wallace E, Asadullah K, et al. Immunopathogenesis of psoriasis. Exp Dermatol. 2007;16(10):779–98. doi: 10.1111/j.1600-0625.2007.00629.x.

CrossRefPubMedGoogle Scholar

Kragstrup TW, Otkjaer K, Holm C, Jorgensen A, Hokland M, Iversen L, et al. The expression of IL-20 and IL-24 and their shared receptors are increased in rheumatoid arthritis and spondyloarthropathy. Cytokine. 2008;41(1):16–23. doi: 10.1016/j.cyto.2007.10.004.

CrossRefPubMedGoogle Scholar

Blumberg H, Conklin D, Xu WF, Grossmann A, Brender T, Carollo S, et al. Interleukin 20: discovery, receptor identification, and role in epidermal function. Cell. 2001;104(1):9–19. S0092-8674(01)00187-8.

CrossRefPubMedGoogle Scholar

Stenderup K, Rosada C, Worsaae A, Dagnaes-Hansen F, Steiniche T, Hasselager E, et al. Interleukin-20 plays a critical role in maintenance and development of psoriasis in the human xenograft transplantation model. Br J Dermatol. 2009;160(2):284–96. doi: 10.1111/j.1365-2133.2008.08890.x.

CrossRefPubMedGoogle Scholar

Wolk K, Witte K, Witte E, Proesch S, Schulze-Tanzil G, Nasilowska K, et al. Maturing dendritic cells are an important source of IL-29 and IL-20 that may cooperatively increase the innate immunity of keratinocytes. J Leukoc Biol. 2008;83(5):1181–93. doi: 10.1189/jlb.0807525.

CrossRefPubMedGoogle Scholar

Bech R, Otkjaer K, Birkelund S, Vorup-Jensen T, Agger R, Johansen C, et al. Interleukin 20 protein locates to distinct mononuclear cells in psoriatic skin. Exp Dermatol. 2014;23(5):349–52. doi: 10.1111/exd.12371.

CrossRefPubMedGoogle Scholar

Chamian F, Lowes MA, Lin SL, Lee E, Kikuchi T, Gilleaudeau P, et al. Alefacept reduces infiltrating T cells, activated dendritic cells, and inflammatory genes in psoriasis vulgaris. Proc Natl Acad Sci U S A. 2005;102(6):2075–80. doi: 10.1073/pnas.0409569102.

PubMedCentralCrossRefPubMedGoogle Scholar

Cumberbatch M, Singh M, Dearman RJ, Young HS, Kimber I, Griffiths CE. Impaired Langerhans cell migration in psoriasis. J Exp Med. 2006;203(4):953–60. doi: 10.1084/jem.20052367.

PubMedCentralCrossRefPubMedGoogle Scholar

Shaw FL, Kimber I, Begum R, Cumberbatch M, Dearman RJ, Griffiths CE. No impairment of monocyte-derived Langerhans cell phenotype or function in early-onset psoriasis. Clin Exp Dermatol. 2011. doi: 10.1111/j.1365-2230.2011.04172.x.

PubMedGoogle Scholar

Springer TA. Adhesion receptors of the immune system. Nature. 1990;346(6283):425–34. doi: 10.1038/346425a0.

CrossRefPubMedGoogle Scholar

Talamonti M, Spallone G, Di Stefani A, Costanzo A, Chimenti S. Efalizumab. Expert Opin Drug Saf. 2011;10(2):239–51. doi: 10.1517/14740338.2011.524925.

CrossRefPubMedGoogle Scholar

Gjelstrup LC, Boesen T, Kragstrup TW, Jorgensen A, Klein NJ, Thiel S, et al. Shedding of large functionally active CD11/CD18 Integrin complexes from leukocyte membranes during synovial inflammation distinguishes three types of arthritis through differential epitope exposure. J Immunol. 2010;185(7):4154–68. doi: 10.4049/jimmunol.1000952.

CrossRefPubMedGoogle Scholar

Kragstrup TW, Jalilian B, Hvid M, Kjaergaard A, Ostgard R, Schiottz-Christensen B, et al. Decreased plasma levels of soluble CD18 link leukocyte infiltration with disease activity in spondyloarthritis. Arthritis Res Ther. 2014;16(1):R42. doi: 10.1186/ar4471.

PubMedCentralCrossRefPubMedGoogle Scholar

Evans BJ, McDowall A, Taylor PC, Hogg N, Haskard DO, Landis RC. Shedding of lymphocyte function-associated antigen-1 (LFA-1) in a human inflammatory response. Blood. 2006;107(9):3593–9. doi: 10.1182/blood-2005-09-3695.

CrossRefPubMedGoogle Scholar

Zen K, Guo YL, Li LM, Bian Z, Zhang CY, Liu Y. Cleavage of the CD11b extracellular domain by the leukocyte serprocidins is critical for neutrophil detachment during chemotaxis. Blood. 2011;117(18):4885–94. doi: 10.1182/blood-2010-05-287722.

PubMedCentralCrossRefPubMedGoogle Scholar

Zhang X, Zhan D, Shin HY. Integrin subtype-dependent CD18 cleavage under shear and its influence on leukocyte-platelet binding. J Leukoc Biol. 2013;93(2):251–8. doi: 10.1189/jlb.0612302.

CrossRefPubMedGoogle Scholar

Valentina M, Jan F, Peder NL, Bo Z, Hongjie D, Pernille K. Cytokine detection and simultaneous assessment of rheumatoid factor interference in human serum and synovial fluid using high-sensitivity protein arrays on plasmonic gold chips. BMC Biotechnol. 2015;15:73. doi: 10.1186/s12896-015-0186-0.

PubMedCentralCrossRefPubMedGoogle Scholar

Otkjaer K, Kragballe K, Funding AT, Clausen JT, Noerby PL, Steiniche T, et al. The dynamics of gene expression of interleukin-19 and interleukin-20 and their receptors in psoriasis. Br J Dermatol. 2005;153(5):911–8. doi: 10.1111/j.1365-2133.2005.06800.x.

CrossRefPubMedGoogle Scholar

Nielsen GK, Vorup-Jensen T. Detection of Soluble CR3 (CD11b/CD18) by Time-Resolved Immunofluorometry. Methods Mol Biol. 2014;1100:355–64. doi: 10.1007/978-1-62703-724-2_30.

CrossRefPubMedGoogle Scholar

Jackman RP, Balamuth F, Bottomly K. CTLA-4 differentially regulates the immunological synapse in CD4 T cell subsets. J Immunol. 2007;178(9):5543–51. 178/9/5543.

CrossRefPubMedGoogle Scholar

Moresco EM, LaVine D, Beutler B. Toll-like receptors. Curr Biol. 2011;21(13):R488–93. doi: 10.1016/j.cub.2011.05.039.

CrossRefPubMedGoogle Scholar

Murray PJ. Understanding and exploiting the endogenous interleukin-10/STAT3-mediated anti-inflammatory response. Curr Opin Pharmacol. 2006;6(4):379–86. doi: 10.1016/j.coph.2006.01.010.

CrossRefPubMedGoogle Scholar

Wang W, Zhu J, Springer TA, Luo BH. Tests of integrin transmembrane domain homo-oligomerization during integrin ligand binding and signaling. J Biol Chem. 2011;286(3):1860–7. doi: 10.1074/jbc.M110.193797.

PubMedCentralCrossRefPubMedGoogle Scholar

Xie C, Zhu J, Chen X, Mi L, Nishida N, Springer TA. Structure of an integrin with an alphaI domain, complement receptor type 4. EMBO J. 2010;29(3):666–79. doi: 10.1038/emboj.2009.367.

PubMedCentralCrossRefPubMedGoogle Scholar

Bhatia S, Edidin M, Almo SC, Nathenson SG. B7-1 and B7-2: similar costimulatory ligands with different biochemical, oligomeric and signaling properties. Immunol Lett. 2006;104(1-2):70–5. doi: 10.1016/j.imlet.2005.11.019.

CrossRefPubMedGoogle Scholar

Oehler L, Majdic O, Pickl WF, Stockl J, Riedl E, Drach J, et al. Neutrophil granulocyte-committed cells can be driven to acquire dendritic cell characteristics. J Exp Med. 1998;187(7):1019–28.

PubMedCentralCrossRefPubMedGoogle Scholar

Tohyama M, Hanakawa Y, Shirakata Y, Dai X, Yang L, Hirakawa S, et al. IL-17 and IL-22 mediate IL-20 subfamily cytokine production in cultured keratinocytes via increased IL-22 receptor expression. Eur J Immunol. 2009. doi: 10.1002/eji.200939473.

PubMedGoogle Scholar

Nagalakshmi ML, Murphy E, McClanahan T, de Waal Malefyt R. Expression patterns of IL-10 ligand and receptor gene families provide leads for biological characterization. Int Immunopharmacol. 2004;4(5):577–92. doi: 10.1016/j.intimp.2004.01.007.

CrossRefPubMedGoogle Scholar

Chen WY, Cheng BC, Jiang MJ, Hsieh MY, Chang MS. IL-20 is expressed in atherosclerosis plaques and promotes atherosclerosis in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol. 2006;26(9):2090–5. doi: 10.1161/01.ATV.0000232502.88144.6f.

CrossRefPubMedGoogle Scholar

Hsu YH, Li HH, Hsieh MY, Liu MF, Huang KY, Chin LS, et al. Function of interleukin-20 as a proinflammatory molecule in rheumatoid and experimental arthritis. Arthritis Rheum. 2006;54(9):2722–33. doi: 10.1002/art.22039.

CrossRefPubMedGoogle Scholar

Logsdon NJ, Deshpande A, Harris BD, Rajashankar KR, Walter MR. Structural basis for receptor sharing and activation by interleukin-20 receptor-2 (IL-20R2) binding cytokines. Proc Natl Acad Sci U S A. 2012;109(31):12704–9. doi: 10.1073/pnas.1117551109.

PubMedCentralCrossRefPubMedGoogle Scholar

Gomez IG, Tang J, Wilson CL, Yan W, Heinecke JW, Harlan JM, et al. Metalloproteinase-mediated Shedding of Integrin beta2 promotes macrophage efflux from inflammatory sites. J Biol Chem. 2012;287(7):4581–9. doi: 10.1074/jbc.M111.321182.

PubMedCentralCrossRefPubMedGoogle Scholar

Vorup-Jensen T. On the roles of polyvalent binding in immune recognition: perspectives in the nanoscience of immunology and the immune response to nanomedicines. Adv Drug Deliv Rev. 2012;64(15):1759–81. doi: 10.1016/j.addr.2012.06.003.

CrossRefPubMedGoogle Scholar

Vaisar T, Kassim SY, Gomez IG, Green PS, Hargarten S, Gough PJ, et al. MMP-9 sheds the beta2 integrin subunit (CD18) from macrophages. Mol Cell Proteomics. 2009;8(5):1044–60. doi: 10.1074/mcp.M800449-MCP200.

PubMedCentralCrossRefPubMedGoogle Scholar

Published
2016-02-27
Section
Research Article

Most read articles by the same author(s)