Human lung telocytes could promote the proliferation and angiogenesis of human pulmonary microvascular endothelial cells in vitro
Abstract
BackgroundIn the previous studies, telocytes were found near the capillaries in many tissues, especially on the extracellular matrix of blood vessels and positive to CD34 and c-kit. Therefore, the present study aimed to explore if telocytes could produce angiogenesis associated cytokines, promote the proliferation and the angiogenesis of vascular endothelial cells in vitro.
MethodsHuman lung telocytes were isolated and cultured, and were identified by immunofluorescence cytochemistry with CD34, c-kit and vimentin. Telocytes conditional media (TCM) was prepared, and the expressions of angiogenesis associated cytokines in TCM were detected by ELISA. Human pulmonary microvascular endothelial cells (HPMECs) were cultured with DMEM media or TCM for 72 hours. The proliferation of HPMECs was continuously detected with CCK-8 kit at an interval of 12 hours. HPMECs were also injured by lipopolysaccharide, and cultured with TCM and DMEM respectively, and the tube formation capacity was detected.
ResultsTelocytes were positive for CD34, c-kit and vimentin. The expressions of VEGF and EGF in TCM were significantly higher, the proliferation of HPMECs cultured with TCM significantly increased, and the tube formation of HPMECs injured by endotoxin was improved with the culture of TCM, as compared with the culture of DMEM.
ConclusionThe present study provides the evidence that human lung telocytes could produce the growth factors, such as VEGF and EGF. Telocytes conditional media induced the proliferation of pulmonary endothelial cells and prevented from endotoxin-induced compromise of pulmonary endothelial angiogenesis.
Downloads
References
Hinescu ME, Popescu LM: Interstitial Cajal-like cells (ICLC) in human atrial myocardium. J Cell Mol Med. 2005, 9 (4): 972-975.
CrossRefPubMedGoogle Scholar
Popescu LM, Faussone-Pellegrini MS: TELOCYTES - a case of serendipity: the winding way from Interstitial Cells of Cajal (ICC), via Interstitial Cajal-Like Cells (ICLC) to TELOCYTES. J Cell Mol Med. 2010, 14 (4): 729-740.
PubMedCentralCrossRefPubMedGoogle Scholar
Gherghiceanu M, Popescu LM: Cardiomyocyte precursors and telocytes in epicardial stem cell niche: electron microscope images. J Cell Mol Med. 2010, 14 (4): 871-877.
PubMedCentralCrossRefPubMedGoogle Scholar
Popescu LM, Manole CG, Gherghiceanu M: Telocytes in human epicardium. J Cell Mol Med. 2010, 14 (8): 2085-2093.
PubMedCentralCrossRefPubMedGoogle Scholar
Gherghiceanu M, Manole CG, Popescu LM: Telocytes in endocardium: electron microscope evidence. J Cell Mol Med. 2010, 14 (9): 2330-2334.
PubMedCentralCrossRefPubMedGoogle Scholar
Zheng Y, Li H, Manole CG, Sun A, Ge J, Wang X: Telocytes in trachea and lungs. J Cell Mol Med. 2011, 15 (10): 2262-2268.
PubMedCentralCrossRefPubMedGoogle Scholar
Zheng Y, Manole CG, Bai C, Wang X: Telocyte morphologies and potential roles in diseases. J Cell Physiol. 2012, 227 (6): 2311-2317.
CrossRefPubMedGoogle Scholar
Popescu LM, Gherghiceanu M, Suciu LC, Manole CG, Hinescu ME: Telocytes and putative stem cells in the lungs: electron microscopy, electron tomography and laser scanning microscopy. Cell Tissue Res. 2011, 345 (3): 391-403.
PubMedCentralCrossRefPubMedGoogle Scholar
Cantarero CI, Luesma BMJ, Junquera EC: Identification of telocytes in the lamina propria of rat duodenum: transmission electron microscopy. J Cell Mol Med. 2011, 15 (1): 26-30.
CrossRefGoogle Scholar
Popescu LM, Ciontea SM, Cretoiu D: Interstitial Cajal-like cells in human uterus and fallopian tube. Ann N Y Acad Sci. 2007, 1101: 139-165.
CrossRefPubMedGoogle Scholar
Gevaert T, De Vos R, Everaerts W: Characterization of upper lamina propria interstitial cells in bladders from patients with neurogenic detrusor overactivity and bladder pain syndrome. J Cell Mol Med. 2011, 15 (12): 2586-2593.
PubMedCentralCrossRefPubMedGoogle Scholar
Popescu LM, Manole E, Serboiu CS: Identification of telocytes in skeletal muscle interstitium: implication for muscle regeneration. J Cell Mol Med. 2011, 15 (6): 1379-1392.
PubMedCentralCrossRefPubMedGoogle Scholar
Bojin FM, Gavriliuc OI, Cristea MI: Telocytes within human skeletal muscle stem cell niche. J Cell Mol Med. 2011, 15 (10): 2269-2272.
PubMedCentralCrossRefPubMedGoogle Scholar
Nicolescu MI, Popescu LM:Telocytes in the interstitium of human exocrine pancreas: ultrastructural evidence.Pancreas. 2012, 41 (6): 949-956.
CrossRefPubMedGoogle Scholar
Nicolescu MI, Bucur A, Dinca O, Rusu MC, Popescu LM: Telocytes in parotid glands. Anat Rec (Hoboken). 2012, 295 (3): 378-385.
CrossRefGoogle Scholar
Popescu BO, Gherghiceanu M, Kostin S, Ceafalan L, Popescu LM: Telocytes in meninges and choroid plexus. Neurosci Lett. 2012, 516 (2): 265-269.
CrossRefPubMedGoogle Scholar
Suciu L, Popescu LM, Gherghiceanu M: Telocytes in human term placenta: morphology and phenotype. Cells Tissues Organs. 2010, 192 (5): 325-339.
CrossRefPubMedGoogle Scholar
Rusu MC, Mirancea N, Manoiu VS, Valcu M, Nicolescu MI, Paduraru D: Skin telocytes. Ann Anat. 2012, 194 (4): 359-367.
CrossRefPubMedGoogle Scholar
Ceafalan L, Gherghiceanu M, Popescu LM, Simionescu O: Telocytes in human skin-are they involved in skin regeneration?. J Cell Mol Med. 2012, 16 (7): 1405-1420.
PubMedCentralCrossRefPubMedGoogle Scholar
Cantarero I, Luesma MJ, Junquera C: The primary cilium of telocytes in the vasculature: electron microscope imaging. J Cell Mol Med. 2011, 15 (12): 2594-2600.
PubMedCentralCrossRefPubMedGoogle Scholar
Gherghiceanu M, Popescu LM: Cardiac telocytes - their junctions and functional implications. Cell Tissue Res. 2012, 348 (2): 265-279.
PubMedCentralCrossRefPubMedGoogle Scholar
Zheng Y, Bai C, Wang X: Potential significance of telocytes in the pathogenesis of lung diseases. Expert Rev Respir Med. 2012, 6 (1): 45-49.
CrossRefPubMedGoogle Scholar
Manole CG, Cismasiu V, Gherghiceanu M, Popescu LM: Experimental acute myocardial infarction: telocytes involvement in neo-angiogenesis. J Cell Mol Med. 2011, 15 (11): 2284-2296.
PubMedCentralCrossRefPubMedGoogle Scholar
Zhou J, Zhang Y, Wen X: Telocytes accompanying cardiomyocyte in primary culture: two- and three-dimensional culture environment. J Cell Mol Med. 2010, 14 (11): 2641-2645.
PubMedCentralCrossRefPubMedGoogle Scholar
Bani D, Formigli L, Gherghiceanu M, Faussone-Pellegrini MS: Telocytes as supporting cells for myocardial tissue organization in developing and adult heart. J Cell Mol Med. 2010, 14 (10): 2531-2538.
PubMedCentralCrossRefPubMedGoogle Scholar
Reynolds LP, Borowicz PP, Caton JS: Uteroplacental vascular development and placental function: an update. Int J Dev Biol. 2010, 54 (2–3): 355-366.
CrossRefPubMedGoogle Scholar
Alon T, Hemo I, Itin A, Pe’er J, Stone J, Keshet E: Vascular endothelial growth factor acts as a survival factor for newly formed retinal vessels and has implications for retinopathy of prematurity. Nat Med. 1995, 1 (10): 1024-1028.
CrossRefPubMedGoogle Scholar

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright
Copyright on any open access article in Molecular and Cellular Therapies published bythe Institute is retained by the author(s). Authors can grant any third party the right to use
the article freely as long as its integrity is maintained and its original authors, citation details and publisher are identified. Please contact the Office of Molecular and Cellular
Therapies for more information specifically regarding permissions if there are questions.