Role of solute carriers in response to anticancer drugs

  • Qing Li
  • Yan Shu
Keywords: Anticancer drugs, Solute carriers (SLC), Chemosensitivity, Chemoresistance

Abstract

Membrane transporters play critical roles in moving a variety of anticancer drugs across cancer cell membrane, thereby determining chemotherapy efficacy and/or toxicity. The retention of anticancer drugs in cancer cells is the result of net function of efflux and influx transporters. The ATP-binding cassette (ABC) transporters are mainly the efflux transporters expressing at cancer cells, conferring the chemo-resistance in various malignant tumors, which has been well documented over the past decades. However, the function of influx transporters, in particular the solute carriers (SLC) in cancer cells, has only been recently well recognized to have significant impact on cancer therapy. The SLC transporters not only directly bring anticancer agents into cancer cells but also serve as the uptake mediators of essential nutrients for tumor growth and survival. In this review, we concentrate on the interaction of SLC transporters with anticancer drugs and nutrients, and their impact on chemo-sensitivity or -resistance of cancer cells. The differential expression patterns of SLC transporters between normal and tumor tissues may be well utilized to achieve specific delivery of chemotherapeutic agents.

Downloads

Download data is not yet available.

References

Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, Smith HO, Yandell M, Evans CA, Holt RA, Gocayne JD, Amanatides P, Ballew RM, Huson DH, Wortman JR, Zhang Q, Kodira CD, Zheng XH, Chen L, Skupski M, Subramanian G, Thomas PD, Zhang J, Gabor Miklos GL, Nelson C, Broder S, Clark AG, Nadeau J, McKusick VA, Zinder N: The sequence of the human genome. Science. 2001, 291 (5507): 1304-1351. 10.1126/science.1058040.

PubMedGoogle Scholar

Dean M, Rzhetsky A, Allikmets R: The human ATP-binding cassette (ABC) transporter superfamily. Genome Res. 2001, 11 (7): 1156-1166. 10.1101/gr.GR-1649R.

PubMedGoogle Scholar

Ross DD, Doyle LA: Mining our ABCs: pharmacogenomic approach for evaluating transporter function in cancer drug resistance. Cancer Cell. 2004, 6 (2): 105-107. 10.1016/j.ccr.2004.08.003.

PubMedGoogle Scholar

Choi YH, Yu AM: ABC Transporters in Multidrug Resistance and Pharmacokinetics, and Strategies for Drug Development. Curr Pharm Des. 2013, 20 (5): 793-807.

Google Scholar

Sohma Y: [ABC transporter superfamily]. Nihon Yakurigaku Zasshi. 2013, 141 (4): 222-223. 10.1254/fpj.141.222.

PubMedGoogle Scholar

Deeley RG, Westlake C, Cole SP: Transmembrane transport of endo- and xenobiotics by mammalian ATP-binding cassette multidrug resistance proteins. Physiol Rev. 2006, 86 (3): 849-899. 10.1152/physrev.00035.2005.

PubMedGoogle Scholar

Gottesman MM, Ling V: The molecular basis of multidrug resistance in cancer: the early years of P-glycoprotein research. FEBS Lett. 2006, 580 (4): 998-1009. 10.1016/j.febslet.2005.12.060.

PubMedGoogle Scholar

Ross DD, Nakanishi T: Impact of breast cancer resistance protein on cancer treatment outcomes. Methods Mol Biol. 2010, 596: 251-290. 10.1007/978-1-60761-416-6_12.

PubMedGoogle Scholar

He L, Vasiliou K, Nebert DW: Analysis and update of the human solute carrier (SLC) gene superfamily. Hum Genomics. 2009, 3 (2): 195-206. 10.1186/1479-7364-3-2-195.

PubMedCentralPubMedGoogle Scholar

Rask-Andersen M, Masuram S, Fredriksson R, Schioth HB: Solute carriers as drug targets: current use, clinical trials and prospective. Mol Aspects Med. 2013, 34 (2–3): 702-710.

PubMedGoogle Scholar

Matherly LH, Wilson MR, Hou Z: The Major Facilitative Folate Transporters SLC19A1 and SLC46A1: Biology and Role in Antifolate Chemotherapy of Cancer. Drug Metab Dispos. 2014, 42 (4): 632-649. 10.1124/dmd.113.055723.

PubMedCentralPubMedGoogle Scholar

Desmoulin SK, Hou Z, Gangjee A, Matherly LH: The human proton-coupled folate transporter: Biology and therapeutic applications to cancer. Cancer Biol Ther. 2012, 13 (14): 1355-1373. 10.4161/cbt.22020.

PubMedCentralPubMedGoogle Scholar

Trippett TM, Bertino JR: Therapeutic strategies targeting proteins that regulate folate and reduced folate transport. J Chemother. 1999, 11 (1): 3-10. 10.1179/joc.1999.11.1.3.

PubMedGoogle Scholar

Koepsell H, Schmitt BM, Gorboulev V: Organic cation transporters. Rev Physiol Biochem Pharmacol. 2003, 150: 36-90.

PubMedGoogle Scholar

Nies AT, Schwab M: Organic cation transporter pharmacogenomics and drug-drug interaction. Expert Rev Clin Pharmacol. 2010, 3 (6): 707-711. 10.1586/ecp.10.60.

PubMedGoogle Scholar

Koepsell H: Substrate recognition and translocation by polyspecific organic cation transporters. Biol Chem. 2011, 392 (1–2): 95-101.

PubMedGoogle Scholar

Nies AT, Koepsell H, Winter S, Burk O, Klein K, Kerb R, Zanger UM, Keppler D, Schwab M, Schaeffeler E: Expression of organic cation transporters OCT1 (SLC22A1) and OCT3 (SLC22A3) is affected by genetic factors and cholestasis in human liver. Hepatology. 2009, 50 (4): 1227-1240. 10.1002/hep.23103.

PubMedGoogle Scholar

Koepsell H, Lips K, Volk C: Polyspecific organic cation transporters: structure, function, physiological roles, and biopharmaceutical implications. Pharm Res. 2007, 24 (7): 1227-1251. 10.1007/s11095-007-9254-z.

PubMedGoogle Scholar

Gilchrist SE, Alcorn J: Lactation stage-dependent expression of transporters in rat whole mammary gland and primary mammary epithelial organoids. Fundam Clin Pharmacol. 2010, 24 (2): 205-214.

PubMedGoogle Scholar

Minuesa G, Purcet S, Erkizia I, Molina-Arcas M, Bofill M, Izquierdo-Useros N, Casado FJ, Clotet B, Pastor-Anglada M, Martinez-Picado J: Expression and functionality of anti-human immunodeficiency virus and anticancer drug uptake transporters in immune cells. J Pharmacol Exp Ther. 2008, 324 (2): 558-567.

PubMedGoogle Scholar

Nishimura M, Naito S: Tissue-specific mRNA expression profiles of human ATP-binding cassette and solute carrier transporter superfamilies. Drug Metab Pharmacokinet. 2005, 20 (6): 452-477. 10.2133/dmpk.20.452.

PubMedGoogle Scholar

Zhang T, Xiang CD, Gale D, Carreiro S, Wu EY, Zhang EY: Drug transporter and cytochrome P450 mRNA expression in human ocular barriers: implications for ocular drug disposition. Drug Metab Dispos. 2008, 36 (7): 1300-1307. 10.1124/dmd.108.021121.

PubMedGoogle Scholar

Koepsell H: The SLC22 family with transporters of organic cations, anions and zwitterions. Mol Aspects Med. 2013, 34 (2–3): 413-435.

PubMedGoogle Scholar

Gupta S, Wulf G, Henjakovic M, Koepsell H, Burckhardt G, Hagos Y: Human organic cation transporter 1 is expressed in lymphoma cells and increases susceptibility to irinotecan and paclitaxel. J Pharmacol Exp Ther. 2012, 341 (1): 16-23. 10.1124/jpet.111.190561.

PubMedGoogle Scholar

More SS, Li S, Yee SW, Chen L, Xu Z, Jablons DM, Giacomini KM: Organic cation transporters modulate the uptake and cytotoxicity of picoplatin, a third-generation platinum analogue. Mol Cancer Ther. 2010, 9 (4): 1058-1069. 10.1158/1535-7163.MCT-09-1084.

PubMedCentralPubMedGoogle Scholar

Ballestero MR, Monte MJ, Briz O, Jimenez F, Gonzalez-San Martin F, Marin JJ: Expression of transporters potentially involved in the targeting of cytostatic bile acid derivatives to colon cancer and polyps. Biochem Pharmacol. 2006, 72 (6): 729-738. 10.1016/j.bcp.2006.06.007.

PubMedGoogle Scholar

Nakanishi T, Tamai I: Solute carrier transporters as targets for drug delivery and pharmacological intervention for chemotherapy. J Pharm Sci. 2011, 100 (9): 3731-3750. 10.1002/jps.22576.

PubMedGoogle Scholar

Zhang S, Lovejoy KS, Shima JE, Lagpacan LL, Shu Y, Lapuk A, Chen Y, Komori T, Gray JW, Chen X, Lippard SJ, Giacomini KM: Organic cation transporters are determinants of oxaliplatin cytotoxicity. Cancer Res. 2006, 66 (17): 8847-8857. 10.1158/0008-5472.CAN-06-0769.

PubMedCentralPubMedGoogle Scholar

Thomas J, Wang L, Clark RE, Pirmohamed M: Active transport of imatinib into and out of cells: implications for drug resistance. Blood. 2004, 104 (12): 3739-3745. 10.1182/blood-2003-12-4276.

PubMedGoogle Scholar

Koren-Michowitz M, Buzaglo Z, Ribakovsky E, Schwarz M, Pessach I, Shimoni A, Beider K, Amariglio N, Le-Coutre P, Nagler A: OCT1 genetic variants are associated with long term outcomes in imatinib treated chronic myeloid leukemia patients. Eur J Haematol. 2014, 92 (4): 283-288. 10.1111/ejh.12235.

PubMedGoogle Scholar

Rumjanek VM, Vidal RS, Maia RC: Multidrug resistance in chronic myeloid leukaemia: how much can we learn from MDR-CML cell lines?. Biosci Rep. 2013, 33 (6): e00081-

PubMedCentralPubMedGoogle Scholar

Wang L, Giannoudis A, Austin G, Clark RE: Peroxisome proliferator-activated receptor activation increases imatinib uptake and killing of chronic myeloid leukemia cells. Exp Hematol. 2012, 40 (10): 811-819. 10.1016/j.exphem.2012.05.013. e812

PubMedGoogle Scholar

Sacha T, Czekalska S, Foryciarz K, Zawada M, Florek I, Cwynar D, Wator G, Balwierz W, Skotnicki AB: H-oCT1 gene expression as a predictor of major and complete molecular response to imatinib of chronic myeloid leukemia. Single center experience. Przegl Lek. 2011, 68 (4): 191-195.

PubMedGoogle Scholar

Jiang X, Zhao Y, Smith C, Gasparetto M, Turhan A, Eaves A, Eaves C: Chronic myeloid leukemia stem cells possess multiple unique features of resistance to BCR-ABL targeted therapies. Leukemia. 2007, 21 (5): 926-935.

PubMedGoogle Scholar

Eechoute K, Sparreboom A, Burger H, Franke RM, Schiavon G, Verweij J, Loos WJ, Wiemer EA, Mathijssen RH: Drug transporters and imatinib treatment: implications for clinical practice. Clin Cancer Res. 2011, 17 (3): 406-415. 10.1158/1078-0432.CCR-10-2250.

PubMedGoogle Scholar

White DL, Saunders VA, Dang P, Engler J, Venables A, Zrim S, Zannettino A, Lynch K, Manley PW, Hughes T: Most CML patients who have a suboptimal response to imatinib have low OCT-1 activity: higher doses of imatinib may overcome the negative impact of low OCT-1 activity. Blood. 2007, 110 (12): 4064-4072. 10.1182/blood-2007-06-093617.

PubMedGoogle Scholar

Okuda M, Saito H, Urakami Y, Takano M, Inui K: cDNA cloning and functional expression of a novel rat kidney organic cation transporter, OCT2. Biochem Biophys Res Commun. 1996, 224 (2): 500-507. 10.1006/bbrc.1996.1056.

PubMedGoogle Scholar

Motohashi H, Sakurai Y, Saito H, Masuda S, Urakami Y, Goto M, Fukatsu A, Ogawa O, Inui K: Gene expression levels and immunolocalization of organic ion transporters in the human kidney. J Am Soc Nephrol. 2002, 13 (4): 866-874.

PubMedGoogle Scholar

Ciarimboli G, Deuster D, Knief A, Sperling M, Holtkamp M, Edemir B, Pavenstadt H, Lanvers-Kaminsky C, Am Zehnhoff-Dinnesen A, Schinkel AH, Koepsell H, Jurgens H, Schlatter E: Organic cation transporter 2 mediates cisplatin-induced oto- and nephrotoxicity and is a target for protective interventions. Am J Pathol. 2010, 176 (3): 1169-1180. 10.2353/ajpath.2010.090610.

PubMedCentralPubMedGoogle Scholar

Filipski KK, Mathijssen RH, Mikkelsen TS, Schinkel AH, Sparreboom A: Contribution of organic cation transporter 2 (OCT2) to cisplatin-induced nephrotoxicity. Clin Pharmacol Ther. 2009, 86 (4): 396-402. 10.1038/clpt.2009.139.

PubMedCentralPubMedGoogle Scholar

Franke RM, Kosloske AM, Lancaster CS, Filipski KK, Hu C, Zolk O, Mathijssen RH, Sparreboom A: Influence of Oct1/Oct2-deficiency on cisplatin-induced changes in urinary N-acetyl-beta-D-glucosaminidase. Clin Cancer Res. 2010, 16 (16): 4198-4206. 10.1158/1078-0432.CCR-10-0949.

PubMedCentralPubMedGoogle Scholar

Raymond E, Lawrence R, Izbicka E, Faivre S, Von Hoff DD: Activity of oxaliplatin against human tumor colony-forming units. Clin Cancer Res. 1998, 4 (4): 1021-1029.

PubMedGoogle Scholar

Yokoo S, Yonezawa A, Masuda S, Fukatsu A, Katsura T, Inui K: Differential contribution of organic cation transporters, OCT2 and MATE1, in platinum agent-induced nephrotoxicity. Biochem Pharmacol. 2007, 74 (3): 477-487. 10.1016/j.bcp.2007.03.004.

PubMedGoogle Scholar

Yonezawa A, Masuda S, Yokoo S, Katsura T, Inui K: Cisplatin and oxaliplatin, but not carboplatin and nedaplatin, are substrates for human organic cation transporters (SLC22A1-3 and multidrug and toxin extrusion family). J Pharmacol Exp Ther. 2006, 319 (2): 879-886. 10.1124/jpet.106.110346.

PubMedGoogle Scholar

Chen Y, Teranishi K, Li S, Yee SW, Hesselson S, Stryke D, Johns SJ, Ferrin TE, Kwok P, Giacomini KM: Genetic variants in multidrug and toxic compound extrusion-1, hMATE1, alter transport function. Pharmacogenomics J. 2009, 9 (2): 127-136. 10.1038/tpj.2008.19.

PubMedCentralPubMedGoogle Scholar

Grundemann D, Schechinger B, Rappold GA, Schomig E: Molecular identification of the corticosterone-sensitive extraneuronal catecholamine transporter. Nat Neurosci. 1998, 1 (5): 349-351. 10.1038/1557.

PubMedGoogle Scholar

Kekuda R, Prasad PD, Wu X, Wang H, Fei YJ, Leibach FH, Ganapathy V: Cloning and functional characterization of a potential-sensitive, polyspecific organic cation transporter (OCT3) most abundantly expressed in placenta. J Biol Chem. 1998, 273 (26): 15971-15979. 10.1074/jbc.273.26.15971.

PubMedGoogle Scholar

Nies AT, Koepsell H, Damme K, Schwab M: Organic cation transporters (OCTs, MATEs), in vitro and in vivo evidence for the importance in drug therapy. Handb Exp Pharmacol. 2011, 201: 105-167. 10.1007/978-3-642-14541-4_3.

PubMedGoogle Scholar

Shang T, Uihlein AV, Van Asten J, Kalyanaraman B, Hillard CJ: 1-Methyl-4-phenylpyridinium accumulates in cerebellar granule neurons via organic cation transporter 3. J Neurochem. 2003, 85 (2): 358-367. 10.1046/j.1471-4159.2003.01686.x.

PubMedGoogle Scholar

Sata R, Ohtani H, Tsujimoto M, Murakami H, Koyabu N, Nakamura T, Uchiumi T, Kuwano M, Nagata H, Tsukimori K, Nakano H, Sawada Y: Functional analysis of organic cation transporter 3 expressed in human placenta. J Pharmacol Exp Ther. 2005, 315 (2): 888-895. 10.1124/jpet.105.086827.

PubMedGoogle Scholar

Yokoo S, Masuda S, Yonezawa A, Terada T, Katsura T, Inui K: Significance of organic cation transporter 3 (SLC22A3) expression for the cytotoxic effect of oxaliplatin in colorectal cancer. Drug Metab Dispos. 2008, 36 (11): 2299-2306. 10.1124/dmd.108.023168.

PubMedGoogle Scholar

Shnitsar V, Eckardt R, Gupta S, Grottker J, Muller GA, Koepsell H, Burckhardt G, Hagos Y: Expression of human organic cation transporter 3 in kidney carcinoma cell lines increases chemosensitivity to melphalan, irinotecan, and vincristine. Cancer Res. 2009, 69 (4): 1494-1501. 10.1158/0008-5472.CAN-08-2483.

PubMedGoogle Scholar

Koepsell H, Endou H: The SLC22 drug transporter family. Pflugers Arch. 2004, 447 (5): 666-676. 10.1007/s00424-003-1089-9.

PubMedGoogle Scholar

Sekine T, Watanabe N, Hosoyamada M, Kanai Y, Endou H: Expression cloning and characterization of a novel multispecific organic anion transporter. J Biol Chem. 1997, 272 (30): 18526-18529. 10.1074/jbc.272.30.18526.

PubMedGoogle Scholar

Lopez-Nieto CE, You G, Bush KT, Barros EJ, Beier DR, Nigam SK: Molecular cloning and characterization of NKT, a gene product related to the organic cation transporter family that is almost exclusively expressed in the kidney. J Biol Chem. 1997, 272 (10): 6471-6478. 10.1074/jbc.272.10.6471.

PubMedGoogle Scholar

Reid G, Wolff NA, Dautzenberg FM, Burckhardt G: Cloning of a human renal p-aminohippurate transporter, hROAT1. Kidney Blood Press Res. 1998, 21 (2–4): 233-237.

PubMedGoogle Scholar

Hosoyamada M, Sekine T, Kanai Y, Endou H: Molecular cloning and functional expression of a multispecific organic anion transporter from human kidney. Am J Physiol. 1999, 276 (1 Pt 2): F122-F128.

PubMedGoogle Scholar

Tahara H, Shono M, Kusuhara H, Kinoshita H, Fuse E, Takadate A, Otagiri M, Sugiyama Y: Molecular cloning and functional analyses of OAT1 and OAT3 from cynomolgus monkey kidney. Pharm Res. 2005, 22 (4): 647-660. 10.1007/s11095-005-2503-0.

PubMedGoogle Scholar

Nomura M, Motohashi H, Sekine H, Katsura T, Inui K: Developmental expression of renal organic anion transporters in rat kidney and its effect on renal secretion of phenolsulfonphthalein. Am J Physiol Renal Physiol. 2012, 302 (12): F1640-F1649. 10.1152/ajprenal.00525.2011.

PubMedGoogle Scholar

Hasannejad H, Takeda M, Taki K, Shin HJ, Babu E, Jutabha P, Khamdang S, Aleboyeh M, Onozato ML, Tojo A, Enomoto A, Anzai N, Narikawa S, Huang XL, Niwa T, Endou H: Interactions of human organic anion transporters with diuretics. J Pharmacol Exp Ther. 2004, 308 (3): 1021-1029.

PubMedGoogle Scholar

Uwai Y, Taniguchi R, Motohashi H, Saito H, Okuda M, Inui K: Methotrexate-loxoprofen interaction: involvement of human organic anion transporters hOAT1 and hOAT3. Drug Metab Pharmacokinet. 2004, 19 (5): 369-374. 10.2133/dmpk.19.369.

PubMedGoogle Scholar

Nozaki Y, Kusuhara H, Endou H, Sugiyama Y: Quantitative evaluation of the drug-drug interactions between methotrexate and nonsteroidal anti-inflammatory drugs in the renal uptake process based on the contribution of organic anion transporters and reduced folate carrier. J Pharmacol Exp Ther. 2004, 309 (1): 226-234. 10.1124/jpet.103.061812.

PubMedGoogle Scholar

Kaler G, Truong DM, Khandelwal A, Nagle M, Eraly SA, Swaan PW, Nigam SK: Structural variation governs substrate specificity for organic anion transporter (OAT) homologs. Potential remote sensing by OAT family members. J Biol Chem. 2007, 282 (33): 23841-23853. 10.1074/jbc.M703467200.

PubMedGoogle Scholar

Mori K, Ogawa Y, Ebihara K, Aoki T, Tamura N, Sugawara A, Kuwahara T, Ozaki S, Mukoyama M, Tashiro K, Tanaka I, Nakao K: Kidney-specific expression of a novel mouse organic cation transporter-like protein. FEBS Lett. 1997, 417 (3): 371-374. 10.1016/S0014-5793(97)01325-2.

PubMedGoogle Scholar

Burckhardt G, Burckhardt BC: In vitro and in vivo evidence of the importance of organic anion transporters (OATs) in drug therapy. Handb Exp Pharmacol. 2011, 201: 29-104. 10.1007/978-3-642-14541-4_2.

PubMedGoogle Scholar

Fork C, Bauer T, Golz S, Geerts A, Weiland J, Del Turco D, Schomig E, Grundemann D: OAT2 catalyses efflux of glutamate and uptake of orotic acid. Biochem J. 2011, 436 (2): 305-312. 10.1042/BJ20101904.

PubMedGoogle Scholar

Hilgendorf C, Ahlin G, Seithel A, Artursson P, Ungell AL, Karlsson J: Expression of thirty-six drug transporter genes in human intestine, liver, kidney, and organotypic cell lines. Drug Metab Dispos. 2007, 35 (8): 1333-1340. 10.1124/dmd.107.014902.

PubMedGoogle Scholar

Sun W, Wu RR, van Poelje PD, Erion MD: Isolation of a family of organic anion transporters from human liver and kidney. Biochem Biophys Res Commun. 2001, 283 (2): 417-422. 10.1006/bbrc.2001.4774.

PubMedGoogle Scholar

Cropp CD, Komori T, Shima JE, Urban TJ, Yee SW, More SS, Giacomini KM: Organic anion transporter 2 (SLC22A7) is a facilitative transporter of cGMP. Mol Pharmacol. 2008, 73 (4): 1151-1158. 10.1124/mol.107.043117.

PubMedCentralPubMedGoogle Scholar

Simonson GD, Vincent AC, Roberg KJ, Huang Y, Iwanij V: Molecular cloning and characterization of a novel liver-specific transport protein. J Cell Sci. 1994, 107 (Pt 4): 1065-1072.

PubMedGoogle Scholar

Rizwan AN, Burckhardt G: Organic anion transporters of the SLC22 family: biopharmaceutical, physiological, and pathological roles. Pharm Res. 2007, 24 (3): 450-470. 10.1007/s11095-006-9181-4.

PubMedGoogle Scholar

Kobayashi Y, Ohshiro N, Sakai R, Ohbayashi M, Kohyama N, Yamamoto T: Transport mechanism and substrate specificity of human organic anion transporter 2 (hOat2 [SLC22A7]). J Pharm Pharmacol. 2005, 57 (5): 573-578. 10.1211/0022357055966.

PubMedGoogle Scholar

Tanino T, Nawa A, Nakao M, Noda M, Fujiwara S, Iwaki M: Organic anion transporting polypeptide 2-mediated uptake of paclitaxel and 2’-ethylcarbonate-linked paclitaxel in freshly isolated rat hepatocytes. J Pharm Pharmacol. 2009, 61 (8): 1029-1035.

PubMedGoogle Scholar

Bleasby K, Castle JC, Roberts CJ, Cheng C, Bailey WJ, Sina JF, Kulkarni AV, Hafey MJ, Evers R, Johnson JM, Ulrich RG, Slatter JG: Expression profiles of 50 xenobiotic transporter genes in humans and pre-clinical species: a resource for investigations into drug disposition. Xenobiotica. 2006, 36 (10–11): 963-988.

PubMedGoogle Scholar

Cha SH, Sekine T, Fukushima JI, Kanai Y, Kobayashi Y, Goya T, Endou H: Identification and characterization of human organic anion transporter 3 expressing predominantly in the kidney. Mol Pharmacol. 2001, 59 (5): 1277-1286.

PubMedGoogle Scholar

Kobayashi Y, Ohshiro N, Tsuchiya A, Kohyama N, Ohbayashi M, Yamamoto T: Renal transport of organic compounds mediated by mouse organic anion transporter 3 (mOat3): further substrate specificity of mOat3. Drug Metab Dispos. 2004, 32 (5): 479-483. 10.1124/dmd.32.5.479.

PubMedGoogle Scholar

Matsumoto S, Yoshida K, Ishiguro N, Maeda T, Tamai I: Involvement of rat and human organic anion transporter 3 in the renal tubular secretion of topotecan [(S)-9-dimethylaminomethyl-10-hydroxy-camptothecin hydrochloride]. J Pharmacol Exp Ther. 2007, 322 (3): 1246-1252. 10.1124/jpet.107.123323.

PubMedGoogle Scholar

Tamai I, Yabuuchi H, Nezu J, Sai Y, Oku A, Shimane M, Tsuji A: Cloning and characterization of a novel human pH-dependent organic cation transporter, OCTN1. FEBS Lett. 1997, 419 (1): 107-111. 10.1016/S0014-5793(97)01441-5.

PubMedGoogle Scholar

Tamai I, Ohashi R, Nezu J, Yabuuchi H, Oku A, Shimane M, Sai Y, Tsuji A: Molecular and functional identification of sodium ion-dependent, high affinity human carnitine transporter OCTN2. J Biol Chem. 1998, 273 (32): 20378-20382. 10.1074/jbc.273.32.20378.

PubMedGoogle Scholar

Enomoto A, Wempe MF, Tsuchida H, Shin HJ, Cha SH, Anzai N, Goto A, Sakamoto A, Niwa T, Kanai Y, Anders MW, Endou H: Molecular identification of a novel carnitine transporter specific to human testis. Insights into the mechanism of carnitine recognition. J Biol Chem. 2002, 277 (39): 36262-36271. 10.1074/jbc.M203883200.

PubMedGoogle Scholar

Okabe M, Unno M, Harigae H, Kaku M, Okitsu Y, Sasaki T, Mizoi T, Shiiba K, Takanaga H, Terasaki T, Matsuno S, Sasaki I, Ito S, Abe T: Characterization of the organic cation transporter SLC22A16: a doxorubicin importer. Biochem Biophys Res Commun. 2005, 333 (3): 754-762. 10.1016/j.bbrc.2005.05.174.

PubMedGoogle Scholar

Gong S, Lu X, Xu Y, Swiderski CF, Jordan CT, Moscow JA: Identification of OCT6 as a novel organic cation transporter preferentially expressed in hematopoietic cells and leukemias. Exp Hematol. 2002, 30 (10): 1162-1169. 10.1016/S0301-472X(02)00901-3.

PubMedGoogle Scholar

Jong NN, Nakanishi T, Liu JJ, Tamai I, McKeage MJ: Oxaliplatin transport mediated by organic cation/carnitine transporters OCTN1 and OCTN2 in overexpressing human embryonic kidney 293 cells and rat dorsal root ganglion neurons. J Pharmacol Exp Ther. 2011, 338 (2): 537-547. 10.1124/jpet.111.181297.

PubMedGoogle Scholar

Hu S, Franke RM, Filipski KK, Hu C, Orwick SJ, de Bruijn EA, Burger H, Baker SD, Sparreboom A: Interaction of imatinib with human organic ion carriers. Clin Cancer Res. 2008, 14 (10): 3141-3148. 10.1158/1078-0432.CCR-07-4913.

PubMedGoogle Scholar

Peng B, Lloyd P, Schran H: Clinical pharmacokinetics of imatinib. Clin Pharmacokinet. 2005, 44 (9): 879-894. 10.2165/00003088-200544090-00001.

PubMedGoogle Scholar

Angelini S, Pantaleo MA, Ravegnini G, Zenesini C, Cavrini G, Nannini M, Fumagalli E, Palassini E, Saponara M, Di Battista M, Casali PG, Hrelia P, Cantelli-Forti G, Biasco G: Polymorphisms in OCTN1 and OCTN2 transporters genes are associated with prolonged time to progression in unresectable gastrointestinal stromal tumours treated with imatinib therapy. Pharmacol Res. 2013, 68 (1): 1-6. 10.1016/j.phrs.2012.10.015.

PubMedGoogle Scholar

Aouida M, Poulin R, Ramotar D: The human carnitine transporter SLC22A16 mediates high affinity uptake of the anticancer polyamine analogue bleomycin-A5. J Biol Chem. 2010, 285 (9): 6275-6284. 10.1074/jbc.M109.046151.

PubMedCentralPubMedGoogle Scholar

Meier PJ, Eckhardt U, Schroeder A, Hagenbuch B, Stieger B: Substrate specificity of sinusoidal bile acid and organic anion uptake systems in rat and human liver. Hepatology. 1997, 26 (6): 1667-1677. 10.1002/hep.510260641.

PubMedGoogle Scholar

Hagenbuch B, Meier PJ: Organic anion transporting polypeptides of the OATP/SLC21 family: phylogenetic classification as OATP/SLCO superfamily, new nomenclature and molecular/functional properties. Pflugers Arch. 2004, 447 (5): 653-665. 10.1007/s00424-003-1168-y.

PubMedGoogle Scholar

Hagenbuch B, Meier PJ: The superfamily of organic anion transporting polypeptides. Biochim Biophys Acta. 2003, 1609 (1): 1-18. 10.1016/S0005-2736(02)00633-8.

PubMedGoogle Scholar

Hagenbuch B, Gui C: Xenobiotic transporters of the human organic anion transporting polypeptides (OATP) family. Xenobiotica. 2008, 38 (7–8): 778-801.

PubMedGoogle Scholar

Kullak-Ublick GA, Beuers U, Paumgartner G: Molecular and functional characterization of bile acid transport in human hepatoblastoma HepG2 cells. Hepatology. 1996, 23 (5): 1053-1060. 10.1002/hep.510230518.

PubMedGoogle Scholar

Abe T, Kakyo M, Tokui T, Nakagomi R, Nishio T, Nakai D, Nomura H, Unno M, Suzuki M, Naitoh T, Matsuno S, Yawo H: Identification of a novel gene family encoding human liver-specific organic anion transporter LST-1. J Biol Chem. 1999, 274 (24): 17159-17163. 10.1074/jbc.274.24.17159.

PubMedGoogle Scholar

Hsiang B, Zhu Y, Wang Z, Wu Y, Sasseville V, Yang WP, Kirchgessner TG: A novel human hepatic organic anion transporting polypeptide (OATP2). Identification of a liver-specific human organic anion transporting polypeptide and identification of rat and human hydroxymethylglutaryl-CoA reductase inhibitor transporters. J Biol Chem. 1999, 274 (52): 37161-37168. 10.1074/jbc.274.52.37161.

PubMedGoogle Scholar

Konig J, Cui Y, Nies AT, Keppler D: A novel human organic anion transporting polypeptide localized to the basolateral hepatocyte membrane. Am J Physiol Gastrointest Liver Physiol. 2000, 278 (1): G156-G164.

PubMedGoogle Scholar

Okabe M, Szakacs G, Reimers MA, Suzuki T, Hall MD, Abe T, Weinstein JN, Gottesman MM: Profiling SLCO and SLC22 genes in the NCI-60 cancer cell lines to identify drug uptake transporters. Mol Cancer Ther. 2008, 7 (9): 3081-3091. 10.1158/1535-7163.MCT-08-0539.

PubMedCentralPubMedGoogle Scholar

Nozawa T, Minami H, Sugiura S, Tsuji A, Tamai I: Role of organic anion transporter OATP1B1 (OATP-C) in hepatic uptake of irinotecan and its active metabolite, 7-ethyl-10-hydroxycamptothecin: in vitro evidence and effect of single nucleotide polymorphisms. Drug Metab Dispos. 2005, 33 (3): 434-439.

PubMedGoogle Scholar

Takane H, Kawamoto K, Sasaki T, Moriki K, Kitano H, Higuchi S, Otsubo K, Ieiri I: Life-threatening toxicities in a patient with UGT1A1*6/*28 and SLCO1B1*15/*15 genotypes after irinotecan-based chemotherapy. Cancer Chemother Pharmacol. 2009, 63 (6): 1165-1169. 10.1007/s00280-008-0864-x.

PubMedGoogle Scholar

van de Steeg E, van der Kruijssen CM, Wagenaar E, Burggraaff JE, Mesman E, Kenworthy KE, Schinkel AH: Methotrexate pharmacokinetics in transgenic mice with liver-specific expression of human organic anion-transporting polypeptide 1B1 (SLCO1B1). Drug Metab Dispos. 2009, 37 (2): 277-281. 10.1124/dmd.108.024315.

PubMedGoogle Scholar

Ni W, Ji J, Dai Z, Papp A, Johnson AJ, Ahn S, Farley KL, Lin TS, Dalton JT, Li X, Jarjoura D, Byrd JC, Sadee W, Grever MR, Phelps MA: Flavopiridol pharmacogenetics: clinical and functional evidence for the role of SLCO1B1/OATP1B1 in flavopiridol disposition. PLoS One. 2010, 5 (11): e13792-10.1371/journal.pone.0013792.

PubMedCentralPubMedGoogle Scholar

Katz DA, Carr R, Grimm DR, Xiong H, Holley-Shanks R, Mueller T, Leake B, Wang Q, Han L, Wang PG, Edeki T, Sahelijo L, Doan T, Allen A, Spear BB: Organic anion transporting polypeptide 1B1 activity classified by SLCO1B1 genotype influences atrasentan pharmacokinetics. Clin Pharmacol Ther. 2006, 79 (3): 186-196. 10.1016/j.clpt.2005.11.003.

PubMedGoogle Scholar

Liu T, Li Q: Organic anion-transporting polypeptides: a novel approach for cancer therapy. J Drug Target. 2014, 22 (1): 14-22. 10.3109/1061186X.2013.832767.

PubMedGoogle Scholar

Lee W, Belkhiri A, Lockhart AC, Merchant N, Glaeser H, Harris EI, Washington MK, Brunt EM, Zaika A, Kim RB, El-Rifai W: Overexpression of OATP1B3 confers apoptotic resistance in colon cancer. Cancer Res. 2008, 68 (24): 10315-10323. 10.1158/0008-5472.CAN-08-1984.

PubMedCentralPubMedGoogle Scholar

Lockhart AC, Harris E, Lafleur BJ, Merchant NB, Washington MK, Resnick MB, Yeatman TJ, Lee W: Organic anion transporting polypeptide 1B3 (OATP1B3) is overexpressed in colorectal tumors and is a predictor of clinical outcome. Clin Exp Gastroenterol. 2008, 1: 1-7. 10.1007/s12328-008-0001-8.

PubMedCentralPubMedGoogle Scholar

Wright JL, Kwon EM, Ostrander EA, Montgomery RB, Lin DW, Vessella R, Stanford JL, Mostaghel EA: Expression of SLCO transport genes in castration-resistant prostate cancer and impact of genetic variation in SLCO1B3 and SLCO2B1 on prostate cancer outcomes. Cancer Epidemiol Biomarkers Prev. 2011, 20 (4): 619-627. 10.1158/1055-9965.EPI-10-1023.

PubMedCentralPubMedGoogle Scholar

Abe T, Unno M, Onogawa T, Tokui T, Kondo TN, Nakagomi R, Adachi H, Fujiwara K, Okabe M, Suzuki T, Nunoki K, Sato E, Kakyo M, Nishio T, Sugita J, Asano N, Tanemoto M, Seki M, Oate F, Ono K, Kondo Y, Shiibak K, Suzuki M, Ohtani H, Shimosegawa T, Iinuma K, Nagura H, Ito S, Matsuno S: LST-2, a human liver-specific organic anion transporter, determines methotrexate sensitivity in gastrointestinal cancers. Gastroenterology. 2001, 120 (7): 1689-1699. 10.1053/gast.2001.24804.

PubMedGoogle Scholar

Smith NF, Acharya MR, Desai N, Figg WD, Sparreboom A: Identification of OATP1B3 as a high-affinity hepatocellular transporter of paclitaxel. Cancer Biol Ther. 2005, 4 (8): 815-818. 10.4161/cbt.4.8.1867.

PubMedGoogle Scholar

Garcia AD, Ostapchuk P, Hearing P: Methylation-dependent and -independent DNA binding of nuclear factor EF-C. Virology. 1991, 182 (2): 857-860. 10.1016/0042-6822(91)90629-P.

PubMedGoogle Scholar

Yamaguchi H, Kobayashi M, Okada M, Takeuchi T, Unno M, Abe T, Goto J, Hishinuma T, Mano N: Rapid screening of antineoplastic candidates for the human organic anion transporter OATP1B3 substrates using fluorescent probes. Cancer Lett. 2008, 260 (1–2): 163-169.

PubMedGoogle Scholar

Maekawa M, Tanaka H: [Hemofiltration and computer]. Nihon Rinsho. 1991, 49 (Suppl): 428-432.

PubMedGoogle Scholar

Glaeser H, Bailey DG, Dresser GK, Gregor JC, Schwarz UI, McGrath JS, Jolicoeur E, Lee W, Leake BF, Tirona RG, Kim RB: Intestinal drug transporter expression and the impact of grapefruit juice in humans. Clin Pharmacol Ther. 2007, 81 (3): 362-370. 10.1038/sj.clpt.6100056.

PubMedGoogle Scholar

Gao B, Hagenbuch B, Kullak-Ublick GA, Benke D, Aguzzi A, Meier PJ: Organic anion-transporting polypeptides mediate transport of opioid peptides across blood-brain barrier. J Pharmacol Exp Ther. 2000, 294 (1): 73-79.

PubMedGoogle Scholar

Liedauer R, Svoboda M, Wlcek K, Arrich F, Ja W, Toma C, Thalhammer T: Different expression patterns of organic anion transporting polypeptides in osteosarcomas, bone metastases and aneurysmal bone cysts. Oncol Rep. 2009, 22 (6): 1485-1492.

PubMedGoogle Scholar

van de Steeg E, van Esch A, Wagenaar E, Kenworthy KE, Schinkel AH: Influence of human OATP1B1, OATP1B3, and OATP1A2 on the pharmacokinetics of methotrexate and paclitaxel in humanized transgenic mice. Clin Cancer Res. 2013, 19 (4): 821-832. 10.1158/1078-0432.CCR-12-2080.

PubMedGoogle Scholar

van de Steeg E, van Esch A, Wagenaar E, van der Kruijssen CM, van Tellingen O, Kenworthy KE, Schinkel AH: High impact of Oatp1a/1b transporters on in vivo disposition of the hydrophobic anticancer drug paclitaxel. Clin Cancer Res. 2011, 17 (2): 294-301. 10.1158/1078-0432.CCR-10-1980.

PubMedGoogle Scholar

Wlcek K, Svoboda M, Riha J, Zakaria S, Olszewski U, Dvorak Z, Sellner F, Ellinger I, Jager W, Thalhammer T: The analysis of organic anion transporting polypeptide (OATP) mRNA and protein patterns in primary and metastatic liver cancer. Cancer Biol Ther. 2011, 11 (9): 801-811. 10.4161/cbt.11.9.15176.

PubMedGoogle Scholar

Kim H, Son HY, Bailey SM, Lee J: Deletion of hepatic Ctr1 reveals its function in copper acquisition and compensatory mechanisms for copper homeostasis. Am J Physiol Gastrointest Liver Physiol. 2009, 296 (2): G356-G364.

PubMedCentralPubMedGoogle Scholar

Zhou B, Gitschier J: hCTR1: a human gene for copper uptake identified by complementation in yeast. Proc Natl Acad Sci U S A. 1997, 94 (14): 7481-7486. 10.1073/pnas.94.14.7481.

PubMedCentralPubMedGoogle Scholar

Lee J, Pena MM, Nose Y, Thiele DJ: Biochemical characterization of the human copper transporter Ctr1. J Biol Chem. 2002, 277 (6): 4380-4387. 10.1074/jbc.M104728200.

PubMedGoogle Scholar

Holzer AK, Varki NM, Le QT, Gibson MA, Naredi P, Howell SB: Expression of the human copper influx transporter 1 in normal and malignant human tissues. J Histochem Cytochem. 2006, 54 (9): 1041-1049. 10.1369/jhc.6A6970.2006.

PubMedGoogle Scholar

Ishida S, Lee J, Thiele DJ, Herskowitz I: Uptake of the anticancer drug cisplatin mediated by the copper transporter Ctr1 in yeast and mammals. Proc Natl Acad Sci U S A. 2002, 99 (22): 14298-14302. 10.1073/pnas.162491399.

PubMedCentralPubMedGoogle Scholar

Howell SB, Safaei R, Larson CA, Sailor MJ: Copper transporters and the cellular pharmacology of the platinum-containing cancer drugs. Mol Pharmacol. 2010, 77 (6): 887-894. 10.1124/mol.109.063172.

PubMedCentralPubMedGoogle Scholar

Kuo MT, Chen HH, Song IS, Savaraj N, Ishikawa T: The roles of copper transporters in cisplatin resistance. Cancer Metastasis Rev. 2007, 26 (1): 71-83. 10.1007/s10555-007-9045-3.

PubMedGoogle Scholar

Song IS, Savaraj N, Siddik ZH, Liu P, Wei Y, Wu CJ, Kuo MT: Role of human copper transporter Ctr1 in the transport of platinum-based antitumor agents in cisplatin-sensitive and cisplatin-resistant cells. Mol Cancer Ther. 2004, 3 (12): 1543-1549.

PubMedGoogle Scholar

Liang ZD, Stockton D, Savaraj N, Tien Kuo M: Mechanistic comparison of human high-affinity copper transporter 1-mediated transport between copper ion and cisplatin. Mol Pharmacol. 2009, 76 (4): 843-853. 10.1124/mol.109.056416.

PubMedCentralPubMedGoogle Scholar

Pabla N, Murphy RF, Liu K, Dong Z: The copper transporter Ctr1 contributes to cisplatin uptake by renal tubular cells during cisplatin nephrotoxicity. Am J Physiol Renal Physiol. 2009, 296 (3): F505-F511.

PubMedCentralPubMedGoogle Scholar

Morita Y, Kodama K, Shiota S, Mine T, Kataoka A, Mizushima T, Tsuchiya T: NorM, a putative multidrug efflux protein, of Vibrio parahaemolyticus and its homolog in Escherichia coli. Antimicrob Agents Chemother. 1998, 42 (7): 1778-1782.

PubMedCentralPubMedGoogle Scholar

Otsuka M, Matsumoto T, Morimoto R, Arioka S, Omote H, Moriyama Y: A human transporter protein that mediates the final excretion step for toxic organic cations. Proc Natl Acad Sci U S A. 2005, 102 (50): 17923-17928. 10.1073/pnas.0506483102.

PubMedCentralPubMedGoogle Scholar

Yonezawa A, Inui K: Importance of the multidrug and toxin extrusion MATE/SLC47A family to pharmacokinetics, pharmacodynamics/toxicodynamics and pharmacogenomics. Br J Pharmacol. 2011, 164 (7): 1817-1825. 10.1111/j.1476-5381.2011.01394.x.

PubMedCentralPubMedGoogle Scholar

Ahmadimoghaddam D, Zemankova L, Nachtigal P, Dolezelova E, Neumanova Z, Cerveny L, Ceckova M, Kacerovsky M, Micuda S, Staud F: Organic cation transporter 3 (OCT3/SLC22A3) and multidrug and toxin extrusion 1 (MATE1/SLC47A1) transporter in the placenta and fetal tissues: expression profile and fetus protective role at different stages of gestation. Biol Reprod. 2013, 88 (3): 55-10.1095/biolreprod.112.105064.

PubMedGoogle Scholar

Komatsu T, Hiasa M, Miyaji T, Kanamoto T, Matsumoto T, Otsuka M, Moriyama Y, Omote H: Characterization of the human MATE2 proton-coupled polyspecific organic cation exporter. Int J Biochem Cell Biol. 2011, 43 (6): 913-918. 10.1016/j.biocel.2011.03.005.

PubMedGoogle Scholar

Nakamura T, Yonezawa A, Hashimoto S, Katsura T, Inui K: Disruption of multidrug and toxin extrusion MATE1 potentiates cisplatin-induced nephrotoxicity. Biochem Pharmacol. 2010, 80 (11): 1762-1767. 10.1016/j.bcp.2010.08.019.

PubMedGoogle Scholar

Li Q, Peng X, Yang H, Wang H, Shu Y: Deficiency of multidrug and toxin extrusion 1 enhances renal accumulation of paraquat and deteriorates kidney injury in mice. Mol Pharm. 2011, 8 (6): 2476-2483. 10.1021/mp200395f.

PubMedCentralPubMedGoogle Scholar

Yonezawa A: [Platinum agent-induced nephrotoxicity via organic cation transport system]. Yakugaku Zasshi. 2012, 132 (11): 1281-1285. 10.1248/yakushi.12-00211.

PubMedGoogle Scholar

Rubio-Aliaga I, Daniel H: Peptide transporters and their roles in physiological processes and drug disposition. Xenobiotica. 2008, 38 (7–8): 1022-1042.

PubMedGoogle Scholar

Terada T, Inui K: Recent advances in structural biology of peptide transporters. Curr Top Membr. 2012, 70: 257-274.

PubMedGoogle Scholar

Nakanishi T, Tamai I, Sai Y, Sasaki T, Tsuji A: Carrier-mediated transport of oligopeptides in the human fibrosarcoma cell line HT1080. Cancer Res. 1997, 57 (18): 4118-4122.

PubMedGoogle Scholar

Gonzalez DE, Covitz KM, Sadee W, Mrsny RJ: An oligopeptide transporter is expressed at high levels in the pancreatic carcinoma cell lines AsPc-1 and Capan-2. Cancer Res. 1998, 58 (3): 519-525.

PubMedGoogle Scholar

Anderson CM, Jevons M, Thangaraju M, Edwards N, Conlon NJ, Woods S, Ganapathy V, Thwaites DT: Transport of the photodynamic therapy agent 5-aminolevulinic acid by distinct H + -coupled nutrient carriers coexpressed in the small intestine. J Pharmacol Exp Ther. 2010, 332 (1): 220-228. 10.1124/jpet.109.159822.

PubMedCentralPubMedGoogle Scholar

Nakanishi T, Tamai I, Takaki A, Tsuji A: Cancer cell-targeted drug delivery utilizing oligopeptide transport activity. Int J Cancer. 2000, 88 (2): 274-280. 10.1002/1097-0215(20001015)88:2<274::AID-IJC20>3.0.CO;2-5.

PubMedGoogle Scholar

Mitsuoka K, Kato Y, Miyoshi S, Murakami Y, Hiraiwa M, Kubo Y, Nishimura S, Tsuji A: Inhibition of oligopeptide transporter suppress growth of human pancreatic cancer cells. Eur J Pharm Sci. 2010, 40 (3): 202-208. 10.1016/j.ejps.2010.03.010.

PubMedGoogle Scholar

Grem JL: 5-Fluorouracil: forty-plus and still ticking. A review of its preclinical and clinical development. Invest New Drugs. 2000, 18 (4): 299-313. 10.1023/A:1006416410198.

PubMedGoogle Scholar

Kawaguchi T, Saito M, Suzuki Y, Nambu N, Nagai T: Specificity of esterases and structure of prodrug esters. II. Hydrolytic regeneration behavior of 5-fluoro-2’-deoxyuridine (FUdR) from 3’,5’-diesters of FUdR with rat tissue homogenates and plasma in relation to their antitumor activity. Chem Pharm Bull (Tokyo). 1985, 33 (4): 1652-1659. 10.1248/cpb.33.1652.

Google Scholar

Vig BS, Lorenzi PJ, Mittal S, Landowski CP, Shin HC, Mosberg HI, Hilfinger JM, Amidon GL: Amino acid ester prodrugs of floxuridine: synthesis and effects of structure, stereochemistry, and site of esterification on the rate of hydrolysis. Pharm Res. 2003, 20 (9): 1381-1388. 10.1023/A:1025745824632.

PubMedGoogle Scholar

Han HK, Oh DM, Amidon GL: Cellular uptake mechanism of amino acid ester prodrugs in Caco-2/hPEPT1 cells overexpressing a human peptide transporter. Pharm Res. 1998, 15 (9): 1382-1386. 10.1023/A:1011945420235.

PubMedGoogle Scholar

Landowski CP, Vig BS, Song X, Amidon GL: Targeted delivery to PEPT1-overexpressing cells: acidic, basic, and secondary floxuridine amino acid ester prodrugs. Mol Cancer Ther. 2005, 4 (4): 659-667. 10.1158/1535-7163.MCT-04-0290.

PubMedGoogle Scholar

Taylor PM: Role of amino acid transporters in amino acid sensing. Am J Clin Nutr. 2014, 99 (1): 223S-230S. 10.3945/ajcn.113.070086.

PubMedCentralPubMedGoogle Scholar

Bjornsti MA, Houghton PJ: The TOR pathway: a target for cancer therapy. Nat Rev Cancer. 2004, 4 (5): 335-348. 10.1038/nrc1362.

PubMedGoogle Scholar

Yang Q, Guan KL: Expanding mTOR signaling. Cell Res. 2007, 17 (8): 666-681. 10.1038/cr.2007.64.

PubMedGoogle Scholar

Nicklin P, Bergman P, Zhang B, Triantafellow E, Wang H, Nyfeler B, Yang H, Hild M, Kung C, Wilson C, Myer VE, Mackeigan JP, Porter JA, Wang YK, Cantley LC, Finan PM, Murphy LO: Bidirectional transport of amino acids regulates mTOR and autophagy. Cell. 2009, 136 (3): 521-534. 10.1016/j.cell.2008.11.044.

PubMedCentralPubMedGoogle Scholar

Kondoh N, Imazeki N, Arai M, Hada A, Hatsuse K, Matsuo H, Matsubara O, Ohkura S, Yamamoto M: Activation of a system A amino acid transporter, ATA1/SLC38A1, in human hepatocellular carcinoma and preneoplastic liver tissues. Int J Oncol. 2007, 31 (1): 81-87.

PubMedGoogle Scholar

O’Dwyer PJ, Alonso MT, Leyland-Jones B: Acivicin: a new glutamine antagonist in clinical trials. J Clin Oncol. 1984, 2 (9): 1064-1071.

PubMedGoogle Scholar

Geier EG, Schlessinger A, Fan H, Gable JE, Irwin JJ, Sali A, Giacomini KM: Structure-based ligand discovery for the Large-neutral Amino Acid Transporter 1, LAT-1. Proc Natl Acad Sci U S A. 2013, 110 (14): 5480-5485. 10.1073/pnas.1218165110.

PubMedCentralPubMedGoogle Scholar

Patel M, Dalvi P, Gokulgandhi M, Kesh S, Kohli T, Pal D, Mitra AK: Functional characterization and molecular expression of large neutral amino acid transporter (LAT1) in human prostate cancer cells. Int J Pharm. 2013, 443 (1–2): 245-253.

PubMedGoogle Scholar

Published
2019-01-31
Section
Review