Harnessing RNAi nanomedicine for precision therapy

  • Dan Peer
Keywords: RNAi, siRNAs, Precision medicine, Nanomedicine, Targeted Nanoparticles

Abstract

Utilizing RNA interference as an innovative therapeutic strategy has an immense likelihood to generate novel concepts in precision medicine. Several clinical trials are on the way with some positive initial results. Yet, targeting of RNAi payloads such as small interfering RNAs (siRNAs), microRNA (miR) mimetic or anti-miR (antagomirs) into specific cell types remains a challenge. Major attempts are done for developing nano-sized carriers that could overcome systemic, local and cellular barriers. This progress report will focus on the recent advances in the RNAi world, detailing strategies of systemic passive tissue targeting and active cellular targeting, which is often considered as the holy grail of drug delivery.

Downloads

Download data is not yet available.

References

Sledz CA, Williams BR: RNA interference in biology and disease. Blood. 2005, 106 (3): 787-794. 10.1182/blood-2004-12-4643. PubMed PMID: 15827131. Pubmed Central PMCID: 1895153. Epub 2005/04/14. eng

PubMedCentralCrossRefPubMedGoogle Scholar

de Fougerolles A, Vornlocher HP, Maraganore J, Lieberman J: Interfering with disease: a progress report on siRNA-based therapeutics. Nat Rev Drug Discov. 2007, 6 (6): 443-453. 10.1038/nrd2310. PubMed PMID: 17541417. Epub 2007/06/02. eng

CrossRefPubMedGoogle Scholar

Peer D: Induction of therapeutic gene silencing in leukocyte-implicated diseases by targeted and stabilized nanoparticles: a mini-review. J Control Release. 2010, 148 (1): 63-68. 10.1016/j.jconrel.2010.06.029. PubMed PMID: 20624432. Epub 2010/07/14. eng

CrossRefPubMedGoogle Scholar

Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T: Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature. 2001, 411 (6836): 494-498. 10.1038/35078107. PubMed PMID: 11373684. Epub 2001/05/25. eng

CrossRefPubMedGoogle Scholar

Amarzguioui M, Rossi JJ, Kim D: Approaches for chemically synthesized siRNA and vector-mediated RNAi. FEBS Lett. 2005, 579 (26): 5974-5981. 10.1016/j.febslet.2005.08.070. PubMed PMID: 16199038. Epub 2005/10/04. eng

CrossRefPubMedGoogle Scholar

Palliser D, Chowdhury D, Wang QY, Lee SJ, Bronson RT, Knipe DM: An siRNA-based microbicide protects mice from lethal herpes simplex virus 2 infection. Nature. 2006, 439 (7072): 89-94. 10.1038/nature04263. PubMed PMID: 16306938

CrossRefPubMedGoogle Scholar

Bartlett DW, Davis ME: Insights into the kinetics of siRNA-mediated gene silencing from live-cell and live-animal bioluminescent imaging. Nucleic Acids Res. 2006, 34 (1): 322-333. 10.1093/nar/gkj439. PubMed PMID: 16410612. Pubmed Central PMCID: 1331994. Epub 2006/01/18. eng

PubMedCentralCrossRefPubMedGoogle Scholar

Manjunath N, Dykxhoorn DM: Advances in synthetic siRNA delivery. Discov Med. 2010, 9 (48): 418-430. PubMed PMID: 20515610. Epub 2010/06/03. eng

PubMedGoogle Scholar

Daka A, Peer D: RNAi-based nanomedicines for targeted personalized therapy. Adv Drug Deliv Rev. 2012, 64 (13): 1508-1521. 10.1016/j.addr.2012.08.014. PubMed PMID: 22975009

CrossRefPubMedGoogle Scholar

Robbins M, Judge A, Ambegia E, Choi C, Yaworski E, Palmer L: Misinterpreting the therapeutic effects of small interfering RNA caused by immune stimulation. Hum Gene Ther. 2008, 19 (10): 991-999. 10.1089/hum.2008.131. PubMed PMID: 18713023. Epub 2008/08/21. eng

CrossRefPubMedGoogle Scholar

Kleinman ME, Yamada K, Takeda A, Chandrasekaran V, Nozaki M, Baffi JZ: Sequence- and target-independent angiogenesis suppression by siRNA via TLR3. Nature. 2008, 452 (7187): 591-597. 10.1038/nature06765. PubMed PMID: 18368052. Pubmed Central PMCID: 2642938. Epub 2008/03/28. eng

PubMedCentralCrossRefPubMedGoogle Scholar

Moghimi SM, Peer D, Langer R: Reshaping the future of nanopharmaceuticals: ad iudicium. ACS Nano. 2011, 5 (11): 8454-8458. 10.1021/nn2038252. PubMed PMID: 21992178. Epub 2011/10/14. eng

CrossRefPubMedGoogle Scholar

Rosenblum D, Peer D: Omics-based nanomedicine: the future of personalized oncology. Cancer Lett. 2013, PubMed PMID: 23941830

Google Scholar

Ma M, Zhou L, Guo X, Lv Z, Yu Y, Ding C: Decreased cofilin1 expression is important for compaction during early mouse embryo development. Biochim Biophys Acta. 2009, 1793 (12): 1804-1810. 10.1016/j.bbamcr.2009.09.009. PubMed PMID: 19751773. eng

CrossRefPubMedGoogle Scholar

Bose S, Leclerc GM, Vasquez-Martinez R, Boockfor FR: Administration of connexin43 siRNA abolishes secretory pulse synchronization in GnRH clonal cell populations. Mol Cell Endocrinol. 2010, 314 (1): 75-83. 10.1016/j.mce.2009.08.016. PubMed PMID: 19716855. Pubmed Central PMCID: 2783823. Epub 2009/09/01. eng

PubMedCentralCrossRefPubMedGoogle Scholar

Wiese M, Castiglione K, Hensel M, Schleicher U, Bogdan C, Jantsch J: Small interfering RNA (siRNA) delivery into murine bone marrow-derived macrophages cells by electroporation. J Immunol Methods. 2010, 353 (1-2): 102-10. 10.1016/j.jim.2009.12.002. PubMed PMID: 20006615. Epub 2009/12/17. Eng

CrossRefPubMedGoogle Scholar

Honjo K, Takahashi KA, Mazda O, Kishida T, Shinya M, Tokunaga D: MDR1a/1b gene silencing enhances drug sensitivity in rat fibroblast-like synoviocytes. J Gene Med. 2010, 12 (2): 219-27. PubMed PMID: 19950109. Epub 2009/12/02. Eng

PubMedGoogle Scholar

Donze O, Picard D: RNA interference in mammalian cells using siRNAs synthesized with T7 RNA polymerase. Nucleic Acids Res. 2002, 30 (10): e46-10.1093/nar/30.10.e46. PubMed PMID: 12000851. eng

PubMedCentralCrossRefPubMedGoogle Scholar

Tsubouchi A, Sakakura J, Yagi R, Mazaki Y, Schaefer E, Yano H: Localized suppression of RhoA activity by Tyr31/118-phosphorylated paxillin in cell adhesion and migration. The J of cell Biol. 2002, 159 (4): 673-683. 10.1083/jcb.200202117. PubMed PMID: 12446743. eng

CrossRefGoogle Scholar

Huang YZ, Zang M, Xiong WC, Luo Z, Mei L: Erbin suppresses the MAP kinase pathway. J Biol Chem. 2003, 278 (2): 1108-1114. 10.1074/jbc.M205413200. PubMed PMID: 12379659. eng

CrossRefPubMedGoogle Scholar

Zhang M, Bai CX, Zhang X, Chen J, Mao L, Gao L: Downregulation enhanced green fluorescence protein gene expression by RNA interference in mammalian cells. RNA Biol. 2004, 1 (1): 74-77. PubMed PMID: 17194936. eng

PubMedGoogle Scholar

Gosain AK, Machol JA, Gliniak C, Halligan NL: TGF-beta1 RNA interference in mouse primary dura cell culture: downstream effects on TGF receptors, FGF-2, and FGF-R1 mRNA levels. Plast Reconstr Surg. 2009, 124 (5): 1466-1473. 10.1097/PRS.0b013e3181b98947. PubMed PMID: 20009832. eng

CrossRefPubMedGoogle Scholar

Cheng SQ, Wang WL, Yan W, Li QL, Wang L, Wang WY: Knockdown of survivin gene expression by RNAi induces apoptosis in human hepatocellular carcinoma cell line SMMC-7721. World J Gastroenterol. 2005, 11 (5): 756-759. PubMed PMID: 15655839. eng

PubMedCentralCrossRefPubMedGoogle Scholar

Baker BE, Kestler DP, Ichiki AT: Effects of siRNAs in combination with Gleevec on K-562 cell proliferation and Bcr-Abl expression. J Biomed Sci. 2006, 13 (4): 499-507. 10.1007/s11373-006-9080-z. PubMed PMID: 16547768. eng

CrossRefPubMedGoogle Scholar

Crombez L, Charnet A, Morris MC, Aldrian-Herrada G, Heitz F, Divita G: A non-covalent peptide-based strategy for siRNA delivery. Biochem Soc Trans. 2007, 35 (1): 44-46. 10.1042/BST0350044. PubMed PMID: 17233597. eng

CrossRefPubMedGoogle Scholar

Muratovska A, Eccles MR: Conjugate for efficient delivery of short interfering RNA (siRNA) into mammalian cells. FEBS Lett. 2004, 558 (1–3): 63-68. PubMed PMID: 14759517. eng

CrossRefPubMedGoogle Scholar

Minakuchi Y, Takeshita F, Kosaka N, Sasaki H, Yamamoto Y, Kouno M: Atelocollagen-mediated synthetic small interfering RNA delivery for effective gene silencing in vitro and in vivo. Nucleic Acids Res. 2004, 32 (13): e109-10.1093/nar/gnh093. PubMed PMID: 15272050. eng

PubMedCentralCrossRefPubMedGoogle Scholar

Takei Y, Kadomatsu K, Yuzawa Y, Matsuo S, Muramatsu T: A small interfering RNA targeting vascular endothelial growth factor as cancer therapeutics. Cancer Res. 2004, 64 (10): 3365-3370. 10.1158/0008-5472.CAN-03-2682. PubMed PMID: 15150085. eng

CrossRefPubMedGoogle Scholar

Puebla I, Esseghir S, Mortlock A, Brown A, Crisanti A, Low W: A recombinant H1 histone-based system for efficient delivery of nucleic acids. J Biotechnol. 2003, 105 (3): 215-226. 10.1016/j.jbiotec.2003.07.006. PubMed PMID: 14580793. eng

CrossRefPubMedGoogle Scholar

Weinstein S, Peer D: RNAi nanomedicines: challenges and opportunities within the immune system. Nanotechnology. 2010, 21 (23): 1-13. PubMed PMID: ISI:000277746900002. English

CrossRefGoogle Scholar

Peer D, Lieberman J: Special delivery: targeted therapy with small RNAs. Gene Ther. 2011, 18 (12): 1127-1133. 10.1038/gt.2011.56. PubMed PMID: 21490679. Epub 2011/04/15. eng

CrossRefPubMedGoogle Scholar

Kedmi R, Ben-Arie N, Peer D: The systemic toxicity of positively charged lipid nanoparticles and the role of Toll-like receptor 4 in immune activation. Biomaterials. 2010, 31 (26): 6867-6875. 10.1016/j.biomaterials.2010.05.027. PubMed PMID: 20541799. Epub 2010/06/15. eng

CrossRefPubMedGoogle Scholar

Lv H, Zhang S, Wang B, Cui S, Yan J: Toxicity of cationic lipids and cationic polymers in gene delivery. J Control Release. 2006, 114 (1): 100-109. 10.1016/j.jconrel.2006.04.014. PubMed PMID: 16831482. eng

CrossRefPubMedGoogle Scholar

Peer D: Immunotoxicity derived from manipulating leukocytes with lipid-based nanoparticles. Adv Drug Deliv Rev. 2012, 64 (15): 1738-1748. 10.1016/j.addr.2012.06.013. PubMed PMID: 22820531

CrossRefPubMedGoogle Scholar

Vorup-Jensen T, Peer D: Nanotoxicity and the importance of being earnest. Adv Drug Deliv Rev. 2012, 64 (15): 1661-1662. 10.1016/j.addr.2012.09.002. PubMed PMID: 23000008

CrossRefPubMedGoogle Scholar

Weinstein S, Emmanuel R, Jacobi AM, Abraham A, Behlke MA, Sprague AG: RNA inhibition highlights cyclin D1 as a potential therapeutic target for mantle cell lymphoma. PLoS One. 2012, 7 (8): e43343-10.1371/journal.pone.0043343. PubMed PMID: 22905260. Pubmed Central PMCID: 3419170

PubMedCentralCrossRefPubMedGoogle Scholar

Emmanuel R, Weinstein S, Landesman-Milo D, Peer D: eIF3c: a potential therapeutic target for cancer. Cancer Lett. 2013, 336 (1): 158-166. 10.1016/j.canlet.2013.04.026. PubMed PMID: 23623922

CrossRefPubMedGoogle Scholar

Bitko V, Musiyenko A, Shulyayeva O, Barik S: Inhibition of respiratory viruses by nasally administered siRNA. Nat Med. 2005, 11 (1): 50-55. 10.1038/nm1164. PubMed PMID: 15619632. Epub 2004/12/28. eng

CrossRefPubMedGoogle Scholar

Kim B, Tang Q, Biswas PS, Xu J, Schiffelers RM, Xie FY: Inhibition of ocular angiogenesis by siRNA targeting vascular endothelial growth factor pathway genes: therapeutic strategy for herpetic stromal keratitis. Am J Pathol. 2004, 165 (6): 2177-2185. 10.1016/S0002-9440(10)63267-1. PubMed PMID: 15579459. eng

PubMedCentralCrossRefPubMedGoogle Scholar

Zender L, Kubicka S: Suppression of apoptosis in the liver by systemic and local delivery of small-interfering RNAs. Methods Mol Biol. 2007, 361: 217-226. PubMed PMID: 17172714. Epub 2006/12/19. eng

PubMedGoogle Scholar

De Souza AT, Dai X, Spencer AG, Reppen T, Menzie A, Roesch PL: Transcriptional and phenotypic comparisons of Ppara knockout and siRNA knockdown mice. Nucleic Acids Res. 2006, 34 (16): 4486-4494. 10.1093/nar/gkl609. PubMed PMID: 16945951. Pubmed Central PMCID: 1636368. Epub 2006/09/02. eng

PubMedCentralCrossRefPubMedGoogle Scholar

Saito Y, Kon S, Fujiwara Y, Nakayama Y, Kurotaki D, Fukuda N: Osteopontin small interfering RNA protects mice from fulminant hepatitis. Hum Gene Ther. 2007, 18 (12): 1205-1214. 10.1089/hum.2007.069. PubMed PMID: 17988193. Epub 2007/11/09. eng

CrossRefPubMedGoogle Scholar

Lewis DL, Wolff JA: Systemic siRNA delivery via hydrodynamic intravascular injection. Adv Drug Deliv Rev. 2007, 59 (2–3): 115-123. PubMed PMID: 17442446. Epub 2007/04/20. eng

CrossRefPubMedGoogle Scholar

Molitoris BA, Dagher PC, Sandoval RM, Campos SB, Ashush H, Fridman E: siRNA targeted to p53 attenuates ischemic and cisplatin-induced acute kidney injury. J Am Soc Nephrol. 2009, 20 (8): 1754-1764. 10.1681/ASN.2008111204. PubMed PMID: 19470675. Pubmed Central PMCID: 2723992. Epub 2009/05/28. eng

PubMedCentralCrossRefPubMedGoogle Scholar

Drug E, Landesman-Milo D, Belgorodsky B, Ermakov N, Frenkel-Pinter M, Fadeev L: Enhanced bioavailability of polyaromatic hydrocarbons in the form of mucin complexes. Chem Res Toxicol. 2011, 24 (3): 314-320. 10.1021/tx100426s. PubMed PMID: 21332130. Epub 2011/02/22. eng

CrossRefPubMedGoogle Scholar

Howard KA, Peer D: Providing the full picture: a mandate for standardizing nanoparticle-based drug delivery. Nanomedicine (Lond). 2013, 8 (7): 1031-1033. 10.2217/nnm.13.95. PubMed PMID: 23837825

CrossRefGoogle Scholar

Peer D: A daunting task: manipulating leukocyte function with RNAi. Immunol Rev. 2013, 253 (1): 185-197. 10.1111/imr.12044. PubMed PMID: 23550647

CrossRefPubMedGoogle Scholar

Tam YY, Chen S, Cullis PR: Advances in Lipid Nanoparticles for siRNA Delivery. Pharmaceutics. 2013, 5 (3): 498-507. 10.3390/pharmaceutics5030498. PubMed PMID: 24300520. Pubmed Central PMCID: 3836621

PubMedCentralCrossRefPubMedGoogle Scholar

Zimmermann TS, Lee AC, Akinc A, Bramlage B, Bumcrot D, Fedoruk MN: RNAi-mediated gene silencing in non-human primates. Nature. 2006, 441 (7089): 111-114. 10.1038/nature04688. PubMed PMID: 16565705. Epub 2006/03/28. eng

CrossRefPubMedGoogle Scholar

Morrissey DV, Lockridge JA, Shaw L, Blanchard K, Jensen K, Breen W: Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs. Nat Biotechnol. 2005, 23 (8): 1002-1007. 10.1038/nbt1122. PubMed PMID: 16041363. Epub 2005/07/26. eng

CrossRefPubMedGoogle Scholar

Geisbert TW, Hensley LE, Kagan E, Yu EZ, Geisbert JB, Daddario-DiCaprio K: Postexposure protection of guinea pigs against a lethal ebola virus challenge is conferred by RNA interference. J Infect Dis. 2006, 193 (12): 1650-1657. 10.1086/504267. PubMed PMID: 16703508. Epub 2006/05/17. eng

CrossRefPubMedGoogle Scholar

Solmesky LJ, Shuman M, Goldsmith M, Weil M, Peer D: Assessing cellular toxicities in fibroblasts upon exposure to lipid-based nanoparticles: a high content analysis approach. Nanotechnology. 2011, 22 (49): 494016-10.1088/0957-4484/22/49/494016. PubMed PMID: 22101838. Epub 2011/11/22. Eng

CrossRefPubMedGoogle Scholar

Goldsmith M, Mizrahy S, Peer D: Grand challenges in modulating the immune response with RNAi nanomedicines. Nanomedicine (Lond). 2011, 6 (10): 1771-1785. 10.2217/nnm.11.162. PubMed PMID: 22122585. Epub 2011/11/30. eng

CrossRefGoogle Scholar

Villares GJ, Zigler M, Wang H, Melnikova VO, Wu H, Friedman R: Targeting melanoma growth and metastasis with systemic delivery of liposome-incorporated protease-activated receptor-1 small interfering RNA. Cancer Res. 2008, 68 (21): 9078-9086. 10.1158/0008-5472.CAN-08-2397. PubMed PMID: 18974154. Pubmed Central PMCID: 2597081. Epub 2008/11/01. eng

PubMedCentralCrossRefPubMedGoogle Scholar

Landen CN, Chavez-Reyes A, Bucana C, Schmandt R, Deavers MT, Lopez-Berestein G: Therapeutic EphA2 gene targeting in vivo using neutral liposomal small interfering RNA delivery. Cancer Res. 2005, 65 (15): 6910-6918. 10.1158/0008-5472.CAN-05-0530. PubMed PMID: 16061675. Epub 2005/08/03. eng

CrossRefPubMedGoogle Scholar

Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R: Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol. 2007, 2 (12): 751-760. 10.1038/nnano.2007.387. PubMed PMID: 18654426. Epub 2008/07/26. eng

CrossRefPubMedGoogle Scholar

Anderson DG, Akinc A, Hossain N, Langer R: Structure/property studies of polymeric gene delivery using a library of poly (beta-amino esters). Mol Ther. 2005, 11 (3): 426-434. 10.1016/j.ymthe.2004.11.015. PubMed PMID: 15727939. Epub 2005/02/25. eng

CrossRefPubMedGoogle Scholar

Akinc A, Zumbuehl A, Goldberg M, Leshchiner ES, Busini V, Hossain N: A combinatorial library of lipid-like materials for delivery of RNAi therapeutics. Nat Biotechnol. 2008, 26 (5): 561-569. 10.1038/nbt1402. PubMed PMID: 18438401. Epub 2008/04/29. eng

PubMedCentralCrossRefPubMedGoogle Scholar

Leng Q, Scaria P, Lu P, Woodle MC, Mixson AJ: Systemic delivery of HK Raf-1 siRNA polyplexes inhibits MDA-MB-435 xenografts. Cancer Gene Ther. 2008, 15 (8): 485-495. 10.1038/cgt.2008.29. PubMed PMID: 18483501. Epub 2008/05/17. eng

CrossRefPubMedGoogle Scholar

Yan Z, Zou H, Tian F, Grandis JR, Mixson AJ, Lu PY: Human rhomboid family-1 gene silencing causes apoptosis or autophagy to epithelial cancer cells and inhibits xenograft tumor growth. Mol Cancer Ther. 2008, 7 (6): 1355-1364. 10.1158/1535-7163.MCT-08-0104. PubMed PMID: 18524845. Epub 2008/06/06. eng

PubMedCentralCrossRefPubMedGoogle Scholar

Honma K, Iwao-Koizumi K, Takeshita F, Yamamoto Y, Yoshida T, Nishio K: RPN2 gene confers docetaxel resistance in breast cancer. Nat Med. 2008, 14 (9): 939-948. 10.1038/nm.1858. PubMed PMID: 18724378. Epub 2008/08/30. eng

CrossRefPubMedGoogle Scholar

Fujii T, Saito M, Iwasaki E, Ochiya T, Takei Y, Hayashi S: Intratumor injection of small interfering RNA-targeting human papillomavirus 18 E6 and E7 successfully inhibits the growth of cervical cancer. Int J Oncol. 2006, 29 (3): 541-548. PubMed PMID: 16865269. eng

PubMedGoogle Scholar

Mu P, Nagahara S, Makita N, Tarumi Y, Kadomatsu K, Takei Y: Systemic delivery of siRNA specific to tumor mediated by atelocollagen: combined therapy using siRNA targeting Bcl-xL and cisplatin against prostate cancer. Int J Cancer. 2009, 125 (12): 2978-2990. 10.1002/ijc.24382. PubMed PMID: 19422046. Epub 2009/05/08. eng

CrossRefPubMedGoogle Scholar

Wolfrum C, Shi S, Jayaprakash KN, Jayaraman M, Wang G, Pandey RK: Mechanisms and optimization of in vivo delivery of lipophilic siRNAs. Nat Biotechnol. 2007, 25 (10): 1149-1157. 10.1038/nbt1339. PubMed PMID: 17873866. Epub 2007/09/18. eng

CrossRefPubMedGoogle Scholar

Nishina K, Unno T, Uno Y, Kubodera T, Kanouchi T, Mizusawa H: Efficient in vivo delivery of siRNA to the liver by conjugation of alpha-tocopherol. Mol Ther. 2008, 16 (4): 734-740. 10.1038/mt.2008.14. PubMed PMID: 18362929. eng

CrossRefPubMedGoogle Scholar

Lorenz C, Hadwiger P, John M, Vornlocher HP, Unverzagt C: Steroid and lipid conjugates of siRNAs to enhance cellular uptake and gene silencing in liver cells. Bioorg Med Chem Lett. 2004, 14 (19): 4975-4977. 10.1016/j.bmcl.2004.07.018. PubMed PMID: 15341962. Epub 2004/09/03. eng

CrossRefPubMedGoogle Scholar

Rozema DB, Lewis DL, Wakefield DH, Wong SC, Klein JJ, Roesch PL: Dynamic PolyConjugates for targeted in vivo delivery of siRNA to hepatocytes. Proc Natl Acad Sci U S A. 2007, 104 (32): 12982-12987. 10.1073/pnas.0703778104. PubMed PMID: 17652171. Pubmed Central PMCID: 1941806. Epub 2007/07/27. eng

PubMedCentralCrossRefPubMedGoogle Scholar

Schiffelers RM, Ansari A, Xu J, Zhou Q, Tang Q, Storm G: Cancer siRNA therapy by tumor selective delivery with ligand-targeted sterically stabilized nanoparticle. Nucleic Acids Res. 2004, 32 (19): e149-10.1093/nar/gnh140. PubMed PMID: 15520458. Pubmed Central PMCID: 528817. Epub 2004/11/03. eng

PubMedCentralCrossRefPubMedGoogle Scholar

Hu-Lieskovan S, Heidel JD, Bartlett DW, Davis ME, Triche TJ: Sequence-specific knockdown of EWS-FLI1 by targeted, nonviral delivery of small interfering RNA inhibits tumor growth in a murine model of metastatic Ewing’s sarcoma. Cancer Res. 2005, 65 (19): 8984-8992. 10.1158/0008-5472.CAN-05-0565. PubMed PMID: 16204072. eng

CrossRefPubMedGoogle Scholar

Davis ME, Zuckerman JE, Choi CH, Seligson D, Tolcher A, Alabi CA: Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature. 2010, 464 (7291): 1067-1070. 10.1038/nature08956. PubMed PMID: 20305636. Pubmed Central PMCID: 2855406. Epub 2010/03/23. eng

PubMedCentralCrossRefPubMedGoogle Scholar

Davis ME: The first targeted delivery of siRNA in humans via a self-assembling, cyclodextrin polymer-based nanoparticle: from concept to clinic. Mol Pharm. 2009, 6 (3): 659-668. 10.1021/mp900015y. PubMed PMID: 19267452. Epub 2009/03/10. eng

CrossRefPubMedGoogle Scholar

Chang C: The immune effects of naturally occurring and synthetic nanoparticles. J of Autoimmun. 2010, 34 (3): J234-246. 10.1016/j.jaut.2009.11.009. PubMed PMID: 19995678. Epub 2009/12/10. eng

CrossRefGoogle Scholar

Song E, Zhu P, Lee SK, Chowdhury D, Kussman S, Dykxhoorn DM: Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nat Biotechnol. 2005, 23 (6): 709-717. 10.1038/nbt1101. PubMed PMID: 15908939. Epub 2005/05/24. eng

CrossRefPubMedGoogle Scholar

Andrabi SM: Mammalian sperm chromatin structure and assessment of DNA fragmentation. J Assist Reprod Genet. 2007, 24 (12): 561-569. 10.1007/s10815-007-9177-y. PubMed PMID: 18008155. Epub 2007/11/17. eng

PubMedCentralCrossRefPubMedGoogle Scholar

McNamara JO, Andrechek ER, Wang Y, Viles KD, Rempel RE, Gilboa E: Cell type-specific delivery of siRNAs with aptamer-siRNA chimeras. Nat Biotechnol. 2006, 24 (8): 1005-1015. 10.1038/nbt1223. PubMed PMID: 16823371. Epub 2006/07/11. eng

CrossRefPubMedGoogle Scholar

Sato Y, Murase K, Kato J, Kobune M, Sato T, Kawano Y: Resolution of liver cirrhosis using vitamin A-coupled liposomes to deliver siRNA against a collagen-specific chaperone. Nat Biotechnol. 2008, 26 (4): 431-442. 10.1038/nbt1396. PubMed PMID: 18376398. eng

CrossRefPubMedGoogle Scholar

Pirollo KF, Rait A, Zhou Q, Hwang SH, Dagata JA, Zon G: Materializing the potential of small interfering RNA via a tumor-targeting nanodelivery system. Cancer Res. 2007, 67 (7): 2938-2943. 10.1158/0008-5472.CAN-06-4535. PubMed PMID: 17409398. eng

CrossRefPubMedGoogle Scholar

Li SD, Chen YC, Hackett MJ, Huang L: Tumor-targeted delivery of siRNA by self-assembled nanoparticles. Mol Ther. 2008, 16 (1): 163-169. 10.1038/sj.mt.6300323. PubMed PMID: 17923843. Pubmed Central PMCID: 2739987. Epub 2007/10/10. eng

PubMedCentralCrossRefPubMedGoogle Scholar

Kortylewski M, Swiderski P, Herrmann A, Wang L, Kowolik C, Kujawski M: In vivo delivery of siRNA to immune cells by conjugation to a TLR9 agonist enhances antitumor immune responses. Nat Biotechnol. 2009, 27 (10): 925-932. 10.1038/nbt.1564. PubMed PMID: 19749770. Epub 2009/09/15. eng

PubMedCentralCrossRefPubMedGoogle Scholar

Kumar P, Ban HS, Kim SS, Wu H, Pearson T, Greiner DL: T cell-specific siRNA delivery suppresses HIV-1 infection in humanized mice. Cell. 2008, 134 (4): 577-586. 10.1016/j.cell.2008.06.034. PubMed PMID: 18691745. Epub 2008/08/12. eng

PubMedCentralCrossRefPubMedGoogle Scholar

Kim SS, Subramanya S, Peer D, Shimaoka M, Shankar P: Antibody-mediated delivery of siRNAs for anti-HIV therapy. Methods Mol Biol. 2011, 721: 339-353. 10.1007/978-1-61779-037-9_21. PubMed PMID: 21431696. Epub 2011/03/25. eng

CrossRefPubMedGoogle Scholar

Subramanya S, Kim SS, Abraham S, Yao J, Kumar M, Kumar P: Targeted delivery of siRNA to human dendritic cells to suppress Dengue viral infection and associated proinflammatory cytokine production. J Virol. 2010, 84 (5): 2490-501. 10.1128/JVI.02105-08. PubMed PMID: 20015996. Epub 2009/12/18. Eng

PubMedCentralCrossRefPubMedGoogle Scholar

Shimaoka M, Takagi J, Springer TA: Conformational regulation of integrin structure and function. Annu Rev Biophys Biomol Struct. 2002, 31: 485-516. 10.1146/annurev.biophys.31.101101.140922. PubMed PMID: 11988479. eng

CrossRefPubMedGoogle Scholar

Shimaoka M, Kim M, Cohen EH, Yang W, Astrof N, Peer D: AL-57, a ligand-mimetic antibody to integrin LFA-1, reveals chemokine-induced affinity up-regulation in lymphocytes. Proc Natl Acad Sci U S A. 2006, 103 (38): 13991-13996. 10.1073/pnas.0605716103. PubMed PMID: 16963559. Pubmed Central PMCID: 1599901. Epub 2006/09/12. eng

PubMedCentralCrossRefPubMedGoogle Scholar

Peer D, Zhu P, Carman CV, Lieberman J, Shimaoka M: Selective gene silencing in activated leukocytes by targeting siRNAs to the integrin lymphocyte function-associated antigen-1. Proc Natl Acad Sci U S A. 2007, 104 (10): 4095-4100. 10.1073/pnas.0608491104. PubMed PMID: 17360483. Pubmed Central PMCID: 1820714. Epub 2007/03/16. eng

PubMedCentralCrossRefPubMedGoogle Scholar

Cauli A, Yanni G, Pitzalis C, Challacombe S, Panayi GS: Cytokine and adhesion molecule expression in the minor salivary glands of patients with Sjogren’s syndrome and chronic sialoadenitis. Ann Rheum Dis. 1995, 54 (3): 209-215. 10.1136/ard.54.3.209. PubMed PMID: 7748018. eng

PubMedCentralCrossRefPubMedGoogle Scholar

Tanaka Y, Mine S, Figdor CG, Wake A, Hirano H, Tsukada J: Constitutive chemokine production results in activation of leukocyte function-associated antigen-1 on adult T-cell leukemia cells. Blood. 1998, 91 (10): 3909-3919. PubMed PMID: 9573029. Epub 1998/06/20. eng

PubMedGoogle Scholar

Peer D, Park EJ, Morishita Y, Carman CV, Shimaoka M: Systemic leukocyte-directed siRNA delivery revealing cyclin D1 as an anti-inflammatory target. Science. 2008, 319 (5863): 627-630. 10.1126/science.1149859. PubMed PMID: ISI:000252772000043. English

PubMedCentralCrossRefPubMedGoogle Scholar

Peer D, Park EJ, Morishita Y, Carman CV, Shimaoka M: Systemic leukocyte-directed siRNA delivery revealing cyclin D1 as an anti-inflammatory target. Science. 2008, 319 (5863): 627-630. 10.1126/science.1149859. PubMed PMID: 18239128. Pubmed Central PMCID: 2490797. Epub 2008/02/02. eng

PubMedCentralCrossRefPubMedGoogle Scholar

Kim SS, Peer D, Kumar P, Subramanya S, Wu H, Asthana D: RNAi-mediated CCR5 Silencing by LFA-1-targeted Nanoparticles Prevents HIV Infection in BLT Mice. Mol Ther. 2010, 18 (2): 370-6. 10.1038/mt.2009.271. PubMed PMID: 19997090. Epub 2009/12/10. Eng

PubMedCentralCrossRefPubMedGoogle Scholar

Akinc A, Zumbuehl A, Goldberg M, Leshchiner ES, Busini V, Hossain N: A combinatorial library of lipid-like materials for delivery of RNAi therapeutics. Nat Biotechnol. 2008, 26 (5): 561-569. 10.1038/nbt1402. PubMed PMID: ISI:000255756800029. English

PubMedCentralCrossRefPubMedGoogle Scholar

Semple SC, Akinc A, Chen J, Sandhu AP, Mui BL, Cho CK: Rational design of cationic lipids for siRNA delivery. Nat Biotechnol. 2010, 28 (2): 172-176. 10.1038/nbt.1602. PubMed PMID: 20081866. Epub 2010/01/19. eng

CrossRefPubMedGoogle Scholar

Geisbert TW, Lee ACH, Robbins M, Geisbert JB, Honko AN, Sood V: Postexposure protection of non-human primates against a lethal Ebola virus challenge with RNA interference: a proof-of-concept study. Lancet. 2010, 375 (9729): 1896-1905. 10.1016/S0140-6736(10)60357-1. PubMed PMID: ISI:000278628800031. English

CrossRefPubMedGoogle Scholar

Heidel JD, Yu ZP, Liu JYC, Rele SM, Liang YC, Zeidan RK: Administration in non-human primates of escalating intravenous doses of targeted nanoparticles containing ribonucleotide reductase subunit M2 siRNA. Proc Natl Acad Sci U S A. 2007, 104 (14): 5715-5721. 10.1073/pnas.0701458104. PubMed PMID: ISI:000245657600005. English

PubMedCentralCrossRefPubMedGoogle Scholar

Frank-Kamenetsky M, Grefhorst A, Anderson NN, Racie TS, Bramlage B, Akinc A: Therapeutic RNAi targeting PCSK9 acutely lowers plasma cholesterol in rodents and LDL cholesterol in nonhuman primates. Proc Natl Acad Sci U S A. 2008, 105 (33): 11915-11920. 10.1073/pnas.0805434105. PubMed PMID: ISI:000258723800060. English

PubMedCentralCrossRefPubMedGoogle Scholar

Haussecker D: The Business of RNAi Therapeutics in 2012. Mol Ther Nucleic Acids. 2012, 2 (8): 1-e8. doi:10.1038/mtna.2011.9

Google Scholar

Lares MR, Rossi JJ, Ouellet DL: RNAi and small interfering RNAs in human disease therapeutic applications. Trends Biotechnol. 2010, 28 (11): 570-579. 10.1016/j.tibtech.2010.07.009. PubMed PMID: ISI:000283703300005. English

PubMedCentralCrossRefPubMedGoogle Scholar

Published
2019-01-31
Section
Review