Advances toward regenerative medicine in the central nervous system: challenges in making stem cell therapy a viable clinical strategy

  • Elizabeth Stoll
Keywords: Regenerative medicine, Stem cell therapy, Stem cell transplant, Progenitor cell, Neurodegenerative disease, Spinal cord injury

Abstract

Over recent years, there has been a great deal of interest in the prospects of stem cell-based therapies for the treatment of nervous system disorders. The eagerness of scientists, clinicians, and spin-out companies to develop new therapies led to premature clinical trials in human patients, and now the initial excitement has largely turned to skepticism. Rather than embracing a defeatist attitude or pressing blindly ahead, I argue it is time to evaluate the challenges encountered by regenerative medicine in the central nervous system and the progress that is being made to solve these problems. In the twenty years since the adult brain was discovered to have an endogenous regenerative capacity, much basic research has been done to elucidate mechanisms controlling proliferation and cellular identity; how stem cells may be directed into neuronal lineages; genetic, pharmacological, and behavioral interventions that modulate neurogenic activity; and the exact nature of limitations to regeneration in the adult, aged, diseased and injured CNS. These findings should prove valuable in designing realistic clinical strategies to improve the prospects of stem cell-based therapies. In this review, I discuss how basic research continues to play a critical role in identifying both barriers and potential routes to regenerative therapy in the CNS.

Downloads

Download data is not yet available.

References

Luskin MB: Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone. Neuron. 1993, 11 (1): 173-189.

PubMedGoogle Scholar

Kuhn HGD-AH, Gage FH: Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation. J Neurosci. 1996, 15 (16): 2027-2033.

Google Scholar

Nishiyama A, Lin XH, Giese N, Heldin CH, Stallcup WB: Co-localization of NG2 proteoglycan and PDGF alpha-receptor on O2A progenitor cells in the developing rat brain. J Neurosci Res. 1996, 43 (3): 299-314.

PubMedGoogle Scholar

Morcos Y, Chan-Ling T: Identification of oligodendrocyte precursors in the myelinated streak of the adult rabbit retina in vivo. Glia. 1997, 21 (2): 163-182.

PubMedGoogle Scholar

Kordower JH, Freeman TB, Snow BJ, Vingerhoets FJ, Mufson EJ, Sanberg PR, Hauser RA, Smith DA, Nauert GM, Perl DP: Neuropathological evidence of graft survival and striatal reinnervation after the transplantation of fetal mesencephalic tissue in a patient with Parkinson's disease. N Engl J Med. 1995, 332 (17): 1118-1124.

PubMedGoogle Scholar

Bjorklund A, Lindvall O: Cell replacement therapies for central nervous system disorders. Nat Neurosci. 2000, 3 (6): 537-544.

PubMedGoogle Scholar

National Institutes of Health: ClinicalTrials.gov Home Page. http://www.clinicaltrials.gov/ct2/home. Established 2000. Accessed 2013 December 15

Aboody K, Capela A, Niazi N, Stern JH, Temple S: Translating stem cell studies to the clinic for CNS repair: current state of the art and the need for a Rosetta stone. Neuron. 2011, 70 (4): 597-613.

PubMedGoogle Scholar

Guillemot : Cellular and molecular control of neurogenesis in the mammalian telencephalon. Curr Opin Cell Biol. 2005, 17 (6): 639-647.

PubMedGoogle Scholar

Alvarez-Buylla ALD: For the long run: maintaining germinal niches in the adult brain. Neuron. 2004, 41 (5): 683-686.

PubMedGoogle Scholar

Bernier PJ, Bedard A, Vinet J, Levesque M, Parent A: Newly generated neurons in the amygdala and adjoining cortex of adult primates. Proc Natl Acad Sci USA. 2002, 99 (17): 11464-11469.

PubMedCentralPubMedGoogle Scholar

Zhao M, Momma S, Delfani K, Carlen M, Cassidy RM, Johansson CB, Brismar H, Shupliakov O, Frisen J, Janson AM: Evidence for neurogenesis in the adult mammalian substantia nigra. Proc Natl Acad Sci USA. 2003, 100 (13): 7925-7930.

PubMedCentralPubMedGoogle Scholar

Pencea V, Bingaman KD, Wiegand SJ, Luskin MB: Infusion of brain-derived neurotrophic factor into the lateral ventricle of the adult rat leads to new neurons in the parenchyma of the striatum, septum, thalamus, and hypothalamus. J Neurosci. 2001, 21 (17): 6706-6717.

PubMedGoogle Scholar

Gould E, Reeves AJ, Graziano MS, Gross CG: Neurogenesis in the neocortex of adult primates. Science. 1999, 286 (5439): 548-552.

PubMedGoogle Scholar

Molyneaux BJ, Arlotta P, Menezes JR, Macklis JD: Neuronal subtype specification in the cerebral cortex. Nat Rev Neurosci. 2007, 8 (6): 427-437.

PubMedGoogle Scholar

Frantz GD, McConnell SK: Restriction of late cerebral cortical progenitors to an upper-layer fate. Neuron. 1996, 17 (1): 55-61.

PubMedGoogle Scholar

Molyneaux BJ, Arlotta P, Hirata T, Hibi M, Macklis JD: Fezl is required for the birth and specification of corticospinal motor neurons. Neuron. 2005, 47 (6): 817-831.

PubMedGoogle Scholar

Tarabykin V, Stoykova A, Usman N, Gruss P: Cortical upper layer neurons derive from the subventricular zone as indicated by Svet1 gene expression. Development. 2001, 128 (11): 1983-1993.

PubMedGoogle Scholar

Zimmer C, Tiveron MC, Bodmer R, Cremer H: Dynamics of Cux2 expression suggests that an early pool of SVZ precursors is fated to become upper cortical layer neurons. Cereb Cortex. 2004, 14 (12): 1408-1420.

PubMedGoogle Scholar

Gorski JA, Talley T, Qiu M, Puelles L, Rubenstein JLR, Jones KR: Cortical excitatory neurons and glia, but not GABAergic neurons, are produced in the Emx1-expressing lineage. J Neurosci. 2002, 22 (15): 6309-6314.

PubMedGoogle Scholar

Wichterle H, Turnbull DH, Nery S, Fishell G, Alvarez-Buylla A: In utero fate mapping reveals distinct migratory pathways and fates of neurons born in the mammalian basal forebrain. Development. 2001, 128 (19): 3759-3771.

PubMedGoogle Scholar

Arlotta P, Molyneaux BJ, Jabaudon D, Yoshida Y, Macklis JD: Ctip2 controls the differentiation of medium spiny neurons and the establishment of the cellular architecture of the striatum. J Neurosci. 2008, 28 (3): 622-632.

PubMedGoogle Scholar

Rakic P: Mode of cell migration to the superficial layers of fetal monkey neocortex. J Comp Neurol. 1972, 145 (1): 61-83.

PubMedGoogle Scholar

Zhao C, Deng W, Gage FH: Mechanisms and functional implications of adult neurogenesis. Cell. 2008, 132 (4): 645-660.

PubMedGoogle Scholar

Ali F, Hindley C, McDowell G, Deibler R, Jones A, Kirschner M, Guillemot F, Philpott A: Cell cycle-regulated multi-site phosphorylation of Neurogenin 2 coordinates cell cycling with differentiation during neurogenesis. Development. 2011, 138 (19): 4267-4277.

PubMedCentralPubMedGoogle Scholar

Galichet C, Guillemot F, Parras CM: Neurogenin 2 has an essential role in development of the dentate gyrus. Development. 2008, 135 (11): 2031-2041.

PubMedGoogle Scholar

Zhao C, Teng EM, Summers RG, Ming GL, Gage FH: Distinct morphological stages of dentate granule neuron maturation in the adult mouse hippocampus. J Neurosci. 2006, 26 (1): 3-11.

PubMedGoogle Scholar

Markwardt SJ, Wadiche JI, Overstreet-Wadiche LS: Input-specific GABAergic signaling to newborn neurons in adult dentate gyrus. J Neurosci. 2009, 29 (48): 15063-15072.

PubMedCentralPubMedGoogle Scholar

Sanai N, Nguyen T, Ihrie RA, Mirzadeh Z, Tsai H-H, Wong M, Gupta N, Berger MS, Huang E, Garcia-Verdugo J-M, Rowitch DH, Alvarez-Buylla A: Corridors of migrating neurons in the human brain and their decline during infancy. Nature. 2011, 478 (7369): 382-386.

PubMedCentralPubMedGoogle Scholar

Ahlenius HVV, Kokaia M, Lindvall O, Kokaia Z: Neural stem and progenitor cells retain their potential for proliferation and differentiation into functional neurons despite lower number in aged brain. J Neurosci. 2009, 29 (14): 4408-4419.

PubMedGoogle Scholar

Bailey KJMA, Pruitt SC: Accumulation of mutations and somatic selection in aging neural stem/progenitor cells. Aging Cell. 2004, 3 (6): 391-397.

PubMedGoogle Scholar

Stoll EA, Habibi BA, Mikheev AM, Lasiene J, Massey SC, Swanson KR, Rostomily RC, Horner PJ: Increased re-entry into cell cycle mitigates age-related neurogenic decline in the murine subventricular zone. Stem Cells. 2011, 29 (12): 2005-2017.

PubMedCentralPubMedGoogle Scholar

Villeda SA, Luo J, Mosher KI, Zou B, Britschgi M, Bieri G, Stan TM, Fainberg N, Ding Z, Eggel A, Lucin KM, Czirr E, Park J-S, Couillard-Després S, Aigner L, Li G, Peskind ER, Kaye JA, Quinn JF, Galasko DR, Xie XS, Rando TA, Wyss-Coray T: The ageing systemic milieu negatively regulates neurogenesis and cognitive function. Nature. 2011, 477 (7362): 90-94.

PubMedCentralPubMedGoogle Scholar

Gaillard A, Nasarre C, Roger M: Early (E12) cortical progenitors can change their fate upon heterotopic transplantation. Eur J Neurosci. 2003, 17 (7): 1375-1383.

PubMedGoogle Scholar

Magavi SSP, Lois C: Transplanted neurons form both normal and ectopic projections in the adult brain. Dev Neurobiol. 2008, 68 (14): 1527-1537.

PubMedGoogle Scholar

Milosevic A, Noctor SC, Martinez-Cerdeno V, Kriegstein AR, Goldman JE: Progenitors from the postnatal forebrain subventricular zone differentiate into cerebellar-like interneurons and cerebellar-specific astrocytes upon transplantation. Mol Cell Neurosci. 2008, 39 (3): 324-334.

PubMedCentralPubMedGoogle Scholar

Zigova T, Pencea V, Betarbet R, Wiegand SJ, Alexander C, Bakay RA, Luskin MB: Neuronal progenitor cells of the neonatal subventricular zone differentiate and disperse following transplantation into the adult rat striatum. Cell Transplant. 1998, 7 (2): 137-156.

PubMedGoogle Scholar

Shihabuddin LS, Horner PJ, Ray J, Gage FH: Adult spinal cord stem cells generate neurons after transplantation in the adult dentate gyrus. J Neurosci. 2000, 20 (23): 8727-8735.

PubMedGoogle Scholar

Lamba DA, Gust J, Reh TA: Transplantation of human embryonic stem cell-derived photoreceptors restores some visual function in Crx-deficient mice. Cell Stem Cell. 2009, 4 (1): 73-79.

PubMedCentralPubMedGoogle Scholar

Imitola J, Raddassi K, Park KI, Mueller FJ, Nieto M, Teng YD, Frenkel D, Li J, Sidman RL, Walsh CA, Snyder EY, Khoury SJ: Directed migration of neural stem cells to sites of CNS injury by the stromal cell-derived factor 1alpha/CXC chemokine receptor 4 pathway. Proc Natl Acad Sci USA. 2004, 101 (52): 18117-18122.

PubMedCentralPubMedGoogle Scholar

Liu XS, Zhang ZG, Zhang RL, Gregg SR, Meng H, Chopp M: Comparison of in vivo and in vitro gene expression profiles in subventricular zone neural progenitor cells from the adult mouse after middle cerebral artery occlusion. Neuroscience. 2007, 146 (3): 1053-1061.

PubMedCentralPubMedGoogle Scholar

Zhang RL, Chopp M, Gregg SR, Toh Y, Roberts C, Letourneau Y, Buller B, Jia L, P Nejad Davarani S, Zhang ZG: Patterns and dynamics of subventricular zone neuroblast migration in the ischemic striatum of the adult mouse. J Cereb Blood Flow Metab. 2009, 29 (7): 1240-1250.

PubMedCentralPubMedGoogle Scholar

Kojima T, Hirota Y, Ema M, Takahashi S, Miyoshi I, Okano H, Sawamoto K: Subventricular zone-derived neural progenitor cells migrate along a blood vessel scaffold toward the post-stroke striatum. Stem Cells. 2010, 28 (3): 545-554.

PubMedGoogle Scholar

Emsley JG, Hagg T: alpha6beta1 integrin directs migration of neuronal precursors in adult mouse forebrain. Exp Neurol. 2003, 183 (2): 273-285.

PubMedGoogle Scholar

Lee SR, Kim HY, Rogowska J, Zhao BQ, Bhide P, Parent JM, Lo EH: Involvement of matrix metalloproteinase in neuroblast cell migration from the subventricular zone after stroke. J Neurosci. 2006, 26 (13): 3491-3495.

PubMedGoogle Scholar

Petit A, Sellers DL, Liebl DJ, Tessier-Lavigne M, Kennedy TE, Horner PJ: Adult spinal cord progenitor cells are repelled by netrin-1 in the embryonic and injured adult spinal cord. Proc Natl Acad Sci USA. 2007, 104 (45): 17837-17842.

PubMedCentralPubMedGoogle Scholar

Liebscher T, Schnell L, Schnell D, Scholl J, Schneider R, Gullo M, Fouad K, Mir A, Rausch M, Kindler D, Hamers FP, Schwab ME: Nogo-A antibody improves regeneration and locomotion of spinal cord-injured rats. Ann Neurol. 2005, 58 (5): 706-719.

PubMedGoogle Scholar

Freund P, Schmidlin E, Wannier T, Bloch J, Mir A, Schwab ME, Rouiller EM: Nogo-A-specific antibody treatment enhances sprouting and functional recovery after cervical lesion in adult primates. Nat Med. 2006, 12 (7): 790-792.

PubMedGoogle Scholar

van Praag H, Kempermann G, Gage FH: Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat Neurosci. 1999, 2 (3): 266-270.

PubMedGoogle Scholar

Brown J, Cooper-Kuhn CM, Kempermann G, Van Praag H, Winkler J, Gage FH, Kuhn HG: Enriched environment and physical activity stimulate hippocampal but not olfactory bulb neurogenesis. Eur J Neurosci. 2003, 17 (10): 2042-2046.

PubMedGoogle Scholar

Fabel K, Wolf SA, Ehninger D, Babu H, Leal-Galicia P, Kempermann G: Additive effects of physical exercise and environmental enrichment on adult hippocampal neurogenesis in mice. Front Neurosci. 2009, 3: 50-

PubMedCentralPubMedGoogle Scholar

Lindqvist A, Mohapel P, Bouter B, Frielingsdorf H, Pizzo D, Brundin P, Erlanson-Albertsson C: High-fat diet impairs hippocampal neurogenesis in male rats. Eur J Neurol. 2006, 13 (12): 1385-1388.

PubMedGoogle Scholar

Valente T, Hidalgo J, Bolea I, Ramirez B, Angles N, Reguant J, Morello JR, Gutierrez C, Boada M, Unzeta M: A diet enriched in polyphenols and polyunsaturated fatty acids, LMN diet, induces neurogenesis in the subventricular zone and hippocampus of adult mouse brain. J Alzheimers Dis. 2009, 18 (4): 849-65.

PubMedGoogle Scholar

Jang MH, Shin MC, Jung SB, Lee TH, Bahn GH, Kwon YK, Kim EH, Kim CJ: Alcohol and nicotine reduce cell proliferation and enhance apoptosis in dentate gyrus. Neuroreport. 2002, 13 (12): 1509-1513.

PubMedGoogle Scholar

Nixon K: Alcohol and adult neurogenesis: roles in neurodegeneration and recovery in chronic alcoholism. Hippocampus. 2006, 16 (3): 287-295.

PubMedGoogle Scholar

Barha CK, Brummelte S, Lieblich SE, Galea LA: Chronic restraint stress in adolescence differentially influences hypothalamic-pituitary-adrenal axis function and adult hippocampal neurogenesis in male and female rats. Hippocampus. 2011, 21 (11): 1216-1227.

PubMedGoogle Scholar

Alahmed S, Herbert J: Strain differences in proliferation of progenitor cells in the dentate gyrus of the adult rat and the response to fluoxetine are dependent on corticosterone. Neuroscience. 2008, 157 (3): 677-682.

PubMedGoogle Scholar

Brummelte S, Galea LA: Chronic high corticosterone reduces neurogenesis in the dentate gyrus of adult male and female rats. Neuroscience. 2010, 168 (3): 680-690.

PubMedGoogle Scholar

Jiang W, Zhang Y, Xiao L, Van Cleemput J, Ji SP, Bai G, Zhang X: Cannabinoids promote embryonic and adult hippocampus neurogenesis and produce anxiolytic- and antidepressant-like effects. J Clin Invest. 2005, 115 (11): 3104-3116.

PubMedCentralPubMedGoogle Scholar

Molina-Holgado F, Rubio-Araiz A, Garcia-Ovejero D, Williams RJ, Moore JD, Arevalo-Martin A, Gomez-Torres O, Molina-Holgado E: CB2 cannabinoid receptors promote mouse neural stem cell proliferation. Eur J Neurosci. 2007, 25 (3): 629-634.

PubMedGoogle Scholar

Goncalves MB, Suetterlin P, Yip P, Molina-Holgado F, Walker DJ, Oudin MJ, Zentar MP, Pollard S, Yanez-Munoz RJ, Williams G, Walsh FS, Pangalos MN, Doherty P: A diacylglycerol lipase-CB2 cannabinoid pathway regulates adult subventricular zone neurogenesis in an age-dependent manner. Mol Cell Neurosci. 2008, 38 (4): 526-536.

PubMedGoogle Scholar

Aguado T, Monory K, Palazuelos J, Stella N, Cravatt B, Lutz B, Marsicano G, Kokaia Z, Guzman M, Galve-Roperh I: The endocannabinoid system drives neural progenitor proliferation. Faseb J. 2005, 19 (12): 1704-1706.

PubMedGoogle Scholar

Wolf SA, Bick-Sander A, Fabel K, Leal-Galicia P, Tauber S, Ramirez-Rodriguez G, Muller A, Melnik A, Waltinger TP, Ullrich O, Kempermann G: Cannabinoid receptor CB1 mediates baseline and activity-induced survival of new neurons in adult hippocampal neurogenesis. Cell Commun Signal. 2010, 8: 12-

PubMedCentralPubMedGoogle Scholar

Lee SM, Tole S, Grove E, McMahon AP: A local Wnt-3a signal is required for development of the mammalian hippocampus. Development. 2000, 127 (3): 457-467.

PubMedGoogle Scholar

Zhou CJ, Zhao C, Pleasure SJ: Wnt signaling mutants have decreased dentate granule cell production and radial glial scaffolding abnormalities. J Neurosci. 2004, 24 (1): 121-126.

PubMedGoogle Scholar

Galceran J, Miyashita-Lin EM, Devaney E, Rubenstein JL, Grosschedl R: Hippocampus development and generation of dentate gyrus granule cells is regulated by LEF1. Development. 2000, 127 (3): 469-482.

PubMedGoogle Scholar

Pellegrini M, Mansouri A, Simeone A, Boncinelli E, Gruss P: Dentate gyrus formation requires Emx2. Development. 1996, 122 (12): 3893-3898.

PubMedGoogle Scholar

Oldekamp J, Kraemer N, Alvarez-Bolado G, Skutella T: bHLH gene expression in the Emx2-deficient dentate gyrus reveals defective granule cells and absence of migrating precursors. Cereb Cortex. 2004, 14 (9): 1045-1058.

PubMedGoogle Scholar

Lie DCCS, Song HJ, Désiré L, Mira H, Consiglio A, Lein ES, Jessberger S, Lansford H, Dearie AR, Gage FH: Wnt signalling regulates adult hippocampal neurogenesis. Nature. 2005, 437 (7063): 1370-1375.

PubMedGoogle Scholar

DA Irvin DK, Hicks C, Weinmaster G, Kornblum HI: Extrinsic and intrinsic factors governing cell fate in cortical progenitor cultures. Dev Neurosci. 2003, 25 (2–4): 162-172.

Google Scholar

Androutsellis-Theotokis A, Leker RR, Soldner F, Hoeppner DJ, Ravin R, Poser SW, Rueger MA, Bae SK, Kittappa R, McKay RD: Notch signalling regulates stem cell numbers in vitro and in vivo. Nature. 2006, 442 (7104): 823-826.

PubMedGoogle Scholar

Caporaso GLLD, Alvarez-Buylla A, Chao MV: Telomerase activity in the subventricular zone of adult mice. Mol Cell Neurosci. 2003, 23 (4): 693-702.

PubMedGoogle Scholar

Shetty AK, Hattiangady B, Shetty GA: Stem/progenitor cell proliferation factors FGF-2, IGF-1, and VEGF exhibit early decline during the course of aging in the hippocampus: role of astrocytes. Glia. 2005, 51 (3): 173-186.

PubMedGoogle Scholar

Hattiangady B, Shetty AK: Aging does not alter the number or phenotype of putative stem/progenitor cells in the neurogenic region of the hippocampus. Neurobiol Aging. 2008, 29 (1): 129-147.

PubMedCentralPubMedGoogle Scholar

Mathieu J, Zhang Z, Nelson A, Lamba DA, Reh TA, Ware C, Ruohola-Baker H: Hypoxia induces re-entry of committed cells into pluripotency. Stem Cells. 2013, 31 (9): 1737-1748.

PubMedCentralPubMedGoogle Scholar

Mikheev AM, Stoll EA, Mikheeva SA, Maxwell JP, Jankowski PP, Ray S, Uo T, Morrison RS, Horner PJ, Rostomily RC: A syngeneic glioma model to assess the impact of neural progenitor target cell age on tumor malignancy. Aging Cell. 2009, 8 (4): 499-501.

PubMedCentralPubMedGoogle Scholar

Chow LM, Endersby R, Zhu X, Rankin S, Qu C, Zhang J, Broniscer A, Ellison DW, Baker SJ: Cooperativity within and among Pten, p53, and Rb pathways induces high-grade astrocytoma in adult brain. Cancer Cell. 2011, 19 (3): 305-316.

PubMedCentralPubMedGoogle Scholar

Lee SH, Lumelsky N, Studer L, Auerbach JM, McKay RD: Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells. Nat Biotechnol. 2000, 18 (6): 675-679.

PubMedGoogle Scholar

Studer L, Csete M, Lee SH, Kabbani N, Walikonis J, Wold B, McKay R: Enhanced proliferation, survival, and dopaminergic differentiation of CNS precursors in lowered oxygen. J Neurosci. 2000, 20 (19): 7377-7383.

PubMedGoogle Scholar

Bible E, Qutachi O, Chau DYS, Alexander MR, Shakesheff KM, Modo M: Neo-vascularization of the stroke cavity by implantation of human neural stem cells on VEGF-releasing PLGA microparticles. Biomaterials. 2012, 33 (30): 7435-7446.

PubMedCentralPubMedGoogle Scholar

Mitsuhara T, Takeda M, Yamaguchi S, Manabe T, Matsumoto M, Kawahara Y, Yuge L, Kurisu K: Simulated microgravity facilitates cell migration and neuroprotection after bone marrow stromal cell transplantation in spinal cord injury. Stem Cell Res Ther. 2013, 4 (2): 35-

PubMedCentralPubMedGoogle Scholar

Chen Q, Long Y, Yuan X, Zou L, Sun J, Chen S, Perez-Polo JR, Yang K: Protective effects of bone marrow stromal cell transplantation in injured rodent brain: synthesis of neurotrophic factors. J Neurosci Res. 2005, 80 (5): 611-619.

PubMedGoogle Scholar

Takagi Y, Takahashi J, Saiki H, Morizane A, Hayashi T, Kishi Y, Fukuda H, Okamoto Y, Koyanagi M, Ideguchi M, Hayashi H, Imazato T, Kawasaki H, Suemori H, Omachi S, Iida H, Itoh N, Nakatsuji N, Sasai Y, Hashimoto N: Dopaminergic neurons generated from monkey embryonic stem cells function in a Parkinson primate model. J Clin Invest. 2005, 115 (1): 102-109.

PubMedCentralPubMedGoogle Scholar

Tonnesen J, Parish CL, Sorensen AT, Andersson A, Lundberg C, Deisseroth K, Arenas E, Lindvall O, Kokaia M: Functional integration of grafted neural stem cell-derived dopaminergic neurons monitored by optogenetics in an in vitro Parkinson model. PLoS One. 2011, 6 (3): e17560-

PubMedCentralPubMedGoogle Scholar

Nutt SE, Chang E-A, Suhr ST, Schlosser LO, Mondello SE, Moritz CT, Cibelli JB, Horner PJ: Caudalized human iPSC-derived neural progenitor cells produce neurons and glia but fail to restore function in an early chronic spinal cord injury model. Exp Neurol. 2013, 248: 491-503.

PubMedCentralPubMedGoogle Scholar

Schnell L, Hunanyan AS, Bowers WJ, Horner PJ, Federoff HJ, Gullo M, Schwab ME, Mendell LM, Arvanian VL: Combined delivery of Nogo-A antibody, neurotrophin-3 and the NMDA-NR2d subunit establishes a functional ‘detour’ in the hemisected spinal cord. Eur J Neurosci. 2011, 34 (8): 1256-1267.

PubMedCentralPubMedGoogle Scholar

Hunt RF, Girskis KM, Rubenstein JL, Alvarez-Buylla A, Baraban SC: GABA progenitors grafted into the adult epileptic brain control seizures and abnormal behavior. Nat Neurosci. 2013, 16 (6): 692-697.

PubMedCentralPubMedGoogle Scholar

Hochberg LR, Bacher D, Jarosiewicz B, Masse NY, Simeral JD, Vogel J, Haddadin S, Liu J, Cash SS, van der Smagt P, Donoghue P: Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature. 2012, 485 (7398): 372-375.

PubMedCentralPubMedGoogle Scholar

Deuschl G, Schade-Brittinger C, Krack P, Volkmann J, Schafer H, Botzel K, Daniels C, Deutschlander A, Dillmann U, Eisner W, Gruber D, Hamel W, Herzog J, Hilker R, Klebe S, Kloss M, Koy J, Krause M, Kupsch A, Lorenz D, Lorenzl S, Mehdorn HM, Moringlane JR, Oertel W, Pinsker MO, Reichmann H, Reuss A, Schneider G-H, Schnitzler A, Steude U: A randomized trial of deep-brain stimulation for Parkinson's disease. N Engl J Med. 2006, 355 (9): 896-908.

PubMedGoogle Scholar

Jackson A, Zimmermann JB: Neural interfaces for the brain and spinal cord–restoring motor function. Nat Rev Neurol. 2012, 8 (12): 690-699.

PubMedGoogle Scholar

Published
2019-01-31
Section
Review