MiR-223 regulates the differentiation of immature neurons

  • Maged Harraz
  • Jin-Chong Xu
  • Noah Guiberson
  • Ted Dawson
  • Valina Dawson
Keywords: Neural stem cells, microRNA, Dendrite development

Abstract

Background
Small non-coding microRNA RNA molecules can regulate stem cell function. The role of microRNAs in neural stem/progenitor cells (NS/PCs) differentiation is not entirely clear.

Methods
MiRNA profiling, loss and gain of function studies coupled with dendritic tree development morphometric analysis and calcium influx imaging were utilized to investigate the role of micoRNA-223 in differentiating NS/PCs.

Results
MiRNA profiling in human NS/PCs before and after differentiation in vitro reveals modulation of miRNAs following differentiation of NS/PCs. MiR-223, a microRNA well characterized as a hematopoietic-specific miRNA was identified. Cell-autonomous inhibition of miR-223 in the adult mouse dentate gyrus NS/PCs led to a significant increase in immature neurons soma size, dendritic tree total length, branch number per neuron and complexity, while neuronal migration in the dentate gyrus remained unaffected. Overexpression of miR-223 decreased dendritic tree total length, branch number and complexity in neurons differentiated from human embryonic stem cells (hESCs). Inhibition of miR-223 enhanced N-methyl-D-aspartate (NMDA) induced calcium influx in human neurons differentiated from NS/PCs.

Conclusions
Taken together, these findings indicate that miR-223 regulates the differentiation of neurons derived from NS/PCs.

Downloads

Download data is not yet available.

References

Zhao C, Deng W, Gage FH: Mechanisms and functional implications of adult neurogenesis. Cell. 2008, 132: 645-660.

CrossRefPubMedGoogle Scholar

Hallbergson AF, Gnatenco C, Peterson DA: Neurogenesis and brain injury: managing a renewable resource for repair. J Clin Invest. 2003, 112: 1128-1133.

PubMedCentralCrossRefPubMedGoogle Scholar

Lindvall O, Kokaia Z, Martinez-Serrano A: Stem cell therapy for human neurodegenerative disorders-how to make it work. Nat Med. 2004, 10 (Suppl): S42-S50.

CrossRefPubMedGoogle Scholar

Loya CM, Van Vactor D, Fulga TA: Understanding neuronal connectivity through the post-transcriptional toolkit. Genes Dev. 2010, 24: 625-635.

PubMedCentralCrossRefPubMedGoogle Scholar

Djuranovic S, Nahvi A, Green R: A parsimonious model for gene regulation by miRNAs. Science. 2011, 331: 550-553.

PubMedCentralCrossRefPubMedGoogle Scholar

Hatfield SD, Shcherbata HR, Fischer KA, Nakahara K, Carthew RW, Ruohola-Baker H: Stem cell division is regulated by the microRNA pathway. Nature. 2005, 435: 974-978.

CrossRefPubMedGoogle Scholar

Zhao X, He X, Han X, Yu Y, Ye F, Chen Y, Hoang T, Xu X, Mi QS, Xin M, Wang F, Appel B, Lu QR: MicroRNA-mediated control of oligodendrocyte differentiation. Neuron. 2010, 65: 612-626.

PubMedCentralCrossRefPubMedGoogle Scholar

Cheng LC, Pastrana E, Tavazoie M, Doetsch F: miR-124 regulates adult neurogenesis in the subventricular zone stem cell niche. Nat Neurosci. 2009, 12: 399-408.

PubMedCentralCrossRefPubMedGoogle Scholar

Choi PS, Zakhary L, Choi WY, Caron S, Alvarez-Saavedra E, Miska EA, McManus M, Harfe B, Giraldez AJ, Horvitz HR, Schier AF, Dulac C: Members of the miRNA-200 family regulate olfactory neurogenesis. Neuron. 2008, 57: 41-55.

PubMedCentralCrossRefPubMedGoogle Scholar

Li Y, Wang F, Lee JA, Gao FB: MicroRNA-9a ensures the precise specification of sensory organ precursors in Drosophila. Genes Dev. 2006, 20: 2793-2805.

PubMedCentralCrossRefPubMedGoogle Scholar

Zhao C, Sun G, Li S, Shi Y: A feedback regulatory loop involving microRNA-9 and nuclear receptor TLX in neural stem cell fate determination. Nat Struct Mol Biol. 2009, 16: 365-371.

PubMedCentralCrossRefPubMedGoogle Scholar

Edbauer D, Neilson JR, Foster KA, Wang CF, Seeburg DP, Batterton MN, Tada T, Dolan BM, Sharp PA, Sheng M: Regulation of synaptic structure and function by FMRP-associated microRNAs miR-125b and miR-132. Neuron. 2010, 65: 373-384.

CrossRefPubMedGoogle Scholar

Abdelmohsen K, Hutchison ER, Lee EK, Kuwano Y, Kim MM, Masuda K, Srikantan S, Subaran SS, Marasa BS, Mattson MP, Gorospe M: miR-375 inhibits differentiation of neurites by lowering HuD levels. Mol Cell Biol. 2010, 30: 4197-4210.

PubMedCentralCrossRefPubMedGoogle Scholar

Pathania M, Torres-Reveron J, Yan L, Kimura T, Lin TV, Gordon V, Teng ZQ, Zhao X, Fulga TA, Van Vactor D, Bordey A: miR-132 enhances dendritic morphogenesis, spine density, synaptic integration, and survival of newborn olfactory bulb neurons. PLoS One. 2012, 7: e38174-

PubMedCentralCrossRefPubMedGoogle Scholar

Magill ST, Cambronne XA, Luikart BW, Lioy DT, Leighton BH, Westbrook GL, Mandel G, Goodman RH: microRNA-132 regulates dendritic growth and arborization of newborn neurons in the adult hippocampus. Proc Natl Acad Sci U S A. 2010, 107: 20382-20387.

PubMedCentralCrossRefPubMedGoogle Scholar

Smrt RD, Szulwach KE, Pfeiffer RL, Li X, Guo W, Pathania M, Teng ZQ, Luo Y, Peng J, Bordey A, Jin P, Zhao X: MicroRNA miR-137 regulates neuronal maturation by targeting ubiquitin ligase mind bomb-1. Stem Cells. 2010, 28: 1060-1070.

PubMedCentralCrossRefPubMedGoogle Scholar

da Huang W, Sherman BT, Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009, 4: 44-57.

CrossRefPubMedGoogle Scholar

D’Haene B, Mestdagh P, Hellemans J, Vandesompele J: miRNA expression profiling: from reference genes to global mean normalization. Methods Mol Biol. 2012, 822: 261-272.

CrossRefPubMedGoogle Scholar

Harraz MM, Eacker SM, Wang X, Dawson TM, Dawson VL: MicroRNA-223 is neuroprotective by targeting glutamate receptors. Proc Natl Acad Sci U S A. 2012, 109: 18962-18967.

PubMedCentralCrossRefPubMedGoogle Scholar

Duan X, Chang JH, Ge S, Faulkner RL, Kim JY, Kitabatake Y, Liu XB, Yang CH, Jordan JD, Ma DK, Liu CY, Ganesan S, Cheng HJ, Ming GL, Lu B, Song H: Disrupted-In-Schizophrenia 1 regulates integration of newly generated neurons in the adult brain. Cell. 2007, 130: 1146-1158.

PubMedCentralCrossRefPubMedGoogle Scholar

Martin I, Kim JW, Lee BD, Kang H, Xu J-C, Jia H, Stankowski J, Kim M-S, Zhong J, Kumar M, Andrabi SA, Xiong Y, Dickson DW, Wszolek ZK, Pandey A, Dawson TM, Dawson VL: Ribosomal protein s15 phosphorylation mediates LRRK2 neurodegeneration in Parkinson’s disease. Cell. 2014, In Press

Google Scholar

Follert P, Cremer H, Beclin C: MicroRNAs in brain development and function: a matter of flexibility and stability. Front Mol Neurosci. 2014, 7: 5-

PubMedCentralCrossRefPubMedGoogle Scholar

Wayman GA, Davare M, Ando H, Fortin D, Varlamova O, Cheng HY, Marks D, Obrietan K, Soderling TR, Goodman RH, Impey S:An activity-regulated microRNA controls dendritic plasticity by down-regulating p250GAP. Proc Natl Acad Sci U S A. 2008, 105: 9093-9098.

PubMedCentralCrossRefPubMedGoogle Scholar

Parrish JZ, Xu P, Kim CC, Jan LY, Jan YN: The microRNA bantam functions in epithelial cells to regulate scaling growth of dendrite arbors in drosophila sensory neurons. Neuron. 2009, 63: 788-802.

PubMedCentralCrossRefPubMedGoogle Scholar

Fazi F, Rosa A, Fatica A, Gelmetti V, De Marchis ML, Nervi C, Bozzoni I: A minicircuitry comprised of microRNA-223 and transcription factors NFI-A and C/EBPalpha regulates human granulopoiesis. Cell. 2005, 123: 819-831.

CrossRefPubMedGoogle Scholar

Johnnidis JB, Harris MH, Wheeler RT, Stehling-Sun S, Lam MH, Kirak O, Brummelkamp TR, Fleming MD, Camargo FD: Regulation of progenitor cell proliferation and granulocyte function by microRNA-223. Nature. 2008, 451: 1125-1129.

CrossRefPubMedGoogle Scholar

Fulci V, Scappucci G, Sebastiani GD, Giannitti C, Franceschini D, Meloni F, Colombo T, Citarella F, Barnaba V, Minisola G, Galeazzi M, Macino G: miR-223 is overexpressed in T-lymphocytes of patients affected by rheumatoid arthritis. Hum Immunol. 2010, 71: 206-211.

CrossRefPubMedGoogle Scholar

Haneklaus M, Gerlic M, Kurowska-Stolarska M, Rainey AA, Pich D, McInnes IB, Hammerschmidt W, O’Neill LA, Masters SL: Cutting edge: miR-223 and EBV miR-BART15 regulate the NLRP3 inflammasome and IL-1beta production. J Immunol. 2012, 189: 3795-3799.

CrossRefPubMedGoogle Scholar

Lu TX, Lim EJ, Besse JA, Itskovich S, Plassard AJ, Fulkerson PC, Aronow BJ, Rothenberg ME: MiR-223 deficiency increases eosinophil progenitor proliferation. J Immunol. 2013, 190: 1576-1582.

PubMedCentralCrossRefPubMedGoogle Scholar

Dorhoi A, Iannaccone M, Farinacci M, Fae KC, Schreiber J, Moura-Alves P, Nouailles G, Mollenkopf HJ, Oberbeck-Muller D, Jörg S, Heinemann E, Hahnke K, Löwe D, Del Nonno F, Goletti D, Capparelli R, Kaufmann SH: MicroRNA-223 controls susceptibility to tuberculosis by regulating lung neutrophil recruitment. J Clin Invest. 2013, 123: 4836-4848.

PubMedCentralCrossRefPubMedGoogle Scholar

Poh KW, Yeo JF, Ong WY: MicroRNA changes in the mouse prefrontal cortex after inflammatory pain. Eur J Pain. 2011, 15: 801-e801-812

PubMedGoogle Scholar

Jovicic A, Roshan R, Moisoi N, Pradervand S, Moser R, Pillai B, Luthi-Carter R: Comprehensive expression analyses of neural cell-type-specific miRNAs identify new determinants of the specification and maintenance of neuronal phenotypes. J Neurosci. 2013, 33: 5127-5137.

CrossRefPubMedGoogle Scholar

Penn AA: Early brain wiring: activity-dependent processes. Schizophr Bull. 2001, 27: 337-347.

CrossRefPubMedGoogle Scholar

Espinosa JS, Wheeler DG, Tsien RW, Luo L: Uncoupling dendrite growth and patterning: single-cell knockout analysis of NMDA receptor 2B. Neuron. 2009, 62: 205-217.

PubMedCentralCrossRefPubMedGoogle Scholar

Sin WC, Haas K, Ruthazer ES, Cline HT: Dendrite growth increased by visual activity requires NMDA receptor and Rho GTPases. Nature. 2002, 419: 475-480.

CrossRefPubMedGoogle Scholar

Kalb RG: Regulation of motor neuron dendrite growth by NMDA receptor activation. Development. 1994, 120: 3063-3071.

PubMedGoogle Scholar

Ikegaya Y, Kim JA, Baba M, Iwatsubo T, Nishiyama N, Matsuki N: Rapid and reversible changes in dendrite morphology and synaptic efficacy following NMDA receptor activation: implication for a cellular defense against excitotoxicity. J Cell Sci. 2001, 114: 4083-4093.

PubMedGoogle Scholar

Hamad MI, Ma-Hogemeier ZL, Riedel C, Conrads C, Veitinger T, Habijan T, Schulz JN, Krause M, Wirth MJ, Hollmann M, Wahle P: Cell class-specific regulation of neocortical dendrite and spine growth by AMPA receptor splice and editing variants. Development. 2011, 138: 4301-4313.

CrossRefPubMedGoogle Scholar

Chen W, Prithviraj R, Mahnke AH, McGloin KE, Tan JW, Gooch AK, Inglis FM: AMPA glutamate receptor subunits 1 and 2 regulate dendrite complexity and spine motility in neurons of the developing neocortex. Neuroscience. 2009, 159: 172-182.

PubMedCentralCrossRefPubMedGoogle Scholar

Prithviraj R, Kelly KM, Espinoza-Lewis R, Hexom T, Clark AB, Inglis FM: Differential regulation of dendrite complexity by AMPA receptor subunits GluR1 and GluR2 in motor neurons. Dev Neurobiol. 2008, 68: 247-264.

CrossRefPubMedGoogle Scholar

Tashiro A, Sandler VM, Toni N, Zhao C, Gage FH: NMDA-receptor-mediated, cell-specific integration of new neurons in adult dentate gyrus. Nature. 2006, 442: 929-933.

CrossRefPubMedGoogle Scholar

Published
2019-01-31
Section
Research Article