Directed cardiomyogenesis of autologous human induced pluripotent stem cells recruited to infarcted myocardium with bioengineered antibodies

  • Marek Malecki
  • Emily Putzer
  • Chelsea Sabo
  • Afsoon Foorohar
  • Carol Quach
  • Chris Stampe
  • Michael Beauchaine
  • Xenia Tombokan
  • Raf Malecki
  • Mark Anderson
Keywords: Myocardial infarction, Cardiac regeneration, Stem cell therapy, Recruitment and retention of stem cells, Autologous human induced pluripotent stem cell, Heterospecific, Tetravalent antibodies, Stage specific embryonic antigen, Tumor related antigen, Induced pluripotent stem cell tumorigenicity

Abstract

Objective

Myocardial infarctions constitute a major factor contributing to non-natural mortality world-wide. Clinical trials ofmyocardial regenerative therapy, currently pursued by cardiac surgeons, involve administration of stem cells into the hearts of patients suffering from myocardial infarctions. Unfortunately, surgical acquisition of these cells from bone marrow or heart is traumatic, retention of these cells to sites of therapeutic interventions is low, and directed differentiation of these cells in situ into cardiomyocytes is difficult. The specific aims of this work were: (1) to generate autologous, human, pluripotent, induced stem cells (ahiPSCs) from the peripheral blood of the patients suffering myocardial infarctions; (2) to bioengineer heterospecific tetravalent antibodies (htAbs) and use them for recruitment of the ahiPSCs to infarcted myocardium; (3) to initiate in situ directed cardiomyogenesis of the ahiPSCs retained to infarcted myocardium.

Methods

Peripheral blood was drawn from six patients scheduled for heart transplants. Mononuclear cells were isolated and reprogrammed, with plasmids carrying six genes (NANOG, POU5F1, SOX2, KLF4, LIN28A, MYC), to yield the ahiPSCs. Cardiac tissues were excised from the injured hearts of the patients, who received transplants during orthotopic surgery. These tissues were used to prepare in vitro model of stem cell therapy of infarcted myocardium. The htAbs were bioengineered, which simultaneously targeted receptors displayed on pluripotent stem cells (SSEA-4, SSEA-3, TRA-1-60, TRA-1-81) and proteins of myocardial sarcomeres (myosin, α-actinin, actin, titin). They were used to bridge the ahiPSCs to the infarcted myocardium. The retained ahiPSCs were directed with bone morphogenetic proteins and nicotinamides to differentiate towards myocardial lineage.

Results

The patients’ mononuclear cells were efficiently reprogrammed into the ahiPSCs. These ahiPSCs were administered to infarcted myocardium in in vitro models. They were recruited to and retained at the treated myocardium with higher efficacy and specificity, if were preceded the htAbs, than with isotype antibodies or plain buffers. The retained cells differentiated into cardiomyocytes.

Conclusions

The proof of concept has been attained, for reprogramming the patients’ blood mononuclear cells (PBMCs) into the ahiPSCs, recruiting these cells to infarcted myocardium, and initiating their cardiomyogenesis. This novel strategy is ready to support the ongoing clinical trials aimed at regeneration of infarcted myocardium.

Downloads

Download data is not yet available.

References

Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Borden WB, Bravata DM, Dai S, Ford ES, Fox CS, Franco S, Fullerton HJ, Gillespie C, Hailpern SM, Heit JA, Howard VJ, Huffman MD, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Magid D, Marcus GM, Marelli A, Matchar DB, McGuire DK, Mohler ER, Moy CS, Mussolino ME: Executive summary: heart disease and stroke statistics-2013 update: a report from the American Heart Association. Circulation. 2013, 127 (1): 143-152. 10.1161/CIR.0b013e318282ab8f. doi:10.1161/CIR.0b013e318282ab8f

CrossRefPubMedGoogle Scholar

Moran AE, Oliver JT, Mirzaie M, Forouzanfar MH, Chilov M, Anderson L, Morrison JL, Khan A, Zhang N, Haynes N, Tran J, Murphy A, Degennaro V, Roth G, Zhao D, Peer N, Pichon-Riviere A, Rubinstein A, Pogosova N, Prabhakaran D, Naghavi M, Ezzati M, Mensah GA: Assessing the Global Burden of Ischemic Heart Disease: Part 1: Methods for a Systematic Review of the Global Epidemiology of Ischemic Heart Disease in 1990 and 2010. Glob Heart. 2012, 7 (4): 315-329. 10.1016/j.gheart.2012.10.004.

PubMedCentralCrossRefPubMedGoogle Scholar

Khaladj N, Bobylev D, Peterss S, Guenther S, Pichlmaier M, Bagaev E, Martens A, Shrestha M, Haverich A, Hagl C: Immediate surgical coronary revascularisation in patients presenting with acute myocardial infarction. J Cardiothorac Surg. 2013, 8: 167-10.1186/1749-8090-8-167. doi:10.1186/1749-8090-8-167

PubMedCentralCrossRefPubMedGoogle Scholar

Brener SJ, Maehara A, Dizon JM, Fahy M, Witzenbichler B, Parise H, El-Omar M, Dambrink JH, Mehran R, Oldroyd K, Gibson CM, Stone GW: Relationship Between Myocardial Reperfusion, Infarct Size, and Mortality: The INFUSE-AMI Trial. JACC Cardiovasc Interv. 2013, 6 (7): 718-724. 10.1016/j.jcin.2013.03.013. doi:10.1016/j.jcin.2013.03.013

CrossRefPubMedGoogle Scholar

Sanganalmath SK, Bolli R: Cell therapy for heart failure: a comprehensive overview of experimental and clinical studies, current challenges, and future directions. Circ Res. 2013, 113 (6): 810-834. 10.1161/CIRCRESAHA.113.300219. doi:10.1161/CIRCRESAHA.113.300219

PubMedCentralCrossRefPubMedGoogle Scholar

Hoover-Plow J, Gong Y: Challenges for heart disease stem cell therapy. Vasc Health Risk Manag. 2012, 8: 99-113. doi:10.2147/VHRM.S25665. Epub 2012 Feb 17

PubMedCentralCrossRefPubMedGoogle Scholar

Schulman IH, Hare JM: Key developments in stem cell therapy in cardiology. Regen Med. 2012, 7 (6 Suppl): 17-24.

PubMedCentralCrossRefPubMedGoogle Scholar

Shim W, Mehta A, Wong P, Chua T, Koh TH: Critical path in cardiac stem cell therapy: an update on cell delivery. Cytotherapy. 2013, 15 (4): 399-415. 10.1016/j.jcyt.2012.11.003.

CrossRefPubMedGoogle Scholar

Wöhrle J, von Scheidt F, Schauwecker P, Wiesneth M, Markovic S, Schrezenmeier H, Hombach V, Rottbauer W, Bernhardt P: Impact of cell number and microvascular obstruction in patients with bone-marrow derived cell therapy: final results from the randomized, double-blind, placebo controlled intracoronary Stem Cell therapy in patients with Acute Myocardial Infarction (SCAMI) trial. Clin Res Cardiol. 2013, [Epub ahead of print] doi:10.1007/s00392-013-0595-9

Google Scholar

Malecki M, Sabo C, Putzer E, Stampe C, Foorohar A, Quach C, Beauchaine M, Tombokan X, Anderson M: Retention of human, autologous bone marrow stem cells to infarcted myocardium followed by directed vasculogenesis: Novel strategy of cardiac regeneration. Mol Cell Ther. 2013, 1 (4): 1-13.

Google Scholar

Malecki M: Improved targeting and enhanced retention of the human, autologous, fibroblast-derived, induced, pluripotent stem cells to the sarcomeres of the infarcted myocardium with the aid of the bioengineered, heterospecific, tetravalent antibodies. J Stem Cell Res Ther. 2013, 3 (2): 1-18. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3743128/ PUBMED Open Access

CrossRefGoogle Scholar

Krupnick JG, Damjanov I, Damjanov A, Zhu ZM, Fenderson BA: Globo-series carbohydrate antigens are expressed in different forms on human and murine teratocarcinoma-derived cells. Int J Cancer. 1994, 59 (5): 692-698. 10.1002/ijc.2910590518.

CrossRefPubMedGoogle Scholar

Van de Rijn M, Heimfeld S, Spangrude GJ, Weissman IL: Mouse hematopoietic stem-cell antigen Sca-1 is a member of the Ly-6 antigen family. Proc Natl Acad Sci U S A. 1989, 86 (12): 4634-4638. 10.1073/pnas.86.12.4634.

PubMedCentralCrossRefPubMedGoogle Scholar

Xu C: Differentiation and enrichment of cardiomyocytes from human pluripotent stem cells. J Mol Cell Cardiol. 2012, 52 (6): 1203-1212. 10.1016/j.yjmcc.2012.03.012. doi:10.1016/j.yjmcc.2012.03.012. Epub 2012 Mar 30

CrossRefPubMedGoogle Scholar

Malecki M, Hsu A, Truong L, Sanchez S: Molecular immunolabeling with recombinant single-chain variable fragment (scAntibodies) antibodies designed with metal-binding domains. Proc Natl Acad Sci U S A. 2012, 99 (1): 213-218.

CrossRefGoogle Scholar

Malecki M, Szybalski W: Isolation of single, intact chromosomes from single, selected ovarian cancer cells for in situ hybridization and next generation sequencing. Gene. 2012, 493 (1): 132-139. 10.1016/j.gene.2011.11.044. http://www.ncbi.nlm.nih.gov/pubmed/22155315,

CrossRefPubMedGoogle Scholar

Malecki M, Anderson M, Beauchaine M, Seo S, Tombokan X: TRA-1-60(+), SSEA-4(+), Oct4A(+), Nanog(+) Clones of Pluripotent Stem Cells in the Embryonal Carcinomas of the Ovaries. J Stem Cell Res Ther. 2012, 2 (5): 1-11. http://www.ncbi.nlm.nih.gov/pubmed/23293749,

Google Scholar

Malecki M, Tombokan X, Anderson M, Malecki R, Beauchaine M: TRA-1-60+, SSEA-4+, POU5F1+, SOX2+, NANOG+ Clones of Pluripotent Stem Cells in the Embryonal Carcinomas of the Testes. J Stem Cell Res Ther. 2013, 3 (1): 1-13. http://www.ncbi.nlm.nih.gov/pubmed/23772337,

CrossRefGoogle Scholar

Su RJ, Baylink DJ, Neises A, Kiroyan JB, Meng X, Payne KJ, Tschudy-Seney B, Duan Y, Appleby N, Kearns-Jonker M, Gridley DS, Wang J, Lau KH, Zhang XB: Efficient Generation of Integration-Free iPS Cells from Human Adult Peripheral Blood Using BCL-XL Together with Yamanaka Factors. PLoS One. 2013, 8 (5): e64496-10.1371/journal.pone.0064496. doi:10.1371/journal.pone.0064496

PubMedCentralCrossRefPubMedGoogle Scholar

Okita K, Yamakawa T, Matsumura Y, Sato Y, Amano N, Watanabe A, Goshima N, Yamanaka S: An efficient nonviral method to generate integration-free human-induced pluripotent stem cells from cord blood and peripheral blood cells. Stem Cells. 2013, 31 (3): 458-466. 10.1002/stem.1293. doi:10.1002/stem.1293

CrossRefPubMedGoogle Scholar

Merling RK, Sweeney CL, Choi U, De Ravin SS, Myers TG, Otaizo-Carrasquero F, Pan J, Linton G, Chen L, Koontz S, Theobald NL, Malech HL: Transgene-free iPSCs generated from small volume peripheral blood nonmobilized CD34+ cells. Blood. 2013, 121 (14): e98-107. 10.1182/blood-2012-03-420273. doi:10.1182/blood-2012-03-420273. Epub 2013 Feb 5

PubMedCentralCrossRefPubMedGoogle Scholar

Ren Y, Lee MY, Schliffke S, Paavola J, Amos PJ, Ge X, Ye M, Zhu S, Senyei G, Lum L, Ehrlich BE, Qyang Y: Small molecule Wnt inhibitors enhance the efficiency of BMP-4- directed cardiac differentiation of human pluripotent stem cells. J Mol Cell Cardiol. 2011, 51 (3): 280-287. 10.1016/j.yjmcc.2011.04.012. doi:10.1016/j.yjmcc.2011.04.012. Epub 2011 May 4

PubMedCentralCrossRefPubMedGoogle Scholar

Lian X, Hsiao C, Wilson D, Zhu K, Hazeltine LB, Azarin S, Raval KK, Zhang J, Kamp TJ, Palecek SP: Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling. Proc Natl Acad Sci U S A. 2012, 109 (27): E1848-E1857. 10.1073/pnas.1200250109. Published online 2012 May 29. doi:10.1073/pnas.1200250109

PubMedCentralCrossRefPubMedGoogle Scholar

Hartung S, Schwanke K, Haase A, David R, Franz WM, Martin U, Zweigerdt R: Directing cardiomyogenic differentiation of human pluripotent stem cells by plasmid-based transient overexpression of cardiac transcription factors. Stem Cells Dev. 2013, 22 (7): 1112-1125. 10.1089/scd.2012.0351. doi:10.1089/scd.2012.0351. Epub 2013 Jan 18

PubMedCentralCrossRefPubMedGoogle Scholar

Liao J, Wu Z, Wang Y, Cheng L, Cui C, Gao Y, Chen T, Rao L, Chen S, Jia N, Dai H, Xin S, Kang J, Pei G, Xiao L: Enhanced efficiency of generating induced pluripotent stem (iPS) cells from human somatic cells by a combination of six transcription factors. Cell Res. 2008, 18 (5): 600-603. 10.1038/cr.2008.51.

CrossRefPubMedGoogle Scholar

Yu J, Hu K, Smuga-Otto K, Tian S, Stewart R, Slukvin II, Thomson JA: Human Induced Pluripotent Stem Cells Free of Vector and Transgene Sequences. Science. 2009, 324: 797-801. 10.1126/science.1172482.

PubMedCentralCrossRefPubMedGoogle Scholar

Huangfu D, Maehr R, Guo W, Eijkelenboom A, Snitow M, Chen AE, Melton DA: Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nat Biotechnol. 2008, 26 (7): 795-797. 10.1038/nbt1418. doi:10.1038/nbt1418. Epub 2008 Jun 22

CrossRefPubMedGoogle Scholar

Taylor SM, Jones PA: Multiple new phenotypes induced in 10 T1/2 and 3 T3 cells treated with 5-azacytidine. Cell. 1979, 17 (4): 771-779. 10.1016/0092-8674(79)90317-9.

CrossRefPubMedGoogle Scholar

Lassar AB, Paterson BM, Weintraub H: Transfection of a DNA locus that mediates the conversion of 10 T1/2 fibroblasts to myoblasts. Cell. 1986, 47 (5): 649-656. 10.1016/0092-8674(86)90507-6.

CrossRefPubMedGoogle Scholar

Davis RL, Weintraub H, Lassar AB: Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell. 1987, 51 (6): 987-1000. 10.1016/0092-8674(87)90585-X.

CrossRefPubMedGoogle Scholar

Vedantham V, Hayashi Y, Bruneau BG, Srivastava D, Delgado-Olguin P, Fu JD, Ieda M1: Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell. 2010, 142 (3): 375-386. 10.1016/j.cell.2010.07.002. doi:10.1016/j.cell.2010.07.002

PubMedCentralCrossRefPubMedGoogle Scholar

Ieda M, Fu D, Delgado-Olguin P, Vedantham V, Hayashi Y, Bruneau BG, Srivastava D: Direct Reprogramming of Fibroblasts into Functional Cardiomyocytes by Defined Factors. Cell. 2010, 142 (3): 375-386. 10.1016/j.cell.2010.07.002.

PubMedCentralCrossRefPubMedGoogle Scholar

Fu JD, Stone NR, Liu L, Spencer CI, Qian L, Hayashi Y, Delgado-Olguin P, Ding S, Bruneau BG, Srivastava D: Direct Reprogramming of Human Fibroblasts toward a Cardiomyocyte-like State. Stem Cell Rep. 2013, 1 (3): 235-247. 10.1016/j.stemcr.2013.07.005. doi:10.1016/j.stemcr.2013.07.005. eCollection 2013

CrossRefGoogle Scholar

Qian L, Huang Y, Spencer CI, Foley A, Vedantham V, Liu L, Conway SJ, Fu JD, Srivastava D: In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes. Nature. 2012, 485: 593-598. 10.1038/nature11044.

PubMedCentralCrossRefPubMedGoogle Scholar

Song K, Nam YJ, Luo X, Qi X, Tan W, Huang GN, Acharya A, Smith CL, Tallquist MD, Neilson EG, Hill JA, Bassel-Duby R, Olson EN: Heart repair by reprogramming non-myocytes with cardiac transcription factors. Nature. 2012, 485: 599-604. 10.1038/nature11139.

PubMedCentralCrossRefPubMedGoogle Scholar

Yamagishi H, Kitamura T, Fukuda K, Ieda M, Umei T, Kaneda R, Suzuki T, Kamiya K, Tohyama S, Yuasa S, Kokaji K, Aeba R, Yozu R, Yamakawa H, Miyamoto K, Sadahiro T, Muraoka N, Inagawa K, Wada R1: Induction of human cardiomyocyte-like cells from fibroblasts by defined factors. Proc Natl Acad Sci U S A. 2013, 110 (31): 12667-12672. 10.1073/pnas.1304053110. doi:10.1073/pnas.1304053110. Epub 2013 Jul 16

PubMedCentralCrossRefPubMedGoogle Scholar

Chen JX1, Krane M, Deutsch MA, Wang L, Rav-Acha M, Gregoire S, Engels MC, Rajarajan K, Karra R, Abel ED, Wu JC, Milan D, Wu SM: Inefficient reprogramming of fibroblasts into cardiomyocytes using Gata4, Mef2c, and Tbx5. Circ Res. 2012, 111 (1): 50-55. 10.1161/CIRCRESAHA.112.270264. doi:10.1161/CIRCRESAHA.112.270264. Epub 2012 May 10

PubMedCentralCrossRefPubMedGoogle Scholar

Addis RC1, Ifkovits JL, Pinto F, Kellam LD, Esteso P, Rentschler S, Christoforou N, Epstein JA, Gearhart JD: Optimization of direct fibroblast reprogramming to cardiomyocytes using calcium activity as a functional measure of success. J Mol Cell Cardiol. 2013, 60: 97-106. doi:10.1016/j.yjmcc.2013.04.004. Epub 2013 Apr 13

PubMedCentralCrossRefPubMedGoogle Scholar

Khaw BA, Beller GA, Haber E, Smith TW: Localization of cardiac myosin-specific antibody in myocardial infarction. J Clin Invest. 1976, 58 (2): 439-446. 10.1172/JCI108488.

PubMedCentralCrossRefPubMedGoogle Scholar

Malecki M, Albrecht R, Greaser M: Bioengineering of antibodies marked with atoms of different elements for simultaneous localization of biomolecules with electron energy loss spectroscopic imaging. Microsc Microan. 2003, 2: 1192-1195.

Google Scholar

Ben-David U, Benvenisty N: The tumorigenicity of human embryonic and induced pluripotent stem cells. Nat Rev Cancer. 2011, 11 (4): 268-277. 10.1038/nrc3034.

CrossRefPubMedGoogle Scholar

Ahmed RP, Ashraf M, Buccini S, Shujia J, Haider HK: Cardiac tumorigenic potential of induced pluripotent stem cells in an immunocompetent host with myocardial infarction. Regen Med. 2011, 6 (2): 171-178. 10.2217/rme.10.103.

PubMedCentralCrossRefPubMedGoogle Scholar

Zhang G, Shang B, Yang P, Cao Z, Pan Y, Zhou Q: Induced pluripotent stem cell consensus genes: implication for the risk of tumorigenesis and cancers in induced pluripotent stem cell therapy. Stem Cells Dev. 2012, 21 (6): 955-964. 10.1089/scd.2011.0649.

CrossRefPubMedGoogle Scholar

Lee AS, Tang C, Rao MS, Weissman IL, Wu JC: Tumorigenicity as a clinical hurdle for pluripotent stem cell therapies. Nat Med. 2013, 19 (8): 998-1004. 10.1038/nm.3267. doi:10.1038/nm.3267. Epub 2013 Aug 6

PubMedCentralCrossRefPubMedGoogle Scholar

Liu Z, Tang Y, Lü S, Zhou J, Du Z, Duan C, Li Z, Wang C: The tumourigenicity of iPS cells and their differentiated derivates. J Cell Mol Med. 2013, 17 (6): 782-791. 10.1111/jcmm.12062.

PubMedCentralCrossRefPubMedGoogle Scholar

Schuldiner M, Itskovitz-Eldor J, Benvenisty N: Selective ablation of human embryonic stem cells expressing a "suicide" gene. Stem Cells. 2003, 21 (3): 257-265. 10.1634/stemcells.21-3-257.

CrossRefPubMedGoogle Scholar

Ben-David U, Gan QF, Golan-Lev T, Arora P, Yanuka O, Oren YS, Leikin-Frenkel A, Graf M, Garippa R, Boehringer M, Gromo G, Benvenisty N: Selective elimination of human pluripotent stem cells by an oleate synthesis inhibitor discovered in a high-throughput screen. Cell Stem Cell. 2013, 12 (2): 167-179. 10.1016/j.stem.2012.11.015.

CrossRefPubMedGoogle Scholar

Cheng F, Ke Q, Chen F, Cai B, Gao Y, Ye C, Wang D, Zhang L, Lahn BT, Li W, Xiang AP: Protecting against wayward human induced pluripotent stem cells with a suicide gene. Biomaterials. 2012, 33 (11): 3195-3204. 10.1016/j.biomaterials.2012.01.023.

CrossRefPubMedGoogle Scholar

Malecki M, LaVanne C, Alhambra D, Dodivenaka C, Nagel S, Malecki R: Safeguarding stem cell-based regenerative therapy against iatrogenic cancerogenesis: Transgenic expression of DNASE1, DNASE1L3, DNASE2, DFFB controlled by POLA1 promoter in proliferating and directed differentiation resisting human autologous pluripotent induced stem cells leads to their death. Stem Cell Res Ther. 2013, 1-9. http://www.ncbi.nlm.nih.gov/pubmed/24587967 Open Access PUBMED, 9

Malecki M: “Above All, Do No Harm”: Safeguarding stem cell therapy against iatrogenic cancerogenesis. Stem Cell Res Ther. 2014, (Accepted 04 Feb 2014 in press). PUBMED Open Access in process

Google Scholar

Published
2019-01-31
Section
Research Article