Extracellular matrix macromolecules: potential tools and targets in cancer gene therapy

  • Annele Sainio
  • Hannu Järveläinen
Keywords: Extracellular matrix, Macromolecules, Tumour microenvironment, Cancer, Gene therapy

Abstract

Tumour cells create their own microenvironment where they closely interact with a variety of soluble and non-soluble molecules, different cells and numerous other components within the extracellular matrix (ECM). Interaction between tumour cells and the ECM is bidirectional leading to either progression or inhibition of tumourigenesis. Therefore, development of novel therapies targeted primarily to tumour microenvironment (TME) is highly rational. Here, we give a short overview of different macromolecules of the ECM and introduce mechanisms whereby they contribute to tumourigenesis within the TME. Furthermore, we present examples of individual ECM macromolecules as regulators of cell behaviour during tumourigenesis. Finally, we focus on novel strategies of using ECM macromolecules as tools or targets in cancer gene therapy in the future.

Downloads

Download data is not yet available.

References

Hynes RO: The extracellular matrix: not just pretty fibrils. Science. 2009, 326: 1216-1219. 10.1126/science.1176009.

PubMedCentralPubMedGoogle Scholar

Järveläinen H, Sainio A, Koulu M, Wight TN, Penttinen R: Extracellular matrix molecules: potential targets in pharmacotherapy. Pharmacol Rev. 2009, 61: 198-223. 10.1124/pr.109.001289.

PubMedCentralPubMedGoogle Scholar

Hanahan D, Weinberg RA: Hallmarks of cancer: the next generation. Cell. 2011, 144: 646-674. 10.1016/j.cell.2011.02.013.

PubMedGoogle Scholar

Frantz C, Stewart KM, Weaver VM: The extracellular matrix at a glance. J Cell Sci. 2010, 123: 4195-4200. 10.1242/jcs.023820.

PubMedCentralPubMedGoogle Scholar

Lu P, Weaver VM, Werb Z: The extracellular matrix: a dynamic niche in cancer progression. J Cell Biol. 2012, 196: 395-406. 10.1083/jcb.201102147.

PubMedCentralPubMedGoogle Scholar

Fang H, Declerck YA: Targeting the tumor microenvironment: from understanding pathways to effective clinical trials. Cancer Res. 2013, 73: 4965-4977. 10.1158/0008-5472.CAN-13-0661.

PubMedGoogle Scholar

Sainio A, Järveläinen H: Extracellular matrix molecules in tumour microenvironment with special reference to desmoplastic reaction and the role of matrix proteoglycans and hyaluronan. J Carcinog Mutagen. in press

Google Scholar

Balkwill FR, Capasso M, Hagemann T: The tumor microenvironment at a glance. J Cell Sci. 2012, 125: 5591-5596. 10.1242/jcs.116392.

PubMedGoogle Scholar

Ye J, Wu D, Wu P, Chen Z, Huang J: The cancer stem cell niche: cross talk between cancer stem cells and their microenvironment. Tumour Biol. in press

Google Scholar

Edin S, Wikberg ML, Dahlin AM, Rutegård J, Öberg Å, Oldenborg PA, Palmqvist R: The distribution of macrophages with a M1 or M2 phenotype in relation to prognosis and the molecular characteristics of colorectal cancer. PLoS One. 2012, 7: e47045-10.1371/journal.pone.0047045.

PubMedCentralPubMedGoogle Scholar

Fridlender ZG, Sun J, Kim S, Kapoor V, Cheng G, Ling L, Worthen GS, Albelda SM: Polarization of tumor-associated neutrophil phenotype by TGF-beta: “N1” versus “N2” TAN. Cancer Cell. 2009, 16: 183-194. 10.1016/j.ccr.2009.06.017.

PubMedCentralPubMedGoogle Scholar

Toomer KH, Chen Z: Autoimmunity as a double agent in tumor killing and cancer promotion. Front Immunol. 2014, 5: 116-

PubMedCentralPubMedGoogle Scholar

Wood SL, Pernemalm M, Crosbie PA, Whetton AD: The role of the tumor-microenvironment in lung cancer-metastasis and its relationship to potential therapeutic targets. Cancer Treat Rev. in press

Google Scholar

Lee HO, Mullins SR, Franco-Barraza J, Valianou M, Cukierman E, Cheng JD: FAP-overexpressing fibroblasts produce an extracellular matrix that enhances invasive velocity and directionality of pancreatic cancer cells. BMC Cancer. 2011, 11: 245-10.1186/1471-2407-11-245.

PubMedCentralPubMedGoogle Scholar

Santoni M, Massari F, Amantini C, Nabissi M, Maines F, Burattini L, Berardi R, Santoni G, Montironi R, Tortora G, Cascinu S: Emerging role of tumor-associated macrophages as therapeutic targets in patients with metastatic renal cell carcinoma. Cancer Immunol Immunother. 2013, 62: 1757-1768. 10.1007/s00262-013-1487-6.

PubMedGoogle Scholar

Zeng-Brouwers J, Beckmann J, Nastase MV, Iozzo RV, Schaefer L: De novo expression of circulating biglycan evokes an innate inflammatory tissue response via MyD88/TRIF pathways. Matrix Biol. in press

Google Scholar

Wight TN, Kang I, Merrilees MJ: Versican and the control of inflammation. Matrix Biol. in press

Google Scholar

Davidson B, Goldberg I, Gotlieb WH, Kopolovic J, Ben-Baruch G, Nesland JM, Berner A, Bryne M, Reich R: High levels of MMP-2, MMP-9, MT1-MMP and TIMP-2 mRNA correlate with poor survival in ovarian carcinoma. Clin Exp Metastasis. 1999, 17: 799-808. 10.1023/A:1006723011835.

PubMedGoogle Scholar

Davidson B, Goldberg I, Gotlieb WH, Kopolovic J, Ben-Baruch G, Nesland JM, Reich R: The prognostic value of metalloproteinases and angiogenic factors in ovarian carcinoma. Mol Cell Endocrinol. 2002, 187: 39-45. 10.1016/S0303-7207(01)00709-2.

PubMedGoogle Scholar

Georgiadis D, Yiotakis A: Specific targeting of metzincin family members with small-molecule inhibitors: progress toward a multifarious challenge. Bioorg Med Chem. 2008, 16: 8781-8794. 10.1016/j.bmc.2008.08.058.

PubMedGoogle Scholar

Lu X, Lu D, Scully M, Kakkar V: ADAM proteins - therapeutic potential in cancer. Curr Cancer Drug Targets. 2008, 8: 720-732. 10.2174/156800908786733478.

PubMedGoogle Scholar

Fontanil T, Rúa S, Llamazares M, Moncada-Pazos A, Quirós PM, García-Suárez O, Vega JA, Sasaki T, Mohamedi Y, Esteban MM, Obaya AJ, Cal S: Interaction between the ADAMTS-12 metalloprotease and fibulin-2 induces tumor-suppressive effects in breast cancer cells. Oncotarget. in press

Google Scholar

Lentini A, Abbruzzese A, Provenzano B, Tabolacci C, Beninati S: Transglutaminases: key regulators of cancer metastasis. Amino Acids. 2013, 44: 25-32. 10.1007/s00726-012-1229-7.

PubMedGoogle Scholar

Mayorca-Guiliani A, Erler JT: The potential for targeting extracellular LOX proteins in human malignancy. Oncol Targets Ther. 2013, 6: 1729-1735.

Google Scholar

Dutta A, Li J, Lu H, Akech J, Pratap J, Wang T, Zerlanko BJ, Fitzgerald TJ, Jiang Z, Birbe R, Wixted J, Violette SM, Stein JL, Stein GS, Lian JB, Languino LR: Integrin αvβ6 promotes an osteolytic program in cancer cells by upregulating MMP2. Cancer Res. in press

Google Scholar

Hadler-Olsen E, Winberg JO, Uhlin-Hansen L: Matrix metalloproteinases in cancer: their value as diagnostic and prognostic markers and therapeutic targets. Tumour Biol. 2013, 34: 2041-2051. 10.1007/s13277-013-0842-8.

PubMedGoogle Scholar

Xiong J, Balcioglu HE, Danen EH: Integrin signaling in control of tumor growth and progression. Int J Biochem Cell Biol. 2013, 45: 1012-1015. 10.1016/j.biocel.2013.02.005.

PubMedGoogle Scholar

Folkman J, Watson K, Ingber D, Hanahan D: Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature. 1989, 339: 58-61. 10.1038/339058a0.

PubMedGoogle Scholar

Carmeliet P, Jain RK: Angiogenesis in cancer and other diseases. Nature. 2000, 407: 249-257. 10.1038/35025220.

PubMedGoogle Scholar

Ingber DE, Folkman J: How does extracellular matrix control capillary morphogenesis?. Cell. 1989, 58: 803-805. 10.1016/0092-8674(89)90928-8.

PubMedGoogle Scholar

Quail DF, Joyce JA: Microenvironmental regulation of tumor progression and metastasis. Nat Med. 2013, 19: 1423-1437. 10.1038/nm.3394.

PubMedCentralPubMedGoogle Scholar

Sage EH, Bornstein P: Extracellular proteins that modulate cell-matrix interactions. SPARC, tenascin, and thrombospondin. J Biol Chem. 1991, 266: 14831-14834.

PubMedGoogle Scholar

Bornstein P: Diversity of function is inherent in matricellular proteins: an appraisal of thrombospondin 1. J Cell Biol. 1995, 130: 503-506. 10.1083/jcb.130.3.503.

PubMedGoogle Scholar

Bornstein P, Sage EH: Matricellular proteins: extracellular modulators cell function. Curr Opin Cell Biol. 2002, 14: 608-616. 10.1016/S0955-0674(02)00361-7.

PubMedGoogle Scholar

Varga I, Hutóczki G, Szemcsák CD, Zahuczky G, Tóth J, Adamecz Z, Kenyeres A, Bognár L, Hanzély Z, Klekner A: Brevican, neurocan, tenascin-C and versican are mainly responsible for the invasiveness of low-grade astrocytoma. Pathol Oncol Res. 2012, 18: 413-420. 10.1007/s12253-011-9461-0.

PubMedGoogle Scholar

Gordon MK, Hahn RA: Collagens. Cell Tissue Res. 2010, 339: 247-257. 10.1007/s00441-009-0844-4.

PubMedCentralPubMedGoogle Scholar

Kauppila S, Stenbäck F, Risteli J, Jukkola A, Risteli L: Aberrant type I and type III collagen gene expression in human breast cancer in vivo. J Pathol. 1998, 186: 262-268. 10.1002/(SICI)1096-9896(1998110)186:3<262::AID-PATH191>3.0.CO;2-3.

PubMedGoogle Scholar

Shields MA, Dangi-Garimella S, Redig AJ, Munshi HG: Biochemical role of the collagen-rich tumour microenvironment in pancreatic cancer progression. Biochem J. 2012, 441: 541-552. 10.1042/BJ20111240.

PubMedGoogle Scholar

Fang M, Yuan J, Peng C, Li Y: Collagen as a double-edged sword in tumor progression. Tumour Biol. 2013, in press

Google Scholar

Xiong G, Deng L, Zhu J, Rychahou PG, Xu R: Prolyl-4-hydroxylase α subunit 2 promotes breast cancer progression and metastasis by regulating collagen deposition. BMC Cancer. 2014, 14: 1-10.1186/1471-2407-14-1.

PubMedCentralPubMedGoogle Scholar

Alowami S, Troup S, Al-Haddad S, Kirkpatrick I, Watson PH: Mammographic density is related to stroma and stromal proteoglycan expression. Breast Cancer Res. 2003, 5: R129-R135. 10.1186/bcr622.

PubMedCentralPubMedGoogle Scholar

Bingle L, Brown NJ, Lewis CE: The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. J Pathol. 2002, 196: 254-265. 10.1002/path.1027.

PubMedGoogle Scholar

O’Reilly MS, Boehm T, Shing Y, Fukai N, Vasios G, Lane WS, Flynn E, Birkhead JR, Olsen BR, Folkman J: Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell. 1997, 88: 277-285. 10.1016/S0092-8674(00)81848-6.

PubMedGoogle Scholar

Misawa K, Kanazawa T, Imai A, Endo S, Mochizuki D, Fukushima H, Misawa Y, Mineta H: Prognostic value of type XXII and XXIV collagen mRNA expression in head and neck cancer patients. Mol Clin Oncol. 2014, 2: 285-291.

PubMedCentralPubMedGoogle Scholar

Järveläinen H, Wight TN: Vascular proteoglycans. Proteoglycans in lung disease. Edited by: Garg HG, Roughley PJ, Hales CA. 2002, New York: Marcel Dekker Inc, 291-321.

Google Scholar

Schaefer L, Iozzo RV: Biological functions of the small leucine-rich proteoglycans: from genetics to signal transduction. J Biol Chem. 2008, 283: 21305-21309. 10.1074/jbc.R800020200.

PubMedCentralPubMedGoogle Scholar

Iozzo RV: The family of the small leucine-rich proteoglycans: key regulators of matrix assembly and cellular growth. Crit Rev Biochem Mol Biol. 1997, 32: 141-174. 10.3109/10409239709108551.

PubMedGoogle Scholar

Danielson KG, Baribault H, Holmes DF, Graham H, Kadler KE, Iozzo RV: Targeted disruption of decorin leads to abnormal collagen fibril morphology and skin fragility. J Cell Biol. 1997, 136: 729-743. 10.1083/jcb.136.3.729.

PubMedCentralPubMedGoogle Scholar

Chakravarti S, Magnuson T, Lass JH, Jepsen KJ, LaMantia C, Carroll H: Lumican regulates collagen fibril assembly: skin fragility and corneal opacity in the absence of lumican. J Cell Biol. 1998, 141: 1277-1286. 10.1083/jcb.141.5.1277.

PubMedCentralPubMedGoogle Scholar

Svensson L, Aszódi A, Reinholt FP, Fässler R, Heinegård D, Oldberg A: Fibromodulin-null mice have abnormal collagen fibrils, tissue organization, and altered lumican deposition in tendon. J Biol Chem. 1999, 274: 9636-9647. 10.1074/jbc.274.14.9636.

PubMedGoogle Scholar

Goldberg M, Rapoport O, Septier D, Palmier K, Hall R, Embery G, Young M, Ameye L: Proteoglycans in predentin: the last 15 micrometers before mineralization. Connect Tissue Res. 2003, 44 (Suppl 1): 184-188.

PubMedGoogle Scholar

Reed CC, Waterhouse A, Kirby S, Kay P, Owens RT, McQuillan DJ, Iozzo RV: Decorin prevents metastatic spreading of breast cancer. Oncogene. 2005, 24: 1104-1110. 10.1038/sj.onc.1208329.

PubMedGoogle Scholar

Goldoni S, Seidler DG, Heath J, Fassan M, Baffa R, Thakur ML, Owens RT, McQuillan DJ, Iozzo RV: An antimetastatic role for decorin in breast cancer. Am J Pathol. 2008, 173: 844-855. 10.2353/ajpath.2008.080275.

PubMedCentralPubMedGoogle Scholar

Bi X, Pohl NM, Qian Z, Yang GR, Gou Y, Guzman G, Kajdacsy-Balla A, Iozzo RV, Yang W: Decorin-mediated inhibition of colorectal cancer growth and migration is associated with E-cadherin in vitro and in mice. Carcinogenesis. 2012, 33: 326-330. 10.1093/carcin/bgr293.

PubMedCentralPubMedGoogle Scholar

Goldoni S, Humphries A, Nyström A, Sattar S, Owens RT, McQuillan DJ, Ireton K, Iozzo RV: Decorin is a novel antagonistic ligand of the Met receptor. J Cell Biol. 2009, 185: 743-754. 10.1083/jcb.200901129.

PubMedCentralPubMedGoogle Scholar

Iozzo RV, Buraschi S, Genua M, Xu SQ, Solomides CC, Peiper SC, Gomella LG, Owens RC, Morrione A: Decorin antagonizes IGF receptor I (IGF-IR) function by interfering with IGF-IR activity and attenuating downstream signaling. J Biol Chem. 2011, 286: 34712-34721. 10.1074/jbc.M111.262766.

PubMedCentralPubMedGoogle Scholar

Grant DS, Yenisey C, Rose RW, Tootell M, Santra M, Iozzo RV: Decorin suppresses tumor cell-mediated angiogenesis. Oncogene. 2002, 21: 4765-4777. 10.1038/sj.onc.1205595.

PubMedGoogle Scholar

Salomäki HH, Sainio AO, Söderström M, Pakkanen S, Laine J, Järveläinen HT: Differential expression of decorin by human malignant and benign vascular tumors. J Histochem Cytochem. 2008, 56: 639-646. 10.1369/jhc.2008.950287.

PubMedCentralPubMedGoogle Scholar

Brézillon S, Pietraszek K, Maquart FX, Wegrowski Y: Lumican effects in the control of tumour progression and their links with metalloproteinases and integrins. FEBS J. 2013, 280: 2369-2381. 10.1111/febs.12210.

PubMedGoogle Scholar

Nikitovic D, Papoutsidakis A, Karamanos NK, Tzanakakis GN: Lumican affects tumor cell functions, tumor-ECM interactions, angiogenesis and inflammatory response. Matrix Biol. in press

Google Scholar

Craig EA, Parker P, Camenisch TD: Size dependent regulation of Snail2 by hyaluronan: its role in cellular invasion. Glycobiology. 2009, 19: 890-898. 10.1093/glycob/cwp064.

PubMedCentralPubMedGoogle Scholar

Telmer PG, Tolg C, McCarthy JB, Turley EA: How does a protein with dual mitotic spindle and extracellular matrix receptor functions affect tumor susceptibility and progression?. Commun Integr Biol. 2011, 4: 182-185. 10.4161/cib.4.2.14270.

PubMedCentralPubMedGoogle Scholar

Dicker KT, Gurski LA, Pradhan-Bhatt S, Witt RL, Farach-Carson MC, Jia X: Hyaluronan: A simple polysaccharide with diverse biological functions. Acta Biomater. in press

Google Scholar

Lipponen P, Aaltomaa S, Tammi R, Tammi M, Agren U, Kosma VM: High stromal hyaluronan level is associated with poor differentiation and metastasis in prostate cancer. Eur J Cancer. 2001, 37: 849-856. 10.1016/S0959-8049(00)00448-2.

PubMedGoogle Scholar

Anttila MA, Tammi RH, Tammi MI, Syrjänen KJ, Saarikoski SV, Kosma VM: High levels of stromal hyaluronan predict poor disease outcome in epithelial ovarian cancer. Cancer Res. 2000, 60: 150-155.

PubMedGoogle Scholar

Auvinen P, Tammi R, Parkkinen J, Tammi M, Agren U, Johansson R, Hirvikoski P, Eskelinen M, Kosma VM: Hyaluronan in peritumoral stroma and malignant cells associates with breast cancer spreading and predicts survival. Am J Pathol. 2000, 156: 529-536. 10.1016/S0002-9440(10)64757-8.

PubMedCentralPubMedGoogle Scholar

Shuman Moss LA, Stetler-Stevenson WG: Influence of stromal components on lung cancer carcinogenesis. J Carcinog Mutagen. 2013, 13 (8): doi: 10.4172/2157-2518.S13-008

Google Scholar

Jia D, Yan M, Wang X, Hao X, Liang L, Liu L, Kong H, He X, Li J, Yao M: Development of a highly metastatic model that reveals a crucial role of fibronectin in lung cancer cell migration and invasion. BMC Cancer. 2010, 10: 364-10.1186/1471-2407-10-364.

PubMedCentralPubMedGoogle Scholar

Hancox RA, Allen MD, Holliday DL, Edwards DR, Pennington CJ, Guttery DS, Shaw JA, Walker RA, Pringle JH, Jones JL: Tumour-associated tenascin-C isoforms promote breast cancer cell invasion and growth by matrix metalloproteinase-dependent and independent mechanisms. Breast Cancer Res. 2009, 11: R24-10.1186/bcr2251.

PubMedCentralPubMedGoogle Scholar

Lukashev ME, Werb Z: ECM signaling: orchestrating cell behaviour and misbehaviour. Trends Cell Biol. 1998, 8: 437-441. 10.1016/S0962-8924(98)01362-2.

PubMedGoogle Scholar

Botti G, Cerrone M, Scognamiglio G, Anniciello A, Ascierto PA, Cantile M: Microenvironment and tumor progression of melanoma: new therapeutic prospectives. J Immunotoxicol. 2013, 10: 235-252. 10.3109/1547691X.2012.723767.

PubMedGoogle Scholar

Theocharis AD, Skandalis SS, Tzanakakis GN, Karamanos NK: Proteoglycans in health and disease: novel roles for proteoglycans in malignancy and their pharmacological targeting. FEBS J. 2010, 277: 3904-3923. 10.1111/j.1742-4658.2010.07800.x.

PubMedGoogle Scholar

Skandalis SS, Aletras AJ, Gialeli C, Theocharis AD, Afratis N, Tzanakakis GN, Karamanos NK: Targeting the tumor proteasome as a mechanism to control the synthesis and bioactivity of matrix macromolecules. Curr Mol Med. 2012, 12: 1068-1082. 10.2174/156652412802480943.

PubMedGoogle Scholar

Chen N, Karantza-Wadsworth V: Role and regulation of autophagy in cancer. Biochim Biophys Acta. 2009, 1793: 1516-1523. 10.1016/j.bbamcr.2008.12.013.

PubMedCentralPubMedGoogle Scholar

Mathew R, Karp CM, Beaudoin B, Vuong N, Chen G, Chen HY, Bray K, Reddy A, Bhanot G, Gelinas C, Dipaola RS, Karantza-Wadsworth V, White E: Autophagy suppresses tumorigenesis through elimination of p62. Cell. 2009, 137: 1062-1075. 10.1016/j.cell.2009.03.048.

PubMedCentralPubMedGoogle Scholar

Neill T, Torres A, Buraschi S, Iozzo RV: Decorin has an appetite for endothelial cell autophagy. Autophagy. 2013, 9: 1626-1628. 10.4161/auto.25881.

PubMedGoogle Scholar

Buraschi S, Neill T, Goyal A, Poluzzi C, Smythies J, Owens RT, Schaefer L, Torres A, Iozzo RV: Decorin causes autophagy in endothelial cells via Peg3. Proc Natl Acad Sci U S A. 2013, 110: E2582-E2591. 10.1073/pnas.1305732110.

PubMedCentralPubMedGoogle Scholar

Neill T, Torres A, Buraschi S, Owens RT, Hoek JB, Baffa R, Iozzo RV: Decorin induces mitophagy in breast carcinoma cells via PGC-1α and mitostatin. J Biol Chem. in press

Google Scholar

Micalizzi DS, Farabaugh SM, Ford HL: Epithelial-mesenchymal transition in cancer: parallels between normal development and tumor progression. J Mammary Gland Biol Neoplasia. 2010, 15: 117-134. 10.1007/s10911-010-9178-9.

PubMedCentralPubMedGoogle Scholar

Trimboli AJ, Fukino K, de Bruin A, Wei G, Shen L, Tanner SM, Creasap N, Rosol TJ, Robinson ML, Eng C, Ostrowski MC, Leone G: Direct evidence for epithelial-mesenchymal transitions in breast cancer. Cancer Res. 2008, 68: 937-945. 10.1158/0008-5472.CAN-07-2148.

PubMedGoogle Scholar

Vergara D, Merlot B, Lucot JP, Collinet P, Vinatier D, Fournier I, Salzet M: Epithelial-mesenchymal transition in ovarian cancer. Cancer Lett. 2010, 291: 59-66. 10.1016/j.canlet.2009.09.017.

PubMedGoogle Scholar

Brabletz T, Hlubek F, Spaderna S, Schmalhofer O, Hiendlmeyer E, Jung A, Kirchner T: Invasion and metastasis in colorectal cancer: epithelial-mesenchymal transition, mesenchymal-epithelial transition, stem cells and beta-catenin. Cells Tissues Organs. 2005, 179: 56-65. 10.1159/000084509.

PubMedGoogle Scholar

Tsunoda T, Inada H, Kalembeyi I, Imanaka-Yoshida K, Sakakibara M, Okada R, Katsuta K, Sakakura T, Majima Y, Yoshida T: Involvement of large tenascin-C splice variants in breast cancer progression. Am J Pathol. 2003, 162: 1857-1867. 10.1016/S0002-9440(10)64320-9.

PubMedCentralPubMedGoogle Scholar

Oskarsson T, Acharyya S, Zhang XH, Vanharanta S, Tavazoie SF, Morris PG, Downey RJ, Manova-Todorova K, Brogi E, Massagué J: Breast cancer cells produce tenascin C as a metastatic niche component to colonize the lungs. Nat Med. 2011, 17: 867-874. 10.1038/nm.2379.

PubMedCentralPubMedGoogle Scholar

Maschler S, Grunert S, Danielopol A, Beug H, Wirl G: Enhanced tenascin-C expression and matrix deposition during Ras/TGF-beta-induced progression of mammary tumor cells. Oncogene. 2004, 23: 3622-3633. 10.1038/sj.onc.1207403.

PubMedGoogle Scholar

Katoh D, Nagaharu K, Shimojo N, Hanamura N, Yamashita M, Kozuka Y, Imanaka-Yoshida K, Yoshida T: Binding of αvβ1 and αvβ6 integrins to tenascin-C induces epithelial-mesenchymal transition-like change of breast cancer cells. Oncogenesis. 2013, 2: e65-10.1038/oncsis.2013.27.

PubMedCentralPubMedGoogle Scholar

Ghersi G: Roles of molecules involved in epithelial/mesenchymal transition during angiogenesis. Front Biosci. 2008, 13: 2335-2355. 10.2741/2848.

PubMedGoogle Scholar

Wirth T, Parker N, Ylä-Herttuala S: History of gene therapy. Gene. 2013, 525: 162-169. 10.1016/j.gene.2013.03.137.

PubMedGoogle Scholar

Liu TC, Galanis E, Kirn D: Clinical trial results with oncolytic virotherapy: a century of promise, a decade of progress. Nat Clin Pract Oncol. 2007, 4: 101-117. 10.1038/ncponc0736.

PubMedGoogle Scholar

Haseley A, Alvarez-Breckenridge C, Chaudhury AR, Kaur B: Advances in oncolytic virus therapy for glioma. Recent Pat CNS Drug Discov. 2009, 4: 1-13.

PubMedCentralPubMedGoogle Scholar

Lunardi S, Muschel RJ, Brunner TB: The stromal compartments in pancreatic cancer: are there any therapeutic targets?. Cancer Lett. 2014, 343: 147-155. 10.1016/j.canlet.2013.09.039.

PubMedGoogle Scholar

Provenzano PP, Cuevas C, Chang AE, Goel VK, Von Hoff DD, Hingorani SR: Enzymatic targeting of the stroma ablates physical barriers to treatment of pancreatic ductal adenocarcinoma. Cancer Cell. 2012, 21: 418-429. 10.1016/j.ccr.2012.01.007.

PubMedCentralPubMedGoogle Scholar

Mierke CT: Endothelial cell’s biomechanical properties are regulated by invasive cancer cells. Mol Biosyst. 2012, 8: 1639-1649. 10.1039/c2mb25024a.

PubMedGoogle Scholar

Mierke CT: Physical break-down of the classical view on cancer cell invasion and metastasis. Eur J Cell Biol. 2013, 92: 89-104. 10.1016/j.ejcb.2012.12.002.

PubMedGoogle Scholar

Denais C, Lammerding J: Nuclear mechanics in cancer. Adv Exp Med Biol. 2014, 773: 435-470. 10.1007/978-1-4899-8032-8_20.

PubMedCentralPubMedGoogle Scholar

Zou X, Feng B, Dong T, Yan G, Tan B, Shen H, Huang A, Zhang X, Zhang M, Yang P, Zheng M, Zhang Y: Up-regulation of type I collagen during tumorigenesis of colorectal cancer revealed by quantitative proteomic analysis. J Proteomics. 2013, 94: 473-485.

PubMedGoogle Scholar

Coulson-Thomas VJ, Coulson-Thomas YM, Gesteira TF, de Paula CA, Mader AM, Waisberg J, Pinhal MA, Friedl A, Toma L, Nader HB: Colorectal cancer desmoplastic reaction up-regulates collagen synthesis and restricts cancer cell invasion. Cell Tissue Res. 2011, 346: 223-236. 10.1007/s00441-011-1254-y.

PubMedGoogle Scholar

Karagiannis GS, Petraki C, Prassas I, Saraon P, Musrap N, Dimitromanolakis A, Diamandis EP: Proteomic signatures of the desmoplastic invasion front reveal collagen type XII as a marker of myofibroblastic differentiation during colorectal cancer metastasis. Oncotarget. 2012, 3: 267-285.

PubMedCentralPubMedGoogle Scholar

Merika EE, Syrigos KN, Saif MW: Desmoplasia in pancreatic cancer. Can we fight it?. Gastroenterol Res Pract. 2012, 2012: 781765-

PubMedCentralPubMedGoogle Scholar

Whatcott CJ, Posner RG, Von Hoff DD, Han H: Desmoplasia and chemoresistance in pancreatic cancer. Pancreatic Cancer and Tumor Microenvironment. Edited by: Grippo PJ, Munshi HG. 2012, Trivandrum: Transworld Research Network, Chapter 8

Google Scholar

Kocabayoglu P, Friedman SL: Cellular basis of hepatic fibrosis and its role in inflammation and cancer. Front Biosci (Schol Ed). 2013, 5: 217-230.

Google Scholar

Choi IK, Strauss R, Richter M, Yun CO, Lieber A: Strategies to increase drug penetration in solid tumors. Front Oncol. 2013, 3: 193-

PubMedCentralPubMedGoogle Scholar

Netti PA, Berk DA, Swartz MA, Grodzinsky AJ, Jain RK: Role of extracellular matrix assembly in interstitial transport in solid tumors. Cancer Res. 2000, 60: 2497-2503.

PubMedGoogle Scholar

McKee TD, Grandi P, Mok W, Alexandrakis G, Insin N, Zimmer JP, Bawendi MG, Boucher Y, Breakefield XO, Jain RK: Degradation of fibrillar collagen in a human melanoma xenograft improves the efficacy of an oncolytic herpes simplex virus vector. Cancer Res. 2006, 66: 2509-2513. 10.1158/0008-5472.CAN-05-2242.

PubMedGoogle Scholar

Chauhan VP, Jain RK: Strategies for advancing cancer nanomedicine. Nat Mater. 2013, 12: 958-962. 10.1038/nmat3792.

PubMedCentralPubMedGoogle Scholar

Kuriyama N, Kuriyama H, Julin CM, Lamborn K, Israel MA: Pretreatment with protease is a useful experimental strategy for enhancing adenovirus-mediated cancer gene therapy. Hum Gene Ther. 2000, 11: 2219-2230. 10.1089/104303400750035744.

PubMedGoogle Scholar

Kuriyama N, Kuriyama H, Julin CM, Lamborn KR, Israel MA: Protease pretreatment increases the efficacy of adenovirus-mediated gene therapy for the treatment of an experimental glioblastoma model. Cancer Res. 2001, 61: 1805-1809.

PubMedGoogle Scholar

Guedan S, Rojas JJ, Gros A, Mercade E, Cascallo M, Alemany R: Hyaluronidase expression by an oncolytic adenovirus enhances its intratumoral spread and suppresses tumor growth. Mol Ther. 2010, 18: 1275-1283. 10.1038/mt.2010.79.

PubMedCentralPubMedGoogle Scholar

McBride WH, Bard JB: Hyaluronidase-sensitive halos around adherent cells. Their role in blocking lymphocyte-mediated cytolysis. J Exp Med. 1979, 149: 507-515. 10.1084/jem.149.2.507.

PubMedGoogle Scholar

Zyuz'kov GN, Zhdanov VV, Dygai AM, Gol'dberg ED: Role of hyaluronidase in the regulation of hemopoiesis. Bull Exp Biol Med. 2007, 144: 840-845. 10.1007/s10517-007-0444-9.

PubMedGoogle Scholar

Kessenbrock K, Plaks V, Werb Z: Matrix metalloproteinases: regulators of the tumor microenvironment. Cell. 2010, 141: 52-67. 10.1016/j.cell.2010.03.015.

PubMedCentralPubMedGoogle Scholar

Cheng J, Sauthoff H, Huang Y, Kutler DI, Bajwa S, Rom WN, Hay JG: Human matrix metalloproteinase-8 gene delivery increases the oncolytic activity of a replicating adenovirus. Mol Ther. 2007, 15: 1982-1990. 10.1038/sj.mt.6300264.

PubMedGoogle Scholar

Brown E, McKee T, di Tomaso E, Pluen A, Seed B, Boucher Y, Jain RK: Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation. Nat Med. 2003, 9: 796-800. 10.1038/nm879.

PubMedGoogle Scholar

Diop-Frimpong B, Chauhan VP, Krane S, Boucher Y, Jain RK: Losartan inhibits collagen I synthesis and improves the distribution and efficacy of nanotherapeutics in tumors. Proc Natl Acad Sci U S A. 2011, 108: 2909-2914. 10.1073/pnas.1018892108.

PubMedCentralPubMedGoogle Scholar

Tralhão JG, Schaefer L, Micegova M, Evaristo C, Schönherr E, Kayal S, Veiga-Fernandes H, Danel C, Iozzo RV, Kresse H, Lemarchand P: In vivo selective and distant killing of cancer cells using adenovirus-mediated decorin gene transfer. FASEB J. 2003, 17: 464-466.

PubMedGoogle Scholar

Boström P, Sainio A, Kakko T, Savontaus M, Söderström M, Järveläinen H: Localization of decorin gene expression in normal human breast tissue and in benign and malignant tumors of the human breast. Histochem Cell Biol. 2013, 139: 161-171. 10.1007/s00418-012-1026-0.

PubMedCentralPubMedGoogle Scholar

Coulson-Thomas VJ, Coulson-Thomas YM, Gesteira TF, Andrade de Paula CA, Carneiro CR, Ortiz V, Toma L, Kao WW, Nader HB: Lumican expression, localization and antitumor activity in prostate cancer. Exp Cell Res. 2013, 319: 967-981. 10.1016/j.yexcr.2013.01.023.

PubMedCentralPubMedGoogle Scholar

de Wit M, Belt EJ, Delis-van Diemen PM, Carvalho B, Coupé VM, Stockmann HB, Bril H, Beliën JA, Fijneman RJ, Meijer GA: Lumican and versican are associated with good outcome in stage II and III colon cancer. Ann Surg Oncol. 2013, 20 (Suppl 3): S348-S359.

PubMedGoogle Scholar

Pietraszek K, Brézillon S, Perreau C, Malicka-Błaszkiewicz M, Maquart FX, Wegrowski Y: Lumican - derived peptides inhibit melanoma cell growth and migration. PLoS One. 2013, 8: e76232-10.1371/journal.pone.0076232.

PubMedCentralPubMedGoogle Scholar

He ZH, Lei Z, Zhen Y, Gong W, Huang B, Yuan Y, Zhang GM, Wang XJ, Feng ZH: Adeno-associated virus-mediated expression of recombinant CBD-HepII polypeptide of human fibronectin inhibits metastasis of breast cancer. Breast Cancer Res Treat. 2014, 143: 33-45. 10.1007/s10549-013-2783-8.

PubMedGoogle Scholar

Misra S, Heldin P, Hascall VC, Karamanos NK, Skandalis SS, Markwald RR, Ghatak S: Hyaluronan-CD44 interactions as potential targets for cancer therapy. FEBS J. 2011, 278: 1429-1443. 10.1111/j.1742-4658.2011.08071.x.

PubMedCentralPubMedGoogle Scholar

Misra S, Hascall VC, De Giovanni C, Markwald RR, Ghatak S: Delivery of CD44 shRNA/nanoparticles within cancer cells: perturbation of hyaluronan/CD44v6 interactions and reduction in adenoma growth in Apc Min/+MICE. J Biol Chem. 2009, 284: 12432-12446. 10.1074/jbc.M806772200.

PubMedCentralPubMedGoogle Scholar

Seppinen L, Pihlajaniemi T: The multiple functions of collagen XVIII in development and disease. Matrix Biol. 2011, 30: 83-92. 10.1016/j.matbio.2010.11.001.

PubMedGoogle Scholar

Pan JG, Luo RQ, Zhou X, Han RF, Zeng GW: Potent antitumor activity of the combination of HSV-TK and endostatin by adeno-associated virus vector for bladder cancer in vivo. Clin Lab. 2013, 59: 1147-1158.

PubMedGoogle Scholar

Published
2019-01-31
Section
Review