Extracellular matrix macromolecules: potential tools and targets in cancer gene therapy
Abstract
Tumour cells create their own microenvironment where they closely interact with a variety of soluble and non-soluble molecules, different cells and numerous other components within the extracellular matrix (ECM). Interaction between tumour cells and the ECM is bidirectional leading to either progression or inhibition of tumourigenesis. Therefore, development of novel therapies targeted primarily to tumour microenvironment (TME) is highly rational. Here, we give a short overview of different macromolecules of the ECM and introduce mechanisms whereby they contribute to tumourigenesis within the TME. Furthermore, we present examples of individual ECM macromolecules as regulators of cell behaviour during tumourigenesis. Finally, we focus on novel strategies of using ECM macromolecules as tools or targets in cancer gene therapy in the future.
Downloads
References
Hynes RO: The extracellular matrix: not just pretty fibrils. Science. 2009, 326: 1216-1219. 10.1126/science.1176009.
PubMedCentralPubMedGoogle Scholar
Järveläinen H, Sainio A, Koulu M, Wight TN, Penttinen R: Extracellular matrix molecules: potential targets in pharmacotherapy. Pharmacol Rev. 2009, 61: 198-223. 10.1124/pr.109.001289.
PubMedCentralPubMedGoogle Scholar
Hanahan D, Weinberg RA: Hallmarks of cancer: the next generation. Cell. 2011, 144: 646-674. 10.1016/j.cell.2011.02.013.
PubMedGoogle Scholar
Frantz C, Stewart KM, Weaver VM: The extracellular matrix at a glance. J Cell Sci. 2010, 123: 4195-4200. 10.1242/jcs.023820.
PubMedCentralPubMedGoogle Scholar
Lu P, Weaver VM, Werb Z: The extracellular matrix: a dynamic niche in cancer progression. J Cell Biol. 2012, 196: 395-406. 10.1083/jcb.201102147.
PubMedCentralPubMedGoogle Scholar
Fang H, Declerck YA: Targeting the tumor microenvironment: from understanding pathways to effective clinical trials. Cancer Res. 2013, 73: 4965-4977. 10.1158/0008-5472.CAN-13-0661.
PubMedGoogle Scholar
Sainio A, Järveläinen H: Extracellular matrix molecules in tumour microenvironment with special reference to desmoplastic reaction and the role of matrix proteoglycans and hyaluronan. J Carcinog Mutagen. in press
Google Scholar
Balkwill FR, Capasso M, Hagemann T: The tumor microenvironment at a glance. J Cell Sci. 2012, 125: 5591-5596. 10.1242/jcs.116392.
PubMedGoogle Scholar
Ye J, Wu D, Wu P, Chen Z, Huang J: The cancer stem cell niche: cross talk between cancer stem cells and their microenvironment. Tumour Biol. in press
Google Scholar
Edin S, Wikberg ML, Dahlin AM, Rutegård J, Öberg Å, Oldenborg PA, Palmqvist R: The distribution of macrophages with a M1 or M2 phenotype in relation to prognosis and the molecular characteristics of colorectal cancer. PLoS One. 2012, 7: e47045-10.1371/journal.pone.0047045.
PubMedCentralPubMedGoogle Scholar
Fridlender ZG, Sun J, Kim S, Kapoor V, Cheng G, Ling L, Worthen GS, Albelda SM: Polarization of tumor-associated neutrophil phenotype by TGF-beta: “N1” versus “N2” TAN. Cancer Cell. 2009, 16: 183-194. 10.1016/j.ccr.2009.06.017.
PubMedCentralPubMedGoogle Scholar
Toomer KH, Chen Z: Autoimmunity as a double agent in tumor killing and cancer promotion. Front Immunol. 2014, 5: 116-
PubMedCentralPubMedGoogle Scholar
Wood SL, Pernemalm M, Crosbie PA, Whetton AD: The role of the tumor-microenvironment in lung cancer-metastasis and its relationship to potential therapeutic targets. Cancer Treat Rev. in press
Google Scholar
Lee HO, Mullins SR, Franco-Barraza J, Valianou M, Cukierman E, Cheng JD: FAP-overexpressing fibroblasts produce an extracellular matrix that enhances invasive velocity and directionality of pancreatic cancer cells. BMC Cancer. 2011, 11: 245-10.1186/1471-2407-11-245.
PubMedCentralPubMedGoogle Scholar
Santoni M, Massari F, Amantini C, Nabissi M, Maines F, Burattini L, Berardi R, Santoni G, Montironi R, Tortora G, Cascinu S: Emerging role of tumor-associated macrophages as therapeutic targets in patients with metastatic renal cell carcinoma. Cancer Immunol Immunother. 2013, 62: 1757-1768. 10.1007/s00262-013-1487-6.
PubMedGoogle Scholar
Zeng-Brouwers J, Beckmann J, Nastase MV, Iozzo RV, Schaefer L: De novo expression of circulating biglycan evokes an innate inflammatory tissue response via MyD88/TRIF pathways. Matrix Biol. in press
Google Scholar
Wight TN, Kang I, Merrilees MJ: Versican and the control of inflammation. Matrix Biol. in press
Google Scholar
Davidson B, Goldberg I, Gotlieb WH, Kopolovic J, Ben-Baruch G, Nesland JM, Berner A, Bryne M, Reich R: High levels of MMP-2, MMP-9, MT1-MMP and TIMP-2 mRNA correlate with poor survival in ovarian carcinoma. Clin Exp Metastasis. 1999, 17: 799-808. 10.1023/A:1006723011835.
PubMedGoogle Scholar
Davidson B, Goldberg I, Gotlieb WH, Kopolovic J, Ben-Baruch G, Nesland JM, Reich R: The prognostic value of metalloproteinases and angiogenic factors in ovarian carcinoma. Mol Cell Endocrinol. 2002, 187: 39-45. 10.1016/S0303-7207(01)00709-2.
PubMedGoogle Scholar
Georgiadis D, Yiotakis A: Specific targeting of metzincin family members with small-molecule inhibitors: progress toward a multifarious challenge. Bioorg Med Chem. 2008, 16: 8781-8794. 10.1016/j.bmc.2008.08.058.
PubMedGoogle Scholar
Lu X, Lu D, Scully M, Kakkar V: ADAM proteins - therapeutic potential in cancer. Curr Cancer Drug Targets. 2008, 8: 720-732. 10.2174/156800908786733478.
PubMedGoogle Scholar
Fontanil T, Rúa S, Llamazares M, Moncada-Pazos A, Quirós PM, García-Suárez O, Vega JA, Sasaki T, Mohamedi Y, Esteban MM, Obaya AJ, Cal S: Interaction between the ADAMTS-12 metalloprotease and fibulin-2 induces tumor-suppressive effects in breast cancer cells. Oncotarget. in press
Google Scholar
Lentini A, Abbruzzese A, Provenzano B, Tabolacci C, Beninati S: Transglutaminases: key regulators of cancer metastasis. Amino Acids. 2013, 44: 25-32. 10.1007/s00726-012-1229-7.
PubMedGoogle Scholar
Mayorca-Guiliani A, Erler JT: The potential for targeting extracellular LOX proteins in human malignancy. Oncol Targets Ther. 2013, 6: 1729-1735.
Google Scholar
Dutta A, Li J, Lu H, Akech J, Pratap J, Wang T, Zerlanko BJ, Fitzgerald TJ, Jiang Z, Birbe R, Wixted J, Violette SM, Stein JL, Stein GS, Lian JB, Languino LR: Integrin αvβ6 promotes an osteolytic program in cancer cells by upregulating MMP2. Cancer Res. in press
Google Scholar
Hadler-Olsen E, Winberg JO, Uhlin-Hansen L: Matrix metalloproteinases in cancer: their value as diagnostic and prognostic markers and therapeutic targets. Tumour Biol. 2013, 34: 2041-2051. 10.1007/s13277-013-0842-8.
PubMedGoogle Scholar
Xiong J, Balcioglu HE, Danen EH: Integrin signaling in control of tumor growth and progression. Int J Biochem Cell Biol. 2013, 45: 1012-1015. 10.1016/j.biocel.2013.02.005.
PubMedGoogle Scholar
Folkman J, Watson K, Ingber D, Hanahan D: Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature. 1989, 339: 58-61. 10.1038/339058a0.
PubMedGoogle Scholar
Carmeliet P, Jain RK: Angiogenesis in cancer and other diseases. Nature. 2000, 407: 249-257. 10.1038/35025220.
PubMedGoogle Scholar
Ingber DE, Folkman J: How does extracellular matrix control capillary morphogenesis?. Cell. 1989, 58: 803-805. 10.1016/0092-8674(89)90928-8.
PubMedGoogle Scholar
Quail DF, Joyce JA: Microenvironmental regulation of tumor progression and metastasis. Nat Med. 2013, 19: 1423-1437. 10.1038/nm.3394.
PubMedCentralPubMedGoogle Scholar
Sage EH, Bornstein P: Extracellular proteins that modulate cell-matrix interactions. SPARC, tenascin, and thrombospondin. J Biol Chem. 1991, 266: 14831-14834.
PubMedGoogle Scholar
Bornstein P: Diversity of function is inherent in matricellular proteins: an appraisal of thrombospondin 1. J Cell Biol. 1995, 130: 503-506. 10.1083/jcb.130.3.503.
PubMedGoogle Scholar
Bornstein P, Sage EH: Matricellular proteins: extracellular modulators cell function. Curr Opin Cell Biol. 2002, 14: 608-616. 10.1016/S0955-0674(02)00361-7.
PubMedGoogle Scholar
Varga I, Hutóczki G, Szemcsák CD, Zahuczky G, Tóth J, Adamecz Z, Kenyeres A, Bognár L, Hanzély Z, Klekner A: Brevican, neurocan, tenascin-C and versican are mainly responsible for the invasiveness of low-grade astrocytoma. Pathol Oncol Res. 2012, 18: 413-420. 10.1007/s12253-011-9461-0.
PubMedGoogle Scholar
Gordon MK, Hahn RA: Collagens. Cell Tissue Res. 2010, 339: 247-257. 10.1007/s00441-009-0844-4.
PubMedCentralPubMedGoogle Scholar
Kauppila S, Stenbäck F, Risteli J, Jukkola A, Risteli L: Aberrant type I and type III collagen gene expression in human breast cancer in vivo. J Pathol. 1998, 186: 262-268. 10.1002/(SICI)1096-9896(1998110)186:3<262::AID-PATH191>3.0.CO;2-3.
PubMedGoogle Scholar
Shields MA, Dangi-Garimella S, Redig AJ, Munshi HG: Biochemical role of the collagen-rich tumour microenvironment in pancreatic cancer progression. Biochem J. 2012, 441: 541-552. 10.1042/BJ20111240.
PubMedGoogle Scholar
Fang M, Yuan J, Peng C, Li Y: Collagen as a double-edged sword in tumor progression. Tumour Biol. 2013, in press
Google Scholar
Xiong G, Deng L, Zhu J, Rychahou PG, Xu R: Prolyl-4-hydroxylase α subunit 2 promotes breast cancer progression and metastasis by regulating collagen deposition. BMC Cancer. 2014, 14: 1-10.1186/1471-2407-14-1.
PubMedCentralPubMedGoogle Scholar
Alowami S, Troup S, Al-Haddad S, Kirkpatrick I, Watson PH: Mammographic density is related to stroma and stromal proteoglycan expression. Breast Cancer Res. 2003, 5: R129-R135. 10.1186/bcr622.
PubMedCentralPubMedGoogle Scholar
Bingle L, Brown NJ, Lewis CE: The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. J Pathol. 2002, 196: 254-265. 10.1002/path.1027.
PubMedGoogle Scholar
O’Reilly MS, Boehm T, Shing Y, Fukai N, Vasios G, Lane WS, Flynn E, Birkhead JR, Olsen BR, Folkman J: Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell. 1997, 88: 277-285. 10.1016/S0092-8674(00)81848-6.
PubMedGoogle Scholar
Misawa K, Kanazawa T, Imai A, Endo S, Mochizuki D, Fukushima H, Misawa Y, Mineta H: Prognostic value of type XXII and XXIV collagen mRNA expression in head and neck cancer patients. Mol Clin Oncol. 2014, 2: 285-291.
PubMedCentralPubMedGoogle Scholar
Järveläinen H, Wight TN: Vascular proteoglycans. Proteoglycans in lung disease. Edited by: Garg HG, Roughley PJ, Hales CA. 2002, New York: Marcel Dekker Inc, 291-321.
Google Scholar
Schaefer L, Iozzo RV: Biological functions of the small leucine-rich proteoglycans: from genetics to signal transduction. J Biol Chem. 2008, 283: 21305-21309. 10.1074/jbc.R800020200.
PubMedCentralPubMedGoogle Scholar
Iozzo RV: The family of the small leucine-rich proteoglycans: key regulators of matrix assembly and cellular growth. Crit Rev Biochem Mol Biol. 1997, 32: 141-174. 10.3109/10409239709108551.
PubMedGoogle Scholar
Danielson KG, Baribault H, Holmes DF, Graham H, Kadler KE, Iozzo RV: Targeted disruption of decorin leads to abnormal collagen fibril morphology and skin fragility. J Cell Biol. 1997, 136: 729-743. 10.1083/jcb.136.3.729.
PubMedCentralPubMedGoogle Scholar
Chakravarti S, Magnuson T, Lass JH, Jepsen KJ, LaMantia C, Carroll H: Lumican regulates collagen fibril assembly: skin fragility and corneal opacity in the absence of lumican. J Cell Biol. 1998, 141: 1277-1286. 10.1083/jcb.141.5.1277.
PubMedCentralPubMedGoogle Scholar
Svensson L, Aszódi A, Reinholt FP, Fässler R, Heinegård D, Oldberg A: Fibromodulin-null mice have abnormal collagen fibrils, tissue organization, and altered lumican deposition in tendon. J Biol Chem. 1999, 274: 9636-9647. 10.1074/jbc.274.14.9636.
PubMedGoogle Scholar
Goldberg M, Rapoport O, Septier D, Palmier K, Hall R, Embery G, Young M, Ameye L: Proteoglycans in predentin: the last 15 micrometers before mineralization. Connect Tissue Res. 2003, 44 (Suppl 1): 184-188.
PubMedGoogle Scholar
Reed CC, Waterhouse A, Kirby S, Kay P, Owens RT, McQuillan DJ, Iozzo RV: Decorin prevents metastatic spreading of breast cancer. Oncogene. 2005, 24: 1104-1110. 10.1038/sj.onc.1208329.
PubMedGoogle Scholar
Goldoni S, Seidler DG, Heath J, Fassan M, Baffa R, Thakur ML, Owens RT, McQuillan DJ, Iozzo RV: An antimetastatic role for decorin in breast cancer. Am J Pathol. 2008, 173: 844-855. 10.2353/ajpath.2008.080275.
PubMedCentralPubMedGoogle Scholar
Bi X, Pohl NM, Qian Z, Yang GR, Gou Y, Guzman G, Kajdacsy-Balla A, Iozzo RV, Yang W: Decorin-mediated inhibition of colorectal cancer growth and migration is associated with E-cadherin in vitro and in mice. Carcinogenesis. 2012, 33: 326-330. 10.1093/carcin/bgr293.
PubMedCentralPubMedGoogle Scholar
Goldoni S, Humphries A, Nyström A, Sattar S, Owens RT, McQuillan DJ, Ireton K, Iozzo RV: Decorin is a novel antagonistic ligand of the Met receptor. J Cell Biol. 2009, 185: 743-754. 10.1083/jcb.200901129.
PubMedCentralPubMedGoogle Scholar
Iozzo RV, Buraschi S, Genua M, Xu SQ, Solomides CC, Peiper SC, Gomella LG, Owens RC, Morrione A: Decorin antagonizes IGF receptor I (IGF-IR) function by interfering with IGF-IR activity and attenuating downstream signaling. J Biol Chem. 2011, 286: 34712-34721. 10.1074/jbc.M111.262766.
PubMedCentralPubMedGoogle Scholar
Grant DS, Yenisey C, Rose RW, Tootell M, Santra M, Iozzo RV: Decorin suppresses tumor cell-mediated angiogenesis. Oncogene. 2002, 21: 4765-4777. 10.1038/sj.onc.1205595.
PubMedGoogle Scholar
Salomäki HH, Sainio AO, Söderström M, Pakkanen S, Laine J, Järveläinen HT: Differential expression of decorin by human malignant and benign vascular tumors. J Histochem Cytochem. 2008, 56: 639-646. 10.1369/jhc.2008.950287.
PubMedCentralPubMedGoogle Scholar
Brézillon S, Pietraszek K, Maquart FX, Wegrowski Y: Lumican effects in the control of tumour progression and their links with metalloproteinases and integrins. FEBS J. 2013, 280: 2369-2381. 10.1111/febs.12210.
PubMedGoogle Scholar
Nikitovic D, Papoutsidakis A, Karamanos NK, Tzanakakis GN: Lumican affects tumor cell functions, tumor-ECM interactions, angiogenesis and inflammatory response. Matrix Biol. in press
Google Scholar
Craig EA, Parker P, Camenisch TD: Size dependent regulation of Snail2 by hyaluronan: its role in cellular invasion. Glycobiology. 2009, 19: 890-898. 10.1093/glycob/cwp064.
PubMedCentralPubMedGoogle Scholar
Telmer PG, Tolg C, McCarthy JB, Turley EA: How does a protein with dual mitotic spindle and extracellular matrix receptor functions affect tumor susceptibility and progression?. Commun Integr Biol. 2011, 4: 182-185. 10.4161/cib.4.2.14270.
PubMedCentralPubMedGoogle Scholar
Dicker KT, Gurski LA, Pradhan-Bhatt S, Witt RL, Farach-Carson MC, Jia X: Hyaluronan: A simple polysaccharide with diverse biological functions. Acta Biomater. in press
Google Scholar
Lipponen P, Aaltomaa S, Tammi R, Tammi M, Agren U, Kosma VM: High stromal hyaluronan level is associated with poor differentiation and metastasis in prostate cancer. Eur J Cancer. 2001, 37: 849-856. 10.1016/S0959-8049(00)00448-2.
PubMedGoogle Scholar
Anttila MA, Tammi RH, Tammi MI, Syrjänen KJ, Saarikoski SV, Kosma VM: High levels of stromal hyaluronan predict poor disease outcome in epithelial ovarian cancer. Cancer Res. 2000, 60: 150-155.
PubMedGoogle Scholar
Auvinen P, Tammi R, Parkkinen J, Tammi M, Agren U, Johansson R, Hirvikoski P, Eskelinen M, Kosma VM: Hyaluronan in peritumoral stroma and malignant cells associates with breast cancer spreading and predicts survival. Am J Pathol. 2000, 156: 529-536. 10.1016/S0002-9440(10)64757-8.
PubMedCentralPubMedGoogle Scholar
Shuman Moss LA, Stetler-Stevenson WG: Influence of stromal components on lung cancer carcinogenesis. J Carcinog Mutagen. 2013, 13 (8): doi: 10.4172/2157-2518.S13-008
Google Scholar
Jia D, Yan M, Wang X, Hao X, Liang L, Liu L, Kong H, He X, Li J, Yao M: Development of a highly metastatic model that reveals a crucial role of fibronectin in lung cancer cell migration and invasion. BMC Cancer. 2010, 10: 364-10.1186/1471-2407-10-364.
PubMedCentralPubMedGoogle Scholar
Hancox RA, Allen MD, Holliday DL, Edwards DR, Pennington CJ, Guttery DS, Shaw JA, Walker RA, Pringle JH, Jones JL: Tumour-associated tenascin-C isoforms promote breast cancer cell invasion and growth by matrix metalloproteinase-dependent and independent mechanisms. Breast Cancer Res. 2009, 11: R24-10.1186/bcr2251.
PubMedCentralPubMedGoogle Scholar
Lukashev ME, Werb Z: ECM signaling: orchestrating cell behaviour and misbehaviour. Trends Cell Biol. 1998, 8: 437-441. 10.1016/S0962-8924(98)01362-2.
PubMedGoogle Scholar
Botti G, Cerrone M, Scognamiglio G, Anniciello A, Ascierto PA, Cantile M: Microenvironment and tumor progression of melanoma: new therapeutic prospectives. J Immunotoxicol. 2013, 10: 235-252. 10.3109/1547691X.2012.723767.
PubMedGoogle Scholar
Theocharis AD, Skandalis SS, Tzanakakis GN, Karamanos NK: Proteoglycans in health and disease: novel roles for proteoglycans in malignancy and their pharmacological targeting. FEBS J. 2010, 277: 3904-3923. 10.1111/j.1742-4658.2010.07800.x.
PubMedGoogle Scholar
Skandalis SS, Aletras AJ, Gialeli C, Theocharis AD, Afratis N, Tzanakakis GN, Karamanos NK: Targeting the tumor proteasome as a mechanism to control the synthesis and bioactivity of matrix macromolecules. Curr Mol Med. 2012, 12: 1068-1082. 10.2174/156652412802480943.
PubMedGoogle Scholar
Chen N, Karantza-Wadsworth V: Role and regulation of autophagy in cancer. Biochim Biophys Acta. 2009, 1793: 1516-1523. 10.1016/j.bbamcr.2008.12.013.
PubMedCentralPubMedGoogle Scholar
Mathew R, Karp CM, Beaudoin B, Vuong N, Chen G, Chen HY, Bray K, Reddy A, Bhanot G, Gelinas C, Dipaola RS, Karantza-Wadsworth V, White E: Autophagy suppresses tumorigenesis through elimination of p62. Cell. 2009, 137: 1062-1075. 10.1016/j.cell.2009.03.048.
PubMedCentralPubMedGoogle Scholar
Neill T, Torres A, Buraschi S, Iozzo RV: Decorin has an appetite for endothelial cell autophagy. Autophagy. 2013, 9: 1626-1628. 10.4161/auto.25881.
PubMedGoogle Scholar
Buraschi S, Neill T, Goyal A, Poluzzi C, Smythies J, Owens RT, Schaefer L, Torres A, Iozzo RV: Decorin causes autophagy in endothelial cells via Peg3. Proc Natl Acad Sci U S A. 2013, 110: E2582-E2591. 10.1073/pnas.1305732110.
PubMedCentralPubMedGoogle Scholar
Neill T, Torres A, Buraschi S, Owens RT, Hoek JB, Baffa R, Iozzo RV: Decorin induces mitophagy in breast carcinoma cells via PGC-1α and mitostatin. J Biol Chem. in press
Google Scholar
Micalizzi DS, Farabaugh SM, Ford HL: Epithelial-mesenchymal transition in cancer: parallels between normal development and tumor progression. J Mammary Gland Biol Neoplasia. 2010, 15: 117-134. 10.1007/s10911-010-9178-9.
PubMedCentralPubMedGoogle Scholar
Trimboli AJ, Fukino K, de Bruin A, Wei G, Shen L, Tanner SM, Creasap N, Rosol TJ, Robinson ML, Eng C, Ostrowski MC, Leone G: Direct evidence for epithelial-mesenchymal transitions in breast cancer. Cancer Res. 2008, 68: 937-945. 10.1158/0008-5472.CAN-07-2148.
PubMedGoogle Scholar
Vergara D, Merlot B, Lucot JP, Collinet P, Vinatier D, Fournier I, Salzet M: Epithelial-mesenchymal transition in ovarian cancer. Cancer Lett. 2010, 291: 59-66. 10.1016/j.canlet.2009.09.017.
PubMedGoogle Scholar
Brabletz T, Hlubek F, Spaderna S, Schmalhofer O, Hiendlmeyer E, Jung A, Kirchner T: Invasion and metastasis in colorectal cancer: epithelial-mesenchymal transition, mesenchymal-epithelial transition, stem cells and beta-catenin. Cells Tissues Organs. 2005, 179: 56-65. 10.1159/000084509.
PubMedGoogle Scholar
Tsunoda T, Inada H, Kalembeyi I, Imanaka-Yoshida K, Sakakibara M, Okada R, Katsuta K, Sakakura T, Majima Y, Yoshida T: Involvement of large tenascin-C splice variants in breast cancer progression. Am J Pathol. 2003, 162: 1857-1867. 10.1016/S0002-9440(10)64320-9.
PubMedCentralPubMedGoogle Scholar
Oskarsson T, Acharyya S, Zhang XH, Vanharanta S, Tavazoie SF, Morris PG, Downey RJ, Manova-Todorova K, Brogi E, Massagué J: Breast cancer cells produce tenascin C as a metastatic niche component to colonize the lungs. Nat Med. 2011, 17: 867-874. 10.1038/nm.2379.
PubMedCentralPubMedGoogle Scholar
Maschler S, Grunert S, Danielopol A, Beug H, Wirl G: Enhanced tenascin-C expression and matrix deposition during Ras/TGF-beta-induced progression of mammary tumor cells. Oncogene. 2004, 23: 3622-3633. 10.1038/sj.onc.1207403.
PubMedGoogle Scholar
Katoh D, Nagaharu K, Shimojo N, Hanamura N, Yamashita M, Kozuka Y, Imanaka-Yoshida K, Yoshida T: Binding of αvβ1 and αvβ6 integrins to tenascin-C induces epithelial-mesenchymal transition-like change of breast cancer cells. Oncogenesis. 2013, 2: e65-10.1038/oncsis.2013.27.
PubMedCentralPubMedGoogle Scholar
Ghersi G: Roles of molecules involved in epithelial/mesenchymal transition during angiogenesis. Front Biosci. 2008, 13: 2335-2355. 10.2741/2848.
PubMedGoogle Scholar
Wirth T, Parker N, Ylä-Herttuala S: History of gene therapy. Gene. 2013, 525: 162-169. 10.1016/j.gene.2013.03.137.
PubMedGoogle Scholar
Liu TC, Galanis E, Kirn D: Clinical trial results with oncolytic virotherapy: a century of promise, a decade of progress. Nat Clin Pract Oncol. 2007, 4: 101-117. 10.1038/ncponc0736.
PubMedGoogle Scholar
Haseley A, Alvarez-Breckenridge C, Chaudhury AR, Kaur B: Advances in oncolytic virus therapy for glioma. Recent Pat CNS Drug Discov. 2009, 4: 1-13.
PubMedCentralPubMedGoogle Scholar
Lunardi S, Muschel RJ, Brunner TB: The stromal compartments in pancreatic cancer: are there any therapeutic targets?. Cancer Lett. 2014, 343: 147-155. 10.1016/j.canlet.2013.09.039.
PubMedGoogle Scholar
Provenzano PP, Cuevas C, Chang AE, Goel VK, Von Hoff DD, Hingorani SR: Enzymatic targeting of the stroma ablates physical barriers to treatment of pancreatic ductal adenocarcinoma. Cancer Cell. 2012, 21: 418-429. 10.1016/j.ccr.2012.01.007.
PubMedCentralPubMedGoogle Scholar
Mierke CT: Endothelial cell’s biomechanical properties are regulated by invasive cancer cells. Mol Biosyst. 2012, 8: 1639-1649. 10.1039/c2mb25024a.
PubMedGoogle Scholar
Mierke CT: Physical break-down of the classical view on cancer cell invasion and metastasis. Eur J Cell Biol. 2013, 92: 89-104. 10.1016/j.ejcb.2012.12.002.
PubMedGoogle Scholar
Denais C, Lammerding J: Nuclear mechanics in cancer. Adv Exp Med Biol. 2014, 773: 435-470. 10.1007/978-1-4899-8032-8_20.
PubMedCentralPubMedGoogle Scholar
Zou X, Feng B, Dong T, Yan G, Tan B, Shen H, Huang A, Zhang X, Zhang M, Yang P, Zheng M, Zhang Y: Up-regulation of type I collagen during tumorigenesis of colorectal cancer revealed by quantitative proteomic analysis. J Proteomics. 2013, 94: 473-485.
PubMedGoogle Scholar
Coulson-Thomas VJ, Coulson-Thomas YM, Gesteira TF, de Paula CA, Mader AM, Waisberg J, Pinhal MA, Friedl A, Toma L, Nader HB: Colorectal cancer desmoplastic reaction up-regulates collagen synthesis and restricts cancer cell invasion. Cell Tissue Res. 2011, 346: 223-236. 10.1007/s00441-011-1254-y.
PubMedGoogle Scholar
Karagiannis GS, Petraki C, Prassas I, Saraon P, Musrap N, Dimitromanolakis A, Diamandis EP: Proteomic signatures of the desmoplastic invasion front reveal collagen type XII as a marker of myofibroblastic differentiation during colorectal cancer metastasis. Oncotarget. 2012, 3: 267-285.
PubMedCentralPubMedGoogle Scholar
Merika EE, Syrigos KN, Saif MW: Desmoplasia in pancreatic cancer. Can we fight it?. Gastroenterol Res Pract. 2012, 2012: 781765-
PubMedCentralPubMedGoogle Scholar
Whatcott CJ, Posner RG, Von Hoff DD, Han H: Desmoplasia and chemoresistance in pancreatic cancer. Pancreatic Cancer and Tumor Microenvironment. Edited by: Grippo PJ, Munshi HG. 2012, Trivandrum: Transworld Research Network, Chapter 8
Google Scholar
Kocabayoglu P, Friedman SL: Cellular basis of hepatic fibrosis and its role in inflammation and cancer. Front Biosci (Schol Ed). 2013, 5: 217-230.
Google Scholar
Choi IK, Strauss R, Richter M, Yun CO, Lieber A: Strategies to increase drug penetration in solid tumors. Front Oncol. 2013, 3: 193-
PubMedCentralPubMedGoogle Scholar
Netti PA, Berk DA, Swartz MA, Grodzinsky AJ, Jain RK: Role of extracellular matrix assembly in interstitial transport in solid tumors. Cancer Res. 2000, 60: 2497-2503.
PubMedGoogle Scholar
McKee TD, Grandi P, Mok W, Alexandrakis G, Insin N, Zimmer JP, Bawendi MG, Boucher Y, Breakefield XO, Jain RK: Degradation of fibrillar collagen in a human melanoma xenograft improves the efficacy of an oncolytic herpes simplex virus vector. Cancer Res. 2006, 66: 2509-2513. 10.1158/0008-5472.CAN-05-2242.
PubMedGoogle Scholar
Chauhan VP, Jain RK: Strategies for advancing cancer nanomedicine. Nat Mater. 2013, 12: 958-962. 10.1038/nmat3792.
PubMedCentralPubMedGoogle Scholar
Kuriyama N, Kuriyama H, Julin CM, Lamborn K, Israel MA: Pretreatment with protease is a useful experimental strategy for enhancing adenovirus-mediated cancer gene therapy. Hum Gene Ther. 2000, 11: 2219-2230. 10.1089/104303400750035744.
PubMedGoogle Scholar
Kuriyama N, Kuriyama H, Julin CM, Lamborn KR, Israel MA: Protease pretreatment increases the efficacy of adenovirus-mediated gene therapy for the treatment of an experimental glioblastoma model. Cancer Res. 2001, 61: 1805-1809.
PubMedGoogle Scholar
Guedan S, Rojas JJ, Gros A, Mercade E, Cascallo M, Alemany R: Hyaluronidase expression by an oncolytic adenovirus enhances its intratumoral spread and suppresses tumor growth. Mol Ther. 2010, 18: 1275-1283. 10.1038/mt.2010.79.
PubMedCentralPubMedGoogle Scholar
McBride WH, Bard JB: Hyaluronidase-sensitive halos around adherent cells. Their role in blocking lymphocyte-mediated cytolysis. J Exp Med. 1979, 149: 507-515. 10.1084/jem.149.2.507.
PubMedGoogle Scholar
Zyuz'kov GN, Zhdanov VV, Dygai AM, Gol'dberg ED: Role of hyaluronidase in the regulation of hemopoiesis. Bull Exp Biol Med. 2007, 144: 840-845. 10.1007/s10517-007-0444-9.
PubMedGoogle Scholar
Kessenbrock K, Plaks V, Werb Z: Matrix metalloproteinases: regulators of the tumor microenvironment. Cell. 2010, 141: 52-67. 10.1016/j.cell.2010.03.015.
PubMedCentralPubMedGoogle Scholar
Cheng J, Sauthoff H, Huang Y, Kutler DI, Bajwa S, Rom WN, Hay JG: Human matrix metalloproteinase-8 gene delivery increases the oncolytic activity of a replicating adenovirus. Mol Ther. 2007, 15: 1982-1990. 10.1038/sj.mt.6300264.
PubMedGoogle Scholar
Brown E, McKee T, di Tomaso E, Pluen A, Seed B, Boucher Y, Jain RK: Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation. Nat Med. 2003, 9: 796-800. 10.1038/nm879.
PubMedGoogle Scholar
Diop-Frimpong B, Chauhan VP, Krane S, Boucher Y, Jain RK: Losartan inhibits collagen I synthesis and improves the distribution and efficacy of nanotherapeutics in tumors. Proc Natl Acad Sci U S A. 2011, 108: 2909-2914. 10.1073/pnas.1018892108.
PubMedCentralPubMedGoogle Scholar
Tralhão JG, Schaefer L, Micegova M, Evaristo C, Schönherr E, Kayal S, Veiga-Fernandes H, Danel C, Iozzo RV, Kresse H, Lemarchand P: In vivo selective and distant killing of cancer cells using adenovirus-mediated decorin gene transfer. FASEB J. 2003, 17: 464-466.
PubMedGoogle Scholar
Boström P, Sainio A, Kakko T, Savontaus M, Söderström M, Järveläinen H: Localization of decorin gene expression in normal human breast tissue and in benign and malignant tumors of the human breast. Histochem Cell Biol. 2013, 139: 161-171. 10.1007/s00418-012-1026-0.
PubMedCentralPubMedGoogle Scholar
Coulson-Thomas VJ, Coulson-Thomas YM, Gesteira TF, Andrade de Paula CA, Carneiro CR, Ortiz V, Toma L, Kao WW, Nader HB: Lumican expression, localization and antitumor activity in prostate cancer. Exp Cell Res. 2013, 319: 967-981. 10.1016/j.yexcr.2013.01.023.
PubMedCentralPubMedGoogle Scholar
de Wit M, Belt EJ, Delis-van Diemen PM, Carvalho B, Coupé VM, Stockmann HB, Bril H, Beliën JA, Fijneman RJ, Meijer GA: Lumican and versican are associated with good outcome in stage II and III colon cancer. Ann Surg Oncol. 2013, 20 (Suppl 3): S348-S359.
PubMedGoogle Scholar
Pietraszek K, Brézillon S, Perreau C, Malicka-Błaszkiewicz M, Maquart FX, Wegrowski Y: Lumican - derived peptides inhibit melanoma cell growth and migration. PLoS One. 2013, 8: e76232-10.1371/journal.pone.0076232.
PubMedCentralPubMedGoogle Scholar
He ZH, Lei Z, Zhen Y, Gong W, Huang B, Yuan Y, Zhang GM, Wang XJ, Feng ZH: Adeno-associated virus-mediated expression of recombinant CBD-HepII polypeptide of human fibronectin inhibits metastasis of breast cancer. Breast Cancer Res Treat. 2014, 143: 33-45. 10.1007/s10549-013-2783-8.
PubMedGoogle Scholar
Misra S, Heldin P, Hascall VC, Karamanos NK, Skandalis SS, Markwald RR, Ghatak S: Hyaluronan-CD44 interactions as potential targets for cancer therapy. FEBS J. 2011, 278: 1429-1443. 10.1111/j.1742-4658.2011.08071.x.
PubMedCentralPubMedGoogle Scholar
Misra S, Hascall VC, De Giovanni C, Markwald RR, Ghatak S: Delivery of CD44 shRNA/nanoparticles within cancer cells: perturbation of hyaluronan/CD44v6 interactions and reduction in adenoma growth in Apc Min/+MICE. J Biol Chem. 2009, 284: 12432-12446. 10.1074/jbc.M806772200.
PubMedCentralPubMedGoogle Scholar
Seppinen L, Pihlajaniemi T: The multiple functions of collagen XVIII in development and disease. Matrix Biol. 2011, 30: 83-92. 10.1016/j.matbio.2010.11.001.
PubMedGoogle Scholar
Pan JG, Luo RQ, Zhou X, Han RF, Zeng GW: Potent antitumor activity of the combination of HSV-TK and endostatin by adeno-associated virus vector for bladder cancer in vivo. Clin Lab. 2013, 59: 1147-1158.
PubMedGoogle Scholar

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright
Copyright on any open access article in Molecular and Cellular Therapies published bythe Institute is retained by the author(s). Authors can grant any third party the right to use
the article freely as long as its integrity is maintained and its original authors, citation details and publisher are identified. Please contact the Office of Molecular and Cellular
Therapies for more information specifically regarding permissions if there are questions.