Molecular mechanisms of tissue inhibitor of metalloproteinase 2 in the tumor microenvironment

  • Taylor Remillard
  • Gennady Bratslavsky
  • Sandra Jensen-Taubman
  • William Stetler-Stevenson
  • Dimitra Bourboulia
Keywords: Tissue inhibitor of metalloproteinase-2 (TIMP-2), Matrix metalloproteinase (MMPs), Tumor microenvironment (TME), Angiogenesis

Abstract

There has been a recent paradigm shift in the way we target cancer, drawing a greater focus on the role of the tumor microenvironment (TME) in cancer development, progression and metastasis. Within the TME, there is a crosstalk in signaling and communication between the malignant cells and the surrounding extracellular matrix. Matrix metalloproteinases (MMPs) are zinc-dependent endoproteases that have the ability to degrade the matrix surrounding a tumor and mediate tumor growth, angiogenesis and metastatic disease. Their endogenous inhibitors, the Tissue Inhibitors of Metalloproteinases (TIMPs), primarily function to prevent degradation of the ECM via inhibition of MMPs. However, recent studies demonstrate that TIMP family members also possess MMP-independent functions. One TIMP member in particular, TIMP-2, has many distinct properties and functions, that occur independent of MMP inhibition, including the inhibition of tumor growth and reduction of angiogenesis through decreased endothelial cell proliferation and migration. The MMP-independent molecular mechanisms and signaling pathways elicited by TIMP-2 in the TME are described in this review.

Downloads

Download data is not yet available.

References

Hanahan D, Weinberg RA: The hallmarks of cancer. Cell. 2000, 100: 57-70. 10.1016/S0092-8674(00)81683-9.

CrossRefPubMedGoogle Scholar

Egeblad M, Werb Z: New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer. 2002, 2: 161-174. 10.1038/nrc745.

CrossRefPubMedGoogle Scholar

Lu P, Weaver VM, Werb Z: The extracellular matrix: a dynamic niche in cancer progression. J Cell Biol. 2012, 196: 395-406. 10.1083/jcb.201102147.

PubMedCentralCrossRefPubMedGoogle Scholar

Manes S, Mira E, Barbacid MM, Cipres A, Fernandez-Resa P, Buesa JM, Merida I, Aracil M, Marquez G, Martinez AC: Identification of insulin-like growth factor-binding protein-1 as a potential physiological substrate for human stromelysin-3. J Biol Chem. 1997, 272: 25706-25712. 10.1074/jbc.272.41.25706.

CrossRefPubMedGoogle Scholar

Bergers G, Brekken R, McMahon G, Vu TH, Itoh T, Tamaki K, Tanzawa K, Thorpe P, Itohara S, Werb Z, Hanahan D: Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol. 2000, 2: 737-744. 10.1038/35036374.

PubMedCentralCrossRefPubMedGoogle Scholar

Annes JP, Munger JS, Rifkin DB: Making sense of latent TGFbeta activation. J Cell Sci. 2003, 116: 217-224. 10.1242/jcs.00229.

CrossRefPubMedGoogle Scholar

Mott JD, Werb Z: Regulation of matrix biology by matrix metalloproteinases. Curr Opin Cell Biol. 2004, 16: 558-564. 10.1016/j.ceb.2004.07.010.

PubMedCentralCrossRefPubMedGoogle Scholar

Brinckerhoff CE, Matrisian LM: Matrix metalloproteinases: a tail of a frog that became a prince. Nat Rev Mol Cell Biol. 2002, 3: 207-214. 10.1038/nrm763.

CrossRefPubMedGoogle Scholar

Sternlicht MD, Werb Z: How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol. 2001, 17: 463-516. 10.1146/annurev.cellbio.17.1.463.

PubMedCentralCrossRefPubMedGoogle Scholar

Nagase H, Woessner JF: Matrix metalloproteinases. J Biol Chem. 1999, 274: 21491-21494. 10.1074/jbc.274.31.21491.

CrossRefPubMedGoogle Scholar

Roy R, Yang J, Moses MA: Matrix metalloproteinases as novel biomarkers and potential therapeutic targets in human cancer. J Clin Oncol. 2009, 27: 5287-5297. 10.1200/JCO.2009.23.5556.

PubMedCentralCrossRefPubMedGoogle Scholar

Coussens LM, Fingleton B, Matrisian LM: Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science. 2002, 295: 2387-2392. 10.1126/science.1067100.

CrossRefPubMedGoogle Scholar

Lopez-Otin C, Matrisian LM: Emerging roles of proteases in tumour suppression. Nat Rev Cancer. 2007, 7: 800-808. 10.1038/nrc2228.

CrossRefPubMedGoogle Scholar

Brew K, Nagase H: The tissue inhibitors of metalloproteinases (TIMPs): an ancient family with structural and functional diversity. Biochim Biophys Acta. 2010, 1803: 55-71. 10.1016/j.bbamcr.2010.01.003.

PubMedCentralCrossRefPubMedGoogle Scholar

Pohar N, Godenschwege TA, Buchner E: Invertebrate tissue inhibitor of metalloproteinase: structure and nested gene organization within the synapsin locus is conserved from Drosophila to human. Genomics. 1999, 57: 293-296. 10.1006/geno.1999.5776.

CrossRefPubMedGoogle Scholar

Jaworski DM, Beem-Miller M, Lluri G, Barrantes-Reynolds R: Potential regulatory relationship between the nested gene DDC8 and its host gene tissue inhibitor of metalloproteinase-2. Physiol Genomics. 2007, 28: 168-178.

CrossRefPubMedGoogle Scholar

Tuuttila A, Morgunova E, Bergmann U, Lindqvist Y, Maskos K, Fernandez-Catalan C, Bode W, Tryggvason K, Schneider G: Three-dimensional structure of human tissue inhibitor of metalloproteinases-2 at 2.1 A resolution. J Mol Biol. 1998, 284: 1133-1140. 10.1006/jmbi.1998.2223.

CrossRefPubMedGoogle Scholar

Murphy G: Tissue inhibitors of metalloproteinases. Genome Biol. 2011, 12: 233-10.1186/gb-2011-12-11-233.

PubMedCentralCrossRefPubMedGoogle Scholar

Cruz-Munoz W, Khokha R: The role of tissue inhibitors of metalloproteinases in tumorigenesis and metastasis. Crit Rev Clin Lab Sci. 2008, 45: 291-338. 10.1080/10408360801973244.

CrossRefPubMedGoogle Scholar

Stetler-Stevenson WG: Tissue inhibitors of metalloproteinases in cell signaling: metalloproteinase-independent biological activities. Science Signal. 2008, 1: re6-

CrossRefGoogle Scholar

Gasson JC, Golde DW, Kaufman SE, Westbrook CA, Hewick RM, Kaufman RJ, Wong GG, Temple PA, Leary AC, Brown EL, Orr EC, Clark SC: Molecular characterization and expression of the gene encoding human erythroid-potentiating activity. Nature. 1985, 315: 768-771. 10.1038/315768a0.

CrossRefPubMedGoogle Scholar

Maskos K: Crystal structures of MMPs in complex with physiological and pharmacological inhibitors. Biochimie. 2005, 87: 249-263. 10.1016/j.biochi.2004.11.019.

CrossRefPubMedGoogle Scholar

Strongin AY, Collier I, Bannikov G, Marmer BL, Grant GA, Goldberg GI: Mechanism of cell surface activation of 72-kDa type IV collagenase. Isolation of the activated form of the membrane metalloprotease. J Biol Chem. 1995, 270: 5331-5338. 10.1074/jbc.270.10.5331.

CrossRefPubMedGoogle Scholar

Deryugina EI, Ratnikov B, Monosov E, Postnova TI, DiScipio R, Smith JW, Strongin AY: MT1-MMP initiates activation of pro-MMP-2 and integrin alphavbeta3 promotes maturation of MMP-2 in breast carcinoma cells. Exp Cell Res. 2001, 263: 209-223. 10.1006/excr.2000.5118.

CrossRefPubMedGoogle Scholar

Bourboulia D, Stetler-Stevenson WG: Matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs): Positive and negative regulators in tumor cell adhesion. Semin Cancer Biol. 2010, 20: 161-168. 10.1016/j.semcancer.2010.05.002.

PubMedCentralCrossRefPubMedGoogle Scholar

Stetler-Stevenson WG: The tumor microenvironment: regulation by MMP-independent effects of tissue inhibitor of metalloproteinases-2. Cancer Metastasis Rev. 2008, 27: 57-66. 10.1007/s10555-007-9105-8.

PubMedCentralCrossRefPubMedGoogle Scholar

Seo DW, Li H, Guedez L, Wingfield PT, Diaz T, Salloum R, Wei BY, Stetler-Stevenson WG: TIMP-2 mediated inhibition of angiogenesis: an MMP-independent mechanism. Cell. 2003, 114: 171-180. 10.1016/S0092-8674(03)00551-8.

CrossRefPubMedGoogle Scholar

Seo DW, Saxinger WC, Guedez L, Cantelmo AR, Albini A, Stetler-Stevenson WG: An integrin-binding N-terminal peptide region of TIMP-2 retains potent angio-inhibitory and anti-tumorigenic activity in vivo. Peptides. 2011, 32: 1840-1848. 10.1016/j.peptides.2011.08.010.

PubMedCentralCrossRefPubMedGoogle Scholar

Kim HJ, Cho YR, Kim SH, Seo DW: TIMP-2-derived 18-mer peptide inhibits endothelial cell proliferation and migration through cAMP/PKA-dependent mechanism. Cancer Lett. 2014, 343: 210-216. 10.1016/j.canlet.2013.10.037.

CrossRefPubMedGoogle Scholar

Barazi HO, Zhou L, Templeton NS, Krutzsch HC, Roberts DD: Identification of heat shock protein 60 as a molecular mediator of alpha 3 beta 1 integrin activation. Cancer Res. 2002, 62: 1541-1548.

PubMedGoogle Scholar

Kim SH, Cho YR, Kim HJ, Oh JS, Ahn EK, Ko HJ, Hwang BJ, Lee SJ, Cho Y, Kim YK, Stetler-Stevenson WG, Seo DW: Antagonism of VEGF-A-induced increase in vascular permeability by an integrin alpha3beta1-Shp-1-cAMP/PKA pathway. Blood. 2012, 120: 4892-4902. 10.1182/blood-2012-05-428243.

PubMedCentralCrossRefPubMedGoogle Scholar

Fernandez CA, Roy R, Lee S, Yang J, Panigrahy D, Van Vliet KJ, Moses MA: The anti-angiogenic peptide, loop 6, binds insulin-like growth factor-1 receptor. J Biol Chem. 2010, 285: 41886-41895. 10.1074/jbc.M110.166439.

PubMedCentralCrossRefPubMedGoogle Scholar

Oh J, Seo DW, Diaz T, Wei B, Ward Y, Ray JM, Morioka Y, Shi S, Kitayama H, Takahashi C, Noda M, Stetler-Stevenson WG: Tissue inhibitors of metalloproteinase 2 inhibits endothelial cell migration through increased expression of RECK. Cancer Res. 2004, 64: 9062-9069. 10.1158/0008-5472.CAN-04-1981.

CrossRefPubMedGoogle Scholar

Seo DW, Li H, Qu CK, Oh J, Kim YS, Diaz T, Wei B, Han JW, Stetler-Stevenson WG: Shp-1 mediates the antiproliferative activity of tissue inhibitor of metalloproteinase-2 in human microvascular endothelial cells. J Biol Chem. 2006, 281: 3711-3721. 10.1074/jbc.M509932200.

PubMedCentralCrossRefPubMedGoogle Scholar

Guedez L, Jensen-Taubman S, Bourboulia D, Kwityn CJ, Wei B, Caterina J, Stetler-Stevenson WG: TIMP-2 targets tumor-associated myeloid suppressor cells with effects in cancer immune dysfunction and angiogenesis. J Immunother. 2012, 35: 502-512. 10.1097/CJI.0b013e3182619c8e.

PubMedCentralCrossRefPubMedGoogle Scholar

Fischer OM, Hart S, Gschwind A, Ullrich A: EGFR signal transactivation in cancer cells. Biochem Soc Trans. 2003, 31: 1203-1208. 10.1042/BST0311203.

CrossRefPubMedGoogle Scholar

Bourboulia D, Jensen-Taubman S, Rittler MR, Han HY, Chatterjee T, Wei B, Stetler-Stevenson WG: Endogenous angiogenesis inhibitor blocks tumor growth via direct and indirect effects on tumor microenvironment. Am J Pathol. 2011, 179: 2589-2600. 10.1016/j.ajpath.2011.07.035.

PubMedCentralCrossRefPubMedGoogle Scholar

Bourboulia D, Han H, Jensen-Taubman S, Gavil N, Isaac B, Wei B, Neckers L, Stetler-Stevenson WG: TIMP-2 modulates cancer cell transcriptional profile and enhances E-cadherin/beta-catenin complex expression in A549 lung cancer cells. Oncotarget. 2013, 4: 163-173.

PubMedCentralCrossRefPubMedGoogle Scholar

Han H, Bourboulia D, Jensen-Taubman S, Isaac B, Wei B, Stetler-Stevenson WG: An endogenous inhibitor of angiogenesis inversely correlates with side population phenotype and function in human lung cancer cells. Oncogene. 2014, 33: 1198-1206. 10.1038/onc.2013.61. 2013

CrossRefPubMedGoogle Scholar

Hajitou A, Sounni NE, Devy L, Grignet-Debrus C, Lewalle JM, Li H, Deroanne CF, Lu H, Colige A, Nusgens BV, Frankenne F, Maron A, Yeh P, Perricaudet M, Chang Y, Soria C, Calberg-Bacq CM, Foidart JM, Noël A: Down-regulation of vascular endothelial growth factor by tissue inhibitor of metalloproteinase-2: effect on in vivo mammary tumor growth and angiogenesis. Cancer Res. 2001, 61: 3450-3457.

PubMedGoogle Scholar

Imren S, Kohn DB, Shimada H, Blavier L, DeClerck YA: Overexpression of tissue inhibitor of metalloproteinases-2 retroviral-mediated gene transfer in vivo inhibits tumor growth and invasion. Cancer Res. 1996, 56: 2891-2895.

PubMedGoogle Scholar

Ara T, Fukuzawa M, Kusafuka T, Komoto Y, Oue T, Inoue M, Okada A: Immunohistochemical expression of MMP-2, MMP-9, and TIMP-2 in neuroblastoma: association with tumor progression and clinical outcome. J Pediatr Surg. 1998, 33: 1272-1278. 10.1016/S0022-3468(98)90167-1.

CrossRefPubMedGoogle Scholar

Wajner SM, Capp C, Brasil BA, Meurer L, Maia AL: Reduced tissue inhibitor of metalloproteinase-2 expression is associated with advanced medullary thyroid carcinoma. Oncol Lett. 2014, 7: 731-737.

PubMedCentralPubMedGoogle Scholar

Alakus H, Grass G, Hennecken JK, Bollschweiler E, Schulte C, Drebber U, Baldus SE, Metzger R, Holscher AH, Monig SP: Clinicopathological significance of MMP-2 and its specific inhibitor TIMP-2 in gastric cancer. Histol Histopathol. 2008, 23: 917-923.

PubMedGoogle Scholar

Remacle A, McCarthy K, Noel A, Maguire T, McDermott E, O’Higgins N, Foidart JM, Duffy MJ: High levels of TIMP-2 correlate with adverse prognosis in breast cancer. Int J Cancer. 2000, 89: 118-121. 10.1002/(SICI)1097-0215(20000320)89:2<118::AID-IJC3>3.0.CO;2-8.

CrossRefPubMedGoogle Scholar

Kallakury BV, Karikehalli S, Haholu A, Sheehan CE, Azumi N, Ross JS: Increased expression of matrix metalloproteinases 2 and 9 and tissue inhibitors of metalloproteinases 1 and 2 correlate with poor prognostic variables in renal cell carcinoma. Clin Cancer Res. 2001, 7: 3113-3119.

PubMedGoogle Scholar

Branca M, Ciotti M, Giorgi C, Santini D, Di Bonito L, Costa S, Benedetto A, Bonifacio D, Di Bonito P, Paba P, Accardi L, Syrjänen S, Favalli C, Syrjänen K: HPV-PathogenISS Study Group: Matrix metalloproteinase-2 (MMP-2) and its tissue inhibitor (TIMP-2) are prognostic factors in cervical cancer, related to invasive disease but not to high-risk human papillomavirus (HPV) or virus persistence after treatment of CIN. Anticancer Res. 2006, 26: 1543-1556.

PubMedGoogle Scholar

Fan YZ, Zhang JT, Yang HC, Yang YQ: Expression of MMP-2, TIMP-2 protein and the ratio of MMP-2/TIMP-2 in gallbladder carcinoma and their significance. World J Gastroenterol. 2002, 8: 1138-1143.

PubMedCentralCrossRefPubMedGoogle Scholar

Hoegy SE, Oh HR, Corcoran ML, Stetler-Stevenson WG: Tissue inhibitor of metalloproteinases-2 (TIMP-2) suppresses TKR-growth factor signaling independent of metalloproteinase inhibition. J Biol Chem. 2001, 276: 3203-3214. 10.1074/jbc.M008157200.

CrossRefPubMedGoogle Scholar

Zhao J, Guan JL: Signal transduction by focal adhesion kinase in cancer. Cancer Metastasis Rev. 2009, 28: 35-49. 10.1007/s10555-008-9165-4.

CrossRefPubMedGoogle Scholar

Fresno Vara JA, Casado E, de Castro J, Cejas P, Belda-Iniesta C, Gonzalez-Baron M: PI3K/Akt signalling pathway and cancer. Cancer Treat Rev. 2004, 30: 193-204. 10.1016/j.ctrv.2003.07.007.

CrossRefPubMedGoogle Scholar

Hu Y, Pioli PD, Siegel E, Zhang Q, Nelson J, Chaturbedi A, Mathews MS, Ro DI, Alkafeef S, Hsu N, Hamamura M, Yu L, Hess KR, Tromberg BJ, Linskey ME, Zhou YH: EFEMP1 suppresses malignant glioma growth and exerts its action within the tumor extracellular compartment. Mol Cancer. 2011, 10: 123-10.1186/1476-4598-10-123.

PubMedCentralCrossRefPubMedGoogle Scholar

Ceteci F, Ceteci S, Karreman C, Kramer BW, Asan E, Gotz R, Rapp UR: Disruption of tumor cell adhesion promotes angiogenic switch and progression to micrometastasis in RAF-driven murine lung cancer. Cancer Cell. 2007, 12: 145-159. 10.1016/j.ccr.2007.06.014.

CrossRefPubMedGoogle Scholar

Lu Z, Ghosh S, Wang Z, Hunter T: Downregulation of caveolin-1 function by EGF leads to the loss of E-cadherin, increased transcriptional activity of beta-catenin, and enhanced tumor cell invasion. Cancer Cell. 2003, 4: 499-515. 10.1016/S1535-6108(03)00304-0.

CrossRefPubMedGoogle Scholar

Published
2019-01-31
Section
Review