microRNA therapies in cancer

  • Sacha Rothschild
Keywords: microRNA, miRNA, Cancer, Oncogene, Tumor suppressor, Therapy

Abstract

MicroRNAs (miRNAs or miRs) are a family of small non-coding RNA species that have been implicated in the control of many fundamental cellular and physiological processes such as cellular differentiation, proliferation, apoptosis and stem cell maintenance. miRNAs regulate gene expression by the sequence-selective targeting of mRNAs, leading to translational repression or mRNA degradation. Some microRNAs have been categorized as “oncomiRs” as opposed to “tumor suppressor miRs” Modulating the miRNA activities may provide exciting opportunities for cancer therapy. This review highlights the latest discovery of miRNAs involved in carcinogenesis as well as the potential applications of miRNA regulations in cancer treatment. Several studies have demonstrated the feasibility of restoring tumor suppressive miRNAs and targeting oncogenic miRNAs for cancer therapy using in vivo model systems.

Downloads

Download data is not yet available.

References

Lee RC, Feinbaum RL, Ambros V: The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993, 75: 843-854. 10.1016/0092-8674(93)90529-Y.

PubMedGoogle Scholar

Garzon R, Calin GA, Croce CM: MicroRNAs in Cancer. Annu Rev Med. 2009, 60: 167-179. 10.1146/annurev.med.59.053006.104707.

PubMedGoogle Scholar

Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, Kim VN: MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 2004, 23: 4051-4060. 10.1038/sj.emboj.7600385.

PubMedCentralPubMedGoogle Scholar

Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Radmark O, Kim S, Kim VN: The nuclear RNase III Drosha initiates microRNA processing. Nature. 2003, 425: 415-419. 10.1038/nature01957.

PubMedGoogle Scholar

Denli AM, Tops BB, Plasterk RH, Ketting RF, Hannon GJ: Processing of primary microRNAs by the Microprocessor complex. Nature. 2004, 432: 231-235. 10.1038/nature03049.

PubMedGoogle Scholar

Bohnsack MT, Czaplinski K, Gorlich D: Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA. 2004, 10: 185-191. 10.1261/rna.5167604.

PubMedCentralPubMedGoogle Scholar

Lund E, Guttinger S, Calado A, Dahlberg JE, Kutay U: Nuclear export of microRNA precursors. Science. 2004, 303: 95-98. 10.1126/science.1090599.

PubMedGoogle Scholar

Hutvagner G, Zamore PD: A microRNA in a multiple-turnover RNAi enzyme complex. Science. 2002, 297: 2056-2060. 10.1126/science.1073827.

PubMedGoogle Scholar

Hammond SM, Bernstein E, Beach D, Hannon GJ: An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature. 2000, 404: 293-296. 10.1038/35005107.

PubMedGoogle Scholar

Chendrimada TP, Gregory RI, Kumaraswamy E, Norman J, Cooch N, Nishikura K, Shiekhattar R: TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature. 2005, 436: 740-744. 10.1038/nature03868.

PubMedCentralPubMedGoogle Scholar

Diederichs S, Haber DA: Dual role for argonautes in microRNA processing and posttranscriptional regulation of microRNA expression. Cell. 2007, 131: 1097-1108. 10.1016/j.cell.2007.10.032.

PubMedGoogle Scholar

Bartel DP: MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004, 116: 281-297. 10.1016/S0092-8674(04)00045-5.

PubMedGoogle Scholar

Orom UA, Nielsen FC, Lund AH: MicroRNA-10a binds the 5'UTR of ribosomal protein mRNAs and enhances their translation. Mol Cell. 2008, 30: 460-471. 10.1016/j.molcel.2008.05.001.

PubMedGoogle Scholar

Qin W, Shi Y, Zhao B, Yao C, Jin L, Ma J, Jin Y: miR-24 regulates apoptosis by targeting the open reading frame (ORF) region of FAF1 in cancer cells. PLoS One. 2010, 5: e9429-10.1371/journal.pone.0009429.

PubMedCentralPubMedGoogle Scholar

Garzon R, Marcucci G, Croce CM: Targeting microRNAs in cancer: rationale, strategies and challenges. Nat Rev Drug Discov. 2010, 9: 775-789. 10.1038/nrd3179.

PubMedCentralPubMedGoogle Scholar

Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, Aldler H, Rattan S, Keating M, Rai K: Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA. 2002, 99: 15524-15529. 10.1073/pnas.242606799.

PubMedCentralPubMedGoogle Scholar

Calin GA, Ferracin M, Cimmino A, Di Leva G, Shimizu M, Wojcik SE, Iorio MV, Visone R, Sever NI, Fabbri M: A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med. 2005, 353: 1793-1801. 10.1056/NEJMoa050995.

PubMedGoogle Scholar

Nakamura T, Canaani E, Croce CM: Oncogenic All1 fusion proteins target Drosha-mediated microRNA processing. Proc Natl Acad Sci USA. 2007, 104: 10980-10985. 10.1073/pnas.0704559104.

PubMedCentralPubMedGoogle Scholar

Saito Y, Liang G, Egger G, Friedman JM, Chuang JC, Coetzee GA, Jones PA: Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell. 2006, 9: 435-443. 10.1016/j.ccr.2006.04.020.

PubMedGoogle Scholar

Yanaihara N, Caplen N, Bowman E, Seike M, Kumamoto K, Yi M, Stephens RM, Okamoto A, Yokota J, Tanaka T: Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell. 2006, 9: 189-198. 10.1016/j.ccr.2006.01.025.

PubMedGoogle Scholar

Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S, Magri E, Pedriali M, Fabbri M, Campiglio M: MicroRNA gene expression deregulation in human breast cancer. Cancer Res. 2005, 65: 7065-7070. 10.1158/0008-5472.CAN-05-1783.

PubMedGoogle Scholar

Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S, Shimizu M, Rattan S, Bullrich F, Negrini M, Croce CM: Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA. 2004, 101: 2999-3004. 10.1073/pnas.0307323101.

PubMedCentralPubMedGoogle Scholar

Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A, Labourier E, Reinert KL, Brown D, Slack FJ: RAS is regulated by the let-7 microRNA family. Cell. 2005, 120: 635-647. 10.1016/j.cell.2005.01.014.

PubMedGoogle Scholar

Akao Y, Nakagawa Y, Naoe T: let-7 microRNA functions as a potential growth suppressor in human colon cancer cells. Biol Pharm Bull. 2006, 29: 903-906. 10.1248/bpb.29.903.

PubMedGoogle Scholar

Lee YS, Dutta A: The tumor suppressor microRNA let-7 represses the HMGA2 oncogene. Genes Dev. 2007, 21: 1025-1030. 10.1101/gad.1540407.

PubMedCentralPubMedGoogle Scholar

Sampson VB, Rong NH, Han J, Yang Q, Aris V, Soteropoulos P, Petrelli NJ, Dunn SP, Krueger LJ: MicroRNA let-7a down-regulates MYC and reverts MYC-induced growth in Burkitt lymphoma cells. Cancer Res. 2007, 67: 9762-9770. 10.1158/0008-5472.CAN-07-2462.

PubMedGoogle Scholar

Mott JL, Kobayashi S, Bronk SF, Gores GJ: mir-29 regulates Mcl-1 protein expression and apoptosis. Oncogene. 2007, 26: 6133-6140. 10.1038/sj.onc.1210436.

PubMedCentralPubMedGoogle Scholar

Garzon R, Volinia S, Liu CG, Fernandez-Cymering C, Palumbo T, Pichiorri F, Fabbri M, Coombes K, Alder H, Nakamura T: MicroRNA signatures associated with cytogenetics and prognosis in acute myeloid leukemia. Blood. 2008, 111: 3183-3189. 10.1182/blood-2007-07-098749.

PubMedCentralPubMedGoogle Scholar

Kluiver J, Poppema S, de Jong D, Blokzijl T, Harms G, Jacobs S, Kroesen BJ, van den Berg A: BIC and miR-155 are highly expressed in Hodgkin, primary mediastinal and diffuse large B cell lymphomas. J Pathol. 2005, 207: 243-249. 10.1002/path.1825.

PubMedGoogle Scholar

Metzler M, Wilda M, Busch K, Viehmann S, Borkhardt A: High expression of precursor microRNA-155/BIC RNA in children with Burkitt lymphoma. Genes Chromosomes Cancer. 2004, 39: 167-169. 10.1002/gcc.10316.

PubMedGoogle Scholar

Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, Visone R, Iorio M, Roldo C, Ferracin M: A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA. 2006, 103: 2257-2261. 10.1073/pnas.0510565103.

PubMedCentralPubMedGoogle Scholar

Tam W, Hughes SH, Hayward WS, Besmer P: Avian bic, a gene isolated from a common retroviral site in avian leukosis virus-induced lymphomas that encodes a noncoding RNA, cooperates with c-myc in lymphomagenesis and erythroleukemogenesis. J Virol. 2002, 76: 4275-4286. 10.1128/JVI.76.9.4275-4286.2002.

PubMedCentralPubMedGoogle Scholar

Garzon R, Garofalo M, Martelli MP, Briesewitz R, Wang L, Fernandez-Cymering C, Volinia S, Liu CG, Schnittger S, Haferlach T: Distinctive microRNA signature of acute myeloid leukemia bearing cytoplasmic mutated nucleophosmin. Proc Natl Acad Sci USA. 2008, 105: 3945-3950. 10.1073/pnas.0800135105.

PubMedCentralPubMedGoogle Scholar

Meng F, Henson R, Wehbe-Janek H, Ghoshal K, Jacob ST, Patel T: MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology. 2007, 133: 647-658. 10.1053/j.gastro.2007.05.022.

PubMedCentralPubMedGoogle Scholar

Ciafre SA, Galardi S, Mangiola A, Ferracin M, Liu CG, Sabatino G, Negrini M, Maira G, Croce CM, Farace MG: Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem Biophys Res Commun. 2005, 334: 1351-1358. 10.1016/j.bbrc.2005.07.030.

PubMedGoogle Scholar

Frankel LB, Christoffersen NR, Jacobsen A, Lindow M, Krogh A, Lund AH: Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells. J Biol Chem. 2008, 283: 1026-1033. 10.1074/jbc.M707224200.

PubMedGoogle Scholar

Zhu S, Si ML, Wu H, Mo YY: MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1). J Biol Chem. 2007, 282: 14328-14336. 10.1074/jbc.M611393200.

PubMedGoogle Scholar

Ota A, Tagawa H, Karnan S, Tsuzuki S, Karpas A, Kira S, Yoshida Y, Seto M: Identification and characterization of a novel gene, C13orf25, as a target for 13q31-q32 amplification in malignant lymphoma. Cancer Res. 2004, 64: 3087-3095. 10.1158/0008-5472.CAN-03-3773.

PubMedGoogle Scholar

Mendell JT: miRiad roles for the miR-17-92 cluster in development and disease. Cell. 2008, 133: 217-222. 10.1016/j.cell.2008.04.001.

PubMedCentralPubMedGoogle Scholar

O'Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT: c-Myc-regulated microRNAs modulate E2F1 expression. Nature. 2005, 435: 839-843. 10.1038/nature03677.

PubMedGoogle Scholar

Fabbri M, Paone A, Calore F, Galli R, Gaudio E, Santhanam R, Lovat F, Fadda P, Mao C, Nuovo GJ: MicroRNAs bind to Toll-like receptors to induce prometastatic inflammatory response. Proc Natl Acad Sci USA. 2012, 109: E2110-E2116. 10.1073/pnas.1209414109.

PubMedCentralPubMedGoogle Scholar

Lehmann SM, Kruger C, Park B, Derkow K, Rosenberger K, Baumgart J, Trimbuch T, Eom G, Hinz M, Kaul D: An unconventional role for miRNA: let-7 activates Toll-like receptor 7 and causes neurodegeneration. Nat Neurosci. 2012, 15: 827-835. 10.1038/nn.3113.

PubMedGoogle Scholar

Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB: Prediction of mammalian microRNA targets. Cell. 2003, 115: 787-798. 10.1016/S0092-8674(03)01018-3.

PubMedGoogle Scholar

Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, MacMenamin P, da Piedade I, Gunsalus KC, Stoffel M, Rajewsky N: Combinatorial microRNA target predictions. Nat Genet. 2005, 37: 495-500. 10.1038/ng1536.

PubMedGoogle Scholar

Betel D, Wilson M, Gabow A, Marks DS, Sander C: The microRNA.org resource: targets and expression. Nucleic Acids Res. 2008, 36: D149-D153.

PubMedCentralPubMedGoogle Scholar

Friedman RC, Farh KK, Burge CB, Bartel DP: Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009, 19: 92-105.

PubMedCentralPubMedGoogle Scholar

Takamizawa J, Konishi H, Yanagisawa K, Tomida S, Osada H, Endoh H, Harano T, Yatabe Y, Nagino M, Nimura Y: Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res. 2004, 64: 3753-3756. 10.1158/0008-5472.CAN-04-0637.

PubMedGoogle Scholar

Motoyama K, Inoue H, Nakamura Y, Uetake H, Sugihara K, Mori M: Clinical significance of high mobility group A2 in human gastric cancer and its relationship to let-7 microRNA family. Clin Cancer Res. 2008, 14: 2334-2340. 10.1158/1078-0432.CCR-07-4667.

PubMedGoogle Scholar

Yang N, Kaur S, Volinia S, Greshock J, Lassus H, Hasegawa K, Liang S, Leminen A, Deng S, Smith L: MicroRNA microarray identifies Let-7i as a novel biomarker and therapeutic target in human epithelial ovarian cancer. Cancer Res. 2008, 68: 10307-10314. 10.1158/0008-5472.CAN-08-1954.

PubMedCentralPubMedGoogle Scholar

Yu F, Yao H, Zhu P, Zhang X, Pan Q, Gong C, Huang Y, Hu X, Su F, Lieberman J, Song E: let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell. 2007, 131: 1109-1123. 10.1016/j.cell.2007.10.054.

PubMedGoogle Scholar

Aagaard L, Rossi JJ: RNAi therapeutics: principles, prospects and challenges. Adv Drug Deliv Rev. 2007, 59: 75-86. 10.1016/j.addr.2007.03.005.

PubMedCentralPubMedGoogle Scholar

Zhao X, Pan F, Holt CM, Lewis AL, Lu JR: Controlled delivery of antisense oligonucleotides: a brief review of current strategies. Expert Opin Drug Deliv. 2009, 6: 673-686. 10.1517/17425240902992894.

PubMedGoogle Scholar

Dias N, Stein CA: Antisense oligonucleotides: basic concepts and mechanisms. Mol Cancer Ther. 2002, 1: 347-355.

PubMedGoogle Scholar

Concepcion CP, Han YC, Mu P, Bonetti C, Yao E, D'Andrea A, Vidigal JA, Maughan WP, Ogrodowski P, Ventura A: Intact p53-dependent responses in miR-34-deficient mice. PLoS Genet. 2012, 8: e1002797-10.1371/journal.pgen.1002797.

PubMedCentralPubMedGoogle Scholar

Cho WC: MicroRNAs as therapeutic targets and their potential applications in cancer therapy. Expert Opin Ther Targets. 2012, 16: 747-759. 10.1517/14728222.2012.696102.

PubMedGoogle Scholar

Rao DD, Vorhies JS, Senzer N, Nemunaitis J: siRNA vs. shRNA: similarities and differences. Adv Drug Deliv Rev. 2009, 61: 746-759. 10.1016/j.addr.2009.04.004.

PubMedGoogle Scholar

Trang P, Wiggins JF, Daige CL, Cho C, Omotola M, Brown D, Weidhaas JB, Bader AG, Slack FJ: Systemic delivery of tumor suppressor microRNA mimics using a neutral lipid emulsion inhibits lung tumors in mice. Mol Ther. 2011, 19: 1116-1122. 10.1038/mt.2011.48.

PubMedCentralPubMedGoogle Scholar

Czauderna F, Fechtner M, Dames S, Aygun H, Klippel A, Pronk GJ, Giese K, Kaufmann J: Structural variations and stabilising modifications of synthetic siRNAs in mammalian cells. Nucleic Acids Res. 2003, 31: 2705-2716. 10.1093/nar/gkg393.

PubMedCentralPubMedGoogle Scholar

Krutzfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M, Stoffel M: Silencing of microRNAs in vivo with 'antagomirs'. Nature. 2005, 438: 685-689. 10.1038/nature04303.

PubMedGoogle Scholar

Krutzfeldt J, Kuwajima S, Braich R, Rajeev KG, Pena J, Tuschl T, Manoharan M, Stoffel M: Specificity, duplex degradation and subcellular localization of antagomirs. Nucleic Acids Res. 2007, 35: 2885-2892. 10.1093/nar/gkm024.

PubMedCentralPubMedGoogle Scholar

Wahlestedt C, Salmi P, Good L, Kela J, Johnsson T, Hokfelt T, Broberger C, Porreca F, Lai J, Ren K: Potent and nontoxic antisense oligonucleotides containing locked nucleic acids. Proc Natl Acad Sci USA. 2000, 97: 5633-5638. 10.1073/pnas.97.10.5633.

PubMedCentralPubMedGoogle Scholar

Crooke ST, Graham MJ, Zuckerman JE, Brooks D, Conklin BS, Cummins LL, Greig MJ, Guinosso CJ, Kornbrust D, Manoharan M: Pharmacokinetic properties of several novel oligonucleotide analogs in mice. J Pharmacol Exp Ther. 1996, 277: 923-937.

PubMedGoogle Scholar

Yoo BH, Bochkareva E, Bochkarev A, Mou TC, Gray DM: 2'–O-methyl-modified phosphorothioate antisense oligonucleotides have reduced non-specific effects in vitro. Nucleic Acids Res. 2004, 32: 2008-2016. 10.1093/nar/gkh516.

PubMedCentralPubMedGoogle Scholar

Hyrup B, Nielsen PE: Peptide nucleic acids (PNA): synthesis, properties and potential applications. Bioorg Med Chem. 1996, 4: 5-23. 10.1016/0968-0896(95)00171-9.

PubMedGoogle Scholar

Pallan PS, Greene EM, Jicman PA, Pandey RK, Manoharan M, Rozners E, Egli M: Unexpected origins of the enhanced pairing affinity of 2'-fluoro-modified RNA. Nucleic Acids Res. 2011, 39: 3482-3495. 10.1093/nar/gkq1270.

PubMedCentralPubMedGoogle Scholar

Nielsen PE, Egholm M, Berg RH, Buchardt O: Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science. 1991, 254: 1497-1500. 10.1126/science.1962210.

PubMedGoogle Scholar

Demidov VV, Kuhn H, Lavrentieva-Smolina IV, Frank-Kamenetskii MD: Peptide nucleic acid-assisted topological labeling of duplex dna. Methods. 2001, 23: 123-131. 10.1006/meth.2000.1113.

PubMedGoogle Scholar

Gambari R: Peptide-nucleic acids (PNAs): a tool for the development of gene expression modifiers. Curr Pharm Des. 2001, 7: 1839-1862. 10.2174/1381612013397087.

PubMedGoogle Scholar

Karkare S, Bhatnagar D: Promising nucleic acid analogs and mimics: characteristic features and applications of PNA, LNA, and morpholino. Appl Microbiol Biotechnol. 2006, 71: 575-586. 10.1007/s00253-006-0434-2.

PubMedGoogle Scholar

Soomets U, Hallbrink M, Langel U: Antisense properties of peptide nucleic acids. Front Biosci. 1999, 4: D782-D786. 10.2741/Soomets.

PubMedGoogle Scholar

Nielsen PE: Targeting double stranded DNA with peptide nucleic acid (PNA). Curr Med Chem. 2001, 8: 545-550. 10.2174/0929867003373373.

PubMedGoogle Scholar

Brognara E, Fabbri E, Aimi F, Manicardi A, Bianchi N, Finotti A, Breveglieri G, Borgatti M, Corradini R, Marchelli R, Gambari R: Peptide nucleic acids targeting miR-221 modulate p27Kip1 expression in breast cancer MDA-MB-231 cells. Int J Oncol. 2012, 41: 2119-2127.

PubMedGoogle Scholar

Yan LX, Wu QN, Zhang Y, Li YY, Liao DZ, Hou JH, Fu J, Zeng MS, Yun JP, Wu QL: Knockdown of miR-21 in human breast cancer cell lines inhibits proliferation, in vitro migration and in vivo tumor growth. Breast Cancer Res. 2011, 13: R2-10.1186/bcr2803.

PubMedCentralPubMedGoogle Scholar

Obad S, dos Santos CO, Petri A, Heidenblad M, Broom O, Ruse C, Fu C, Lindow M, Stenvang J, Straarup EM: Silencing of microRNA families by seed-targeting tiny LNAs. Nat Genet. 2011, 43: 371-378. 10.1038/ng.786.

PubMedCentralPubMedGoogle Scholar

van Solingen C, Seghers L, Bijkerk R, Duijs JM, Roeten MK, van Oeveren-Rietdijk AM, Baelde HJ, Monge M, Vos JB, de Boer HC: Antagomir-mediated silencing of endothelial cell specific microRNA-126 impairs ischemia-induced angiogenesis. J Cell Mol Med. 2009, 13: 1577-1585. 10.1111/j.1582-4934.2008.00613.x.

PubMedCentralPubMedGoogle Scholar

Chen Y, Zhu X, Zhang X, Liu B, Huang L: Nanoparticles modified with tumor-targeting scFv deliver siRNA and miRNA for cancer therapy. Mol Ther. 2010, 18: 1650-1656. 10.1038/mt.2010.136.

PubMedCentralPubMedGoogle Scholar

Lv H, Zhang S, Wang B, Cui S, Yan J: Toxicity of cationic lipids and cationic polymers in gene delivery. J Control Release. 2006, 114: 100-109. 10.1016/j.jconrel.2006.04.014.

PubMedGoogle Scholar

Medina OP, Zhu Y, Kairemo K: Targeted liposomal drug delivery in cancer. Curr Pharm Des. 2004, 10: 2981-2989. 10.2174/1381612043383467.

PubMedGoogle Scholar

Kedmi R, Ben-Arie N, Peer D: The systemic toxicity of positively charged lipid nanoparticles and the role of Toll-like receptor 4 in immune activation. Biomaterials. 2010, 31: 6867-6875. 10.1016/j.biomaterials.2010.05.027.

PubMedGoogle Scholar

Peer D: Immunotoxicity derived from manipulating leukocytes with lipid-based nanoparticles. Adv Drug Deliv Rev. 2012, 64: 1738-1748. 10.1016/j.addr.2012.06.013.

PubMedGoogle Scholar

de Fougerolles A, Vornlocher HP, Maraganore J, Lieberman J: Interfering with disease: a progress report on siRNA-based therapeutics. Nat Rev Drug Discov. 2007, 6: 443-453. 10.1038/nrd2310.

PubMedGoogle Scholar

Ibrahim AF, Weirauch U, Thomas M, Grunweller A, Hartmann RK, Aigner A: MicroRNA replacement therapy for miR-145 and miR-33a is efficacious in a model of colon carcinoma. Cancer Res. 2011, 71: 5214-5224. 10.1158/0008-5472.CAN-10-4645.

PubMedGoogle Scholar

Park TG, Jeong JH, Kim SW: Current status of polymeric gene delivery systems. Adv Drug Deliv Rev. 2006, 58: 467-486. 10.1016/j.addr.2006.03.007.

PubMedGoogle Scholar

Ren Y, Zhou X, Mei M, Yuan XB, Han L, Wang GX, Jia ZF, Xu P, Pu PY, Kang CS: MicroRNA-21 inhibitor sensitizes human glioblastoma cells U251 (PTEN-mutant) and LN229 (PTEN-wild type) to taxol. BMC Cancer. 2010, 10: 27-10.1186/1471-2407-10-27.

PubMedCentralPubMedGoogle Scholar

Dutta T, Jain NK, McMillan NA, Parekh HS: Dendrimer nanocarriers as versatile vectors in gene delivery. Nanomedicine. 2010, 6: 25-34. 10.1016/j.nano.2009.05.005.

PubMedGoogle Scholar

Hong S, Bielinska AU, Mecke A, Keszler B, Beals JL, Shi X, Balogh L, Orr BG, Baker JR, Banaszak Holl MM: Interaction of poly(amidoamine) dendrimers with supported lipid bilayers and cells: hole formation and the relation to transport. Bioconjug Chem. 2004, 15: 774-782. 10.1021/bc049962b.

PubMedGoogle Scholar

Babar IA, Cheng CJ, Booth CJ, Liang X, Weidhaas JB, Saltzman WM, Slack FJ: Nanoparticle-based therapy in an in vivo microRNA-155 (miR-155)-dependent mouse model of lymphoma. Proc Natl Acad Sci USA. 2012, 109: E1695-E1704. 10.1073/pnas.1201516109.

PubMedCentralPubMedGoogle Scholar

Cheng CJ, Saltzman WM: Polymer nanoparticle-mediated delivery of microRNA inhibition and alternative splicing. Mol Pharm. 2012, 9: 1481-1488.

PubMedCentralPubMedGoogle Scholar

Suh JS, Lee JY, Choi YS, Chong PC, Park YJ: Peptide-mediated intracellular delivery of miRNA-29b for osteogenic stem cell differentiation. Biomaterials. 2013, 34: 4347-4359. 10.1016/j.biomaterials.2013.02.039.

PubMedGoogle Scholar

Tazawa H, Tsuchiya N, Izumiya M, Nakagama H: Tumor-suppressive miR-34a induces senescence-like growth arrest through modulation of the E2F pathway in human colon cancer cells. Proc Natl Acad Sci USA. 2007, 104: 15472-15477. 10.1073/pnas.0707351104.

PubMedCentralPubMedGoogle Scholar

Matsuyama H, Suzuki HI, Nishimori H, Noguchi M, Yao T, Komatsu N, Mano H, Sugimoto K, Miyazono K: miR-135b mediates NPM-ALK-driven oncogenicity and renders IL-17-producing immunophenotype to anaplastic large cell lymphoma. Blood. 2011, 118: 6881-6892. 10.1182/blood-2011-05-354654.

PubMedGoogle Scholar

Minakuchi Y, Takeshita F, Kosaka N, Sasaki H, Yamamoto Y, Kouno M, Honma K, Nagahara S, Hanai K, Sano A: Atelocollagen-mediated synthetic small interfering RNA delivery for effective gene silencing in vitro and in vivo. Nucleic Acids Res. 2004, 32: e109-10.1093/nar/gnh093.

PubMedCentralPubMedGoogle Scholar

Ghosh R, Singh LC, Shohet JM, Gunaratne PH: A gold nanoparticle platform for the delivery of functional microRNAs into cancer cells. Biomaterials. 2013, 34: 807-816. 10.1016/j.biomaterials.2012.10.023.

PubMedGoogle Scholar

Crew E, Tessel MA, Rahman S, Razzak-Jaffar A, Mott D, Kamundi M, Yu G, Tchah N, Lee J, Bellavia M, Zhong CJ: MicroRNA conjugated gold nanoparticles and cell transfection. Anal Chem. 2012, 84: 26-29. 10.1021/ac202749p.

PubMedGoogle Scholar

Bitar A, Ahmad NM, Fessi H, Elaissari A: Silica-based nanoparticles for biomedical applications. Drug Discov Today. 2012, 17: 1147-1154. 10.1016/j.drudis.2012.06.014.

PubMedGoogle Scholar

Wu X, Liu H, Liu J, Haley KN, Treadway JA, Larson JP, Ge N, Peale F, Bruchez MP: Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat Biotechnol. 2003, 21: 41-46.

PubMedGoogle Scholar

Nida DL, Rahman MS, Carlson KD, Richards-Kortum R, Follen M: Fluorescent nanocrystals for use in early cervical cancer detection. Gynecol Oncol. 2005, 99: S89-S94. 10.1016/j.ygyno.2005.07.050.

PubMedGoogle Scholar

Choi KY, Yoon HY, Kim JH, Bae SM, Park RW, Kang YM, Kim IS, Kwon IC, Choi K, Jeong SY: Smart nanocarrier based on PEGylated hyaluronic acid for cancer therapy. ACS Nano. 2011, 5: 8591-8599. 10.1021/nn202070n.

PubMedGoogle Scholar

Orian-Rousseau V: CD44, a therapeutic target for metastasising tumours. Eur J Cancer. 2010, 46: 1271-1277. 10.1016/j.ejca.2010.02.024.

PubMedGoogle Scholar

Ebert MS, Neilson JR, Sharp PA: MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Methods. 2007, 4: 721-726. 10.1038/nmeth1079.

PubMedGoogle Scholar

Zhang Y: Wang Z. 2013, Progress in microRNA delivery. J Control Release: Gemeinhart RA

Google Scholar

Schwarz DS, Hutvagner G, Du T, Xu Z, Aronin N, Zamore PD: Asymmetry in the assembly of the RNAi enzyme complex. Cell. 2003, 115: 199-208. 10.1016/S0092-8674(03)00759-1.

PubMedGoogle Scholar

Terasawa K, Shimizu K, Tsujimoto G: Synthetic Pre-miRNA-Based shRNA as Potent RNAi Triggers. J Nucleic Acids. 2011, 2011: 131579-

PubMedCentralPubMedGoogle Scholar

Lanford RE, Hildebrandt-Eriksen ES, Petri A, Persson R, Lindow M, Munk ME, Kauppinen S, Orum H: Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science. 2010, 327: 198-201. 10.1126/science.1178178.

PubMedCentralPubMedGoogle Scholar

Janssen HL, Reesink HW, Lawitz EJ, Zeuzem S, Rodriguez-Torres M, Patel K, van der Meer AJ, Patick AK, Chen A, Zhou Y: Treatment of HCV infection by targeting microRNA. N Engl J Med. 2013, 368: 1685-1694. 10.1056/NEJMoa1209026.

PubMedGoogle Scholar

Tripp VT, Young DD: Discovery of Small Molecule Modifiers of microRNAs for the Treatment of HCV Infection. Methods Mol Biol. 2014, 1103: 153-163. 10.1007/978-1-62703-730-3_12.

PubMedGoogle Scholar

Folini M, Gandellini P, Longoni N, Profumo V, Callari M, Pennati M, Colecchia M, Supino R, Veneroni S, Salvioni R: miR-21: an oncomir on strike in prostate cancer. Mol Cancer. 2010, 9: 12-10.1186/1476-4598-9-12.

PubMedCentralPubMedGoogle Scholar

Lakomy R, Sana J, Hankeova S, Fadrus P, Kren L, Lzicarova E, Svoboda M, Dolezelova H, Smrcka M, Vyzula R: MiR-195, miR-196b, miR-181c, miR-21 expression levels and O-6-methylguanine-DNA methyltransferase methylation status are associated with clinical outcome in glioblastoma patients. Cancer Sci. 2011, 102: 2186-2190. 10.1111/j.1349-7006.2011.02092.x.

PubMedGoogle Scholar

Selaru FM, Olaru AV, Kan T, David S, Cheng Y, Mori Y, Yang J, Paun B, Jin Z, Agarwal R: MicroRNA-21 is overexpressed in human cholangiocarcinoma and regulates programmed cell death 4 and tissue inhibitor of metalloproteinase 3. Hepatology. 2009, 49: 1595-1601. 10.1002/hep.22838.

PubMedCentralPubMedGoogle Scholar

Li J, Huang H, Sun L, Yang M, Pan C, Chen W, Wu D, Lin Z, Zeng C, Yao Y: MiR-21 indicates poor prognosis in tongue squamous cell carcinomas as an apoptosis inhibitor. Clin Cancer Res. 2009, 15: 3998-4008. 10.1158/1078-0432.CCR-08-3053.

PubMedGoogle Scholar

Feber A, Xi L, Luketich JD, Pennathur A, Landreneau RJ, Wu M, Swanson SJ, Godfrey TE, Litle VR: MicroRNA expression profiles of esophageal cancer. J Thorac Cardiovasc Surg. 2008, 135: 255-260. 10.1016/j.jtcvs.2007.08.055. discussion 260

PubMedCentralPubMedGoogle Scholar

Chan SH, Wu CW, Li AF, Chi CW, Lin WC: miR-21 microRNA expression in human gastric carcinomas and its clinical association. Anticancer Res. 2008, 28: 907-911.

PubMedGoogle Scholar

Connolly E, Melegari M, Landgraf P, Tchaikovskaya T, Tennant BC, Slagle BL, Rogler LE, Zavolan M, Tuschl T, Rogler CE: Elevated expression of the miR-17-92 polycistron and miR-21 in hepadnavirus-associated hepatocellular carcinoma contributes to the malignant phenotype. Am J Pathol. 2008, 173: 856-864. 10.2353/ajpath.2008.080096.

PubMedCentralPubMedGoogle Scholar

Markou A, Tsaroucha EG, Kaklamanis L, Fotinou M, Georgoulias V, Lianidou ES: Prognostic value of mature microRNA-21 and microRNA-205 overexpression in non-small cell lung cancer by quantitative real-time RT-PCR. Clin Chem. 2008, 54: 1696-1704. 10.1373/clinchem.2007.101741.

PubMedGoogle Scholar

Dillhoff M, Liu J, Frankel W, Croce C, Bloomston M: MicroRNA-21 is overexpressed in pancreatic cancer and a potential predictor of survival. J Gastrointest Surg. 2008, 12: 2171-2176. 10.1007/s11605-008-0584-x.

PubMedCentralPubMedGoogle Scholar

Schetter AJ, Leung SY, Sohn JJ, Zanetti KA, Bowman ED, Yanaihara N, Yuen ST, Chan TL, Kwong DL, Au GK: MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma. JAMA. 2008, 299: 425-436.

PubMedCentralPubMedGoogle Scholar

Mei M, Ren Y, Zhou X, Yuan XB, Han L, Wang GX, Jia Z, Pu PY, Kang CS, Yao Z: Downregulation of miR-21 enhances chemotherapeutic effect of taxol in breast carcinoma cells. Technol Cancer Res Treat. 2010, 9: 77-86.

PubMedGoogle Scholar

Corsten MF, Miranda R, Kasmieh R, Krichevsky AM, Weissleder R, Shah K: MicroRNA-21 knockdown disrupts glioma growth in vivo and displays synergistic cytotoxicity with neural precursor cell delivered S-TRAIL in human gliomas. Cancer Res. 2007, 67: 8994-9000. 10.1158/0008-5472.CAN-07-1045.

PubMedGoogle Scholar

Gumireddy K, Young DD, Xiong X, Hogenesch JB, Huang Q, Deiters A: Small-molecule inhibitors of microrna miR-21 function. Angew Chem Int Ed Engl. 2008, 47: 7482-7484. 10.1002/anie.200801555.

PubMedCentralPubMedGoogle Scholar

Rothschild SI, Tschan MP, Federzoni EA, Jaggi R, Fey MF, Gugger M, Gautschi O: MicroRNA-29b is involved in the Src-ID1 signaling pathway and is dysregulated in human lung adenocarcinoma. Oncogene. 2012, 31: 4221-4232. 10.1038/onc.2011.578.

PubMedGoogle Scholar

Rothschild SI, Tschan MP, Jaggi R, Fey MF, Gugger M, Gautschi O: MicroRNA-381 represses ID1 and is deregulated in lung adenocarcinoma. J Thorac Oncol. 2012, 7: 1069-1077. 10.1097/JTO.0b013e31824fe976.

PubMedGoogle Scholar

Rothschild SI: Epigenetic therapy in lung cancer - role of microRNAs. Front Oncol. 2013, 3: 158-

PubMedCentralPubMedGoogle Scholar

Ma L, Reinhardt F, Pan E, Soutschek J, Bhat B, Marcusson EG, Teruya-Feldstein J, Bell GW, Weinberg RA: Therapeutic silencing of miR-10b inhibits metastasis in a mouse mammary tumor model. Nat Biotechnol. 2010, 28: 341-347. 10.1038/nbt.1618.

PubMedCentralPubMedGoogle Scholar

Hui AB, Lenarduzzi M, Krushel T, Waldron L, Pintilie M, Shi W, Perez-Ordonez B, Jurisica I, O'Sullivan B, Waldron J: Comprehensive MicroRNA profiling for head and neck squamous cell carcinomas. Clin Cancer Res. 2010, 16: 1129-1139. 10.1158/1078-0432.CCR-09-2166.

PubMedGoogle Scholar

Xie Q, Chen X, Lu F, Zhang T, Hao M, Wang Y, Zhao J, McCrae MA, Zhuang H: Aberrant expression of microRNA 155 may accelerate cell proliferation by targeting sex-determining region Y box 6 in hepatocellular carcinoma. Cancer. 2012, 118: 2431-2442. 10.1002/cncr.26566.

PubMedGoogle Scholar

Du ZM, Hu LF, Wang HY, Yan LX, Zeng YX, Shao JY, Ernberg I: Upregulation of MiR-155 in nasopharyngeal carcinoma is partly driven by LMP1 and LMP2A and downregulates a negative prognostic marker JMJD1A. PLoS One. 2011, 6: e19137-10.1371/journal.pone.0019137.

PubMedCentralPubMedGoogle Scholar

Eis PS, Tam W, Sun L, Chadburn A, Li Z, Gomez MF, Lund E, Dahlberg JE: Accumulation of miR-155 and BIC RNA in human B cell lymphomas. Proc Natl Acad Sci USA. 2005, 102: 3627-3632. 10.1073/pnas.0500613102.

PubMedCentralPubMedGoogle Scholar

Nikiforova MN, Tseng GC, Steward D, Diorio D, Nikiforov YE: MicroRNA expression profiling of thyroid tumors: biological significance and diagnostic utility. J Clin Endocrinol Metab. 2008, 93: 1600-1608. 10.1210/jc.2007-2696.

PubMedCentralPubMedGoogle Scholar

Chen J, Wang BC, Tang JH: Clinical significance of microRNA-155 expression in human breast cancer. J Surg Oncol. 2011, 106: 260-266.

PubMedGoogle Scholar

Shibuya H, Iinuma H, Shimada R, Horiuchi A, Watanabe T: Clinicopathological and prognostic value of microRNA-21 and microRNA-155 in colorectal cancer. Oncology. 2010, 79: 313-320. 10.1159/000323283.

PubMedGoogle Scholar

Greither T, Grochola LF, Udelnow A, Lautenschlager C, Wurl P, Taubert H: Elevated expression of microRNAs 155, 203, 210 and 222 in pancreatic tumors is associated with poorer survival. Int J Cancer. 2010, 126: 73-80. 10.1002/ijc.24687.

PubMedGoogle Scholar

Philippidou D, Schmitt M, Moser D, Margue C, Nazarov PV, Muller A, Vallar L, Nashan D, Behrmann I, Kreis S: Signatures of microRNAs and selected microRNA target genes in human melanoma. Cancer Res. 2010, 70: 4163-4173. 10.1158/0008-5472.CAN-09-4512.

PubMedGoogle Scholar

White NM, Bao TT, Grigull J, Youssef YM, Girgis A, Diamandis M, Fatoohi E, Metias M, Honey RJ, Stewart R: miRNA profiling for clear cell renal cell carcinoma: biomarker discovery and identification of potential controls and consequences of miRNA dysregulation. J Urol. 2011, 186: 1077-1083. 10.1016/j.juro.2011.04.110.

PubMedGoogle Scholar

Poltronieri P, D'Urso PI, Mezzolla V, D'Urso OF: Potential of anti-cancer therapy based on anti-miR-155 oligonucleotides in glioma and brain tumours. Chem Biol Drug Des. 2013, 81: 79-84. 10.1111/cbdd.12002.

PubMedGoogle Scholar

Ma L, Young J, Prabhala H, Pan E, Mestdagh P, Muth D, Teruya-Feldstein J, Reinhardt F, Onder TT, Valastyan S: miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nat Cell Biol. 2010, 12: 247-256.

PubMedCentralPubMedGoogle Scholar

Valastyan S, Reinhardt F, Benaich N, Calogrias D, Szasz AM, Wang ZC, Brock JE, Richardson AL, Weinberg RA: A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis. Cell. 2009, 137: 1032-1046. 10.1016/j.cell.2009.03.047.

PubMedCentralPubMedGoogle Scholar

Esquela-Kerscher A, Trang P, Wiggins JF, Patrawala L, Cheng A, Ford L, Weidhaas JB, Brown D, Bader AG, Slack FJ: The let-7 microRNA reduces tumor growth in mouse models of lung cancer. Cell Cycle. 2008, 7: 759-764. 10.4161/cc.7.6.5834.

PubMedGoogle Scholar

Ricarte-Filho JC, Fuziwara CS, Yamashita AS, Rezende E, da-Silva MJ, Kimura ET: Effects of let-7 microRNA on cell growth and differentiation of papillary thyroid cancer. Transl Oncol. 2009, 2: 236-241.

PubMedCentralPubMedGoogle Scholar

Dong Q, Meng P, Wang T, Qin W, Wang F, Yuan J, Chen Z, Yang A, Wang H: MicroRNA let-7a inhibits proliferation of human prostate cancer cells in vitro and in vivo by targeting E2F2 and CCND2. PLoS One. 2010, 5: e10147-10.1371/journal.pone.0010147.

PubMedCentralPubMedGoogle Scholar

Lee ST, Chu K, Oh HJ, Im WS, Lim JY, Kim SK, Park CK, Jung KH, Lee SK, Kim M, Roh JK: Let-7 microRNA inhibits the proliferation of human glioblastoma cells. J Neurooncol. 2011, 102: 19-24. 10.1007/s11060-010-0286-6.

PubMedGoogle Scholar

Yu CC, Chen YW, Chiou GY, Tsai LL, Huang PI, Chang CY, Tseng LM, Chiou SH, Yen SH, Chou MY: MicroRNA let-7a represses chemoresistance and tumourigenicity in head and neck cancer via stem-like properties ablation. Oral Oncol. 2011, 47: 202-210. 10.1016/j.oraloncology.2010.12.001.

PubMedGoogle Scholar

Barh D, Malhotra R, Ravi B, Sindhurani P: MicroRNA let-7: an emerging next-generation cancer therapeutic. Curr Oncol. 2010, 17: 70-80.

PubMedCentralPubMedGoogle Scholar

Trang P, Medina PP, Wiggins JF, Ruffino L, Kelnar K, Omotola M, Homer R, Brown D, Bader AG, Weidhaas JB, Slack FJ: Regression of murine lung tumors by the let-7 microRNA. Oncogene. 2009, 29: 1580-1587.

PubMedCentralPubMedGoogle Scholar

Chin LJ, Ratner E, Leng S, Zhai R, Nallur S, Babar I, Muller RU, Straka E, Su L, Burki EA: A SNP in a let-7 microRNA complementary site in the KRAS 3' untranslated region increases non-small cell lung cancer risk. Cancer Res. 2008, 68: 8535-8540. 10.1158/0008-5472.CAN-08-2129.

PubMedCentralPubMedGoogle Scholar

Paranjape T, Heneghan H, Lindner R, Keane FK, Hoffman A, Hollestelle A, Dorairaj J, Geyda K, Pelletier C, Nallur S: A 3'-untranslated region KRAS variant and triple-negative breast cancer: a case–control and genetic analysis. Lancet Oncol. 2011, 12: 377-386. 10.1016/S1470-2045(11)70044-4.

PubMedCentralPubMedGoogle Scholar

He L, He X, Lim LP, de Stanchina E, Xuan Z, Liang Y, Xue W, Zender L, Magnus J, Ridzon D: A microRNA component of the p53 tumour suppressor network. Nature. 2007, 447: 1130-1134. 10.1038/nature05939.

PubMedCentralPubMedGoogle Scholar

He L, He X, Lowe SW, Hannon GJ: microRNAs join the p53 network–another piece in the tumour-suppression puzzle. Nat Rev Cancer. 2007, 7: 819-822. 10.1038/nrc2232.

PubMedCentralPubMedGoogle Scholar

Gallardo E, Navarro A, Vinolas N, Marrades RM, Diaz T, Gel B, Quera A, Bandres E, Garcia-Foncillas J, Ramirez J, Monzo M: miR-34a as a prognostic marker of relapse in surgically resected non-small-cell lung cancer. Carcinogenesis. 2009, 30: 1903-1909. 10.1093/carcin/bgp219.

PubMedGoogle Scholar

O'Day E, Lal A: MicroRNAs and their target gene networks in breast cancer. Breast Cancer Res. 2010, 12: 201-10.1186/bcr2484.

PubMedCentralPubMedGoogle Scholar

Corney DC, Hwang CI, Matoso A, Vogt M, Flesken-Nikitin A, Godwin AK, Kamat AA, Sood AK, Ellenson LH, Hermeking H, Nikitin AY: Frequent downregulation of miR-34 family in human ovarian cancers. Clin Cancer Res. 2010, 16: 1119-1128. 10.1158/1078-0432.CCR-09-2642.

PubMedCentralPubMedGoogle Scholar

Yamakuchi M, Ferlito M, Lowenstein CJ: miR-34a repression of SIRT1 regulates apoptosis. Proc Natl Acad Sci USA. 2008, 105: 13421-13426. 10.1073/pnas.0801613105.

PubMedCentralPubMedGoogle Scholar

Bader AG: miR-34 - a microRNA replacement therapy is headed to the clinic. Front Genet. 2012, 3: 120-

PubMedCentralPubMedGoogle Scholar

Takeshita F, Patrawala L, Osaki M, Takahashi RU, Yamamoto Y, Kosaka N, Kawamata M, Kelnar K, Bader AG, Brown D, Ochiya T: Systemic delivery of synthetic microRNA-16 inhibits the growth of metastatic prostate tumors via downregulation of multiple cell-cycle genes. Mol Ther. 2010, 18: 181-187. 10.1038/mt.2009.207.

PubMedCentralPubMedGoogle Scholar

Published
2019-01-31
Section
Review