Making sense of how HIV kills infected CD4 T cells: implications for HIV cure

  • Nathan Cummins
  • Andrew Badley
Keywords: HIV, Cure, Apoptosis, Pyroptosis, Caspase 1, DNA-PK, Casp8p41, IFI16, Inflammation

Abstract

Defining how HIV does, and does not, kill the host CD4 T cell that it infects is of paramount importance in an era when research is approaching a cure for infection. Three mutually exclusive pathways can lead to the death of HIV-infected cells during the HIV life cycle, before, coincident and after HIV integration and consequently may affect viral replication. We discuss the molecular mechanism underlying these pathways, the evidence supporting their roles in vivo, and contemplate how understanding these pathways might inform novel approaches to promote viral cure of HIV.

Downloads

Download data is not yet available.

References

Nakagawa F, May M, Phillips A: Life expectancy living with HIV: recent estimates and future implications. Curr Opin Infect Dis. 2013, 26 (1): 17-25.

CrossRefPubMedGoogle Scholar

Rodger AJ, Lodwick R, Schechter M, Deeks S, Amin J, Gilson R, Paredes R, Bakowska E, Engsig FN, Phillips A: Mortality in well controlled HIV in the continuous antiretroviral therapy arms of the SMART and ESPRIT trials compared with the general population. Aids. 2013, 27 (6): 973-979.

CrossRefPubMedGoogle Scholar

Desvarieux M, Boccara F, Meynard JL, Bastard JP, Mallat Z, Charbit B, Demmer RT, Haddour N, Fellahi S, Tedgui A, Cohen A, Capeau J, Boyd A, Girard PM: Infection duration and inflammatory imbalance are associated with atherosclerotic risk in HIV-infected never-smokers independent of antiretroviral therapy. Aids. 2013, 27 (16): 2603-2614.

CrossRefPubMedGoogle Scholar

Maloberti A, Giannattasio C, Dozio D, Betelli M, Villa P, Nava S, Cesana F, Facchetti R, Giupponi L, Castagna F, Sabbatini F, Bandera A, Gori A, Grassi G, Mancia G: Metabolic syndrome in human immunodeficiency virus-positive subjects: prevalence, phenotype, and related alterations in arterial structure and function. Metab Syndr Relat Disord. 2013, 11 (6): 403-411.

CrossRefPubMedGoogle Scholar

Grulich AE, van Leeuwen MT, Falster MO, Vajdic CM: Incidence of cancers in people with HIV/AIDS compared with immunosuppressed transplant recipients: a meta-analysis. Lancet. 2007, 370 (9581): 59-67.

CrossRefPubMedGoogle Scholar

Richert L, Brault M, Mercie P, Dauchy FA, Bruyand M, Greib C, Dabis F, Bonnet F, Chene G, Dehail P: Decline in locomotor functions over time in HIV-infected patients. Aids. 2014

Google Scholar

Peters BS, Perry M, Wierzbicki AS, Wolber LE, Blake GM, Patel N, Hoile R, Duncan A, Kulasegaram R, Williams FM: A cross-sectional randomised study of fracture risk in people with HIV infection in the probono 1 study. PLoS One. 2013, 8 (10): e78048-

PubMedCentralCrossRefPubMedGoogle Scholar

Deeks SG, Lewin SR, Havlir DV: The end of AIDS: HIV infection as a chronic disease. Lancet. 2013, 382 (9903): 1525-1533.

PubMedCentralCrossRefPubMedGoogle Scholar

Hutter G, Nowak D, Mossner M, Ganepola S, Mussig A, Allers K, Schneider T, Hofmann J, Kucherer C, Blau O, Blau IW, Hofmann WK, Thiel E: Long-term control of HIV by CCR5 Delta32/Delta32 stem-cell transplantation. N Engl J Med. 2009, 360 (7): 692-698.

CrossRefPubMedGoogle Scholar

Saez-Cirion A, Bacchus C, Hocqueloux L, Avettand-Fenoel V, Girault I, Lecuroux C, Potard V, Versmisse P, Melard A, Prazuck T, Descours B, Guergnon J, Viard JP, Boufassa F, Lambotte O, Goujard C, Meyer L, Costagliola D, Venet A, Pancino G, Autran B, Rouzioux C: Post-treatment HIV-1 controllers with a long-term virological remission after the interruption of early initiated antiretroviral therapy ANRS VISCONTI Study. PLoS Pathog. 2013, 9 (3): e1003211-

PubMedCentralCrossRefPubMedGoogle Scholar

Cummins NW, Badley AD: Mechanisms of HIV-associated lymphocyte apoptosis: 2010. Cell Death Dis. 2010, 1: e99-

PubMedCentralCrossRefPubMedGoogle Scholar

Wang X, Gao Y, Tan J, Devadas K, Ragupathy V, Takeda K, Zhao J, Hewlett I: HIV-1 and HIV-2 infections induce autophagy in Jurkat and CD4+ T cells. Cell Signal. 2012, 24 (7): 1414-1419.

CrossRefPubMedGoogle Scholar

Laforge M, Limou S, Harper F, Casartelli N, Rodrigues V, Silvestre R, Haloui H, Zagury JF, Senik A, Estaquier J: DRAM triggers lysosomal membrane permeabilization and cell death in CD4(+) T cells infected with HIV. PLoS Pathog. 2013, 9 (5): e1003328-

PubMedCentralCrossRefPubMedGoogle Scholar

Badley AD, McElhinny JA, Leibson PJ, Lynch DH, Alderson MR, Paya CV: Upregulation of Fas ligand expression by human immunodeficiency virus in human macrophages mediates apoptosis of uninfected T lymphocytes. J Virol. 1996, 70 (1): 199-206.

PubMedCentralPubMedGoogle Scholar

Matrajt L, Younan PM, Kiem HP, Schiffer JT: The Majority of CD4+ T-Cell Depletion during Acute Simian-Human Immunodeficiency Virus SHIV89.6P Infection Occurs in Uninfected Cells. J Virol. 2014, 88 (6): 3202-3212.

PubMedCentralCrossRefPubMedGoogle Scholar

Parlato S, Santini SM, Lapenta C, Spada M, Logozzi M, Rizza P, Proietti E, Belardelli F, Fais S: Primary HIV-1 infection of human CD4+ T cells passaged into SCID mice leads to selection of chronically infected cells through a massive fas-mediated autocrine suicide of uninfected cells. Cell Death Differ. 2000, 7 (1): 37-47.

CrossRefPubMedGoogle Scholar

Ehrhard S, Wernli M, Kaufmann G, Pantaleo G, Rizzardi GP, Gudat F, Erb P, Battegay M: Effect of antiretroviral therapy on apoptosis markers and morphology in peripheral lymph nodes of HIV-infected individuals. Infection. 2008, 36 (2): 120-129.

CrossRefPubMedGoogle Scholar

Dyrhol-Riise AM, Stent G, Rosok BI, Voltersvik P, Olofsson J, Asjo B: The Fas/FasL system and T cell apoptosis in HIV-1-infected lymphoid tissue during highly active antiretroviral therapy. Clin Immunol. 2001, 101 (2): 169-179.

CrossRefPubMedGoogle Scholar

Villesen P, Aagaard L, Wiuf C, Pedersen FS: Identification of endogenous retroviral reading frames in the human genome. Retrovirology. 2004, 1: 32-

PubMedCentralCrossRefPubMedGoogle Scholar

Klatt NR, Silvestri G, Hirsch V: Nonpathogenic simian immunodeficiency virus infections. Cold Spring Harb Perspect Med. 2012, 2 (1): a007153-

PubMedCentralCrossRefPubMedGoogle Scholar

Su H, Bidere N, Zheng L, Cubre A, Sakai K, Dale J, Salmena L, Hakem R, Straus S, Lenardo M: Requirement for caspase-8 in NF-kappaB activation by antigen receptor. Science. 2005, 307 (5714): 1465-1468.

CrossRefPubMedGoogle Scholar

Jiang C, Lin X: Regulation of NF-kappaB by the CARD proteins. Immunol Rev. 2012, 246 (1): 141-153.

PubMedCentralCrossRefPubMedGoogle Scholar

Bren GD, Whitman J, Cummins N, Shepard B, Rizza SA, Trushin SA, Badley AD: Infected cell killing by HIV-1 protease promotes NF-kappaB dependent HIV-1 replication. PLoS One. 2008, 3 (5): e2112-

PubMedCentralCrossRefPubMedGoogle Scholar

Bren GD, Trushin SA, Whitman J, Shepard B, Badley AD: HIV gp120 induces, NF-kappaB dependent, HIV replication that requires procaspase 8. PLoS One. 2009, 4 (3): e4875-

PubMedCentralCrossRefPubMedGoogle Scholar

Sedaghat AR, Siliciano JD, Brennan TP, Wilke CO, Siliciano RF: Limits on replenishment of the resting CD4+ T cell reservoir for HIV in patients on HAART. PLoS Pathog. 2007, 3 (8): e122-

PubMedCentralCrossRefPubMedGoogle Scholar

Doitsh G, Cavrois M, Lassen KG, Zepeda O, Yang Z, Santiago ML, Hebbeler AM, Greene WC: Abortive HIV infection mediates CD4 T cell depletion and inflammation in human lymphoid tissue. Cell. 2010, 143 (5): 789-801.

PubMedCentralCrossRefPubMedGoogle Scholar

Doitsh G, Galloway NL, Geng X, Yang Z, Monroe KM, Zepeda O, Hunt PW, Hatano H, Sowinski S, Munoz-Arias I, Greene WC: Cell death by pyroptosis drives CD4 T-cell depletion in HIV-1 infection. Nature. 2014, 505 (7484): 509-514.

PubMedCentralCrossRefPubMedGoogle Scholar

Monroe KM, Yang Z, Johnson JR, Geng X, Doitsh G, Krogan NJ, Greene WC: IFI16 DNA sensor is required for death of lymphoid CD4 T cells abortively infected with HIV. Science. 2014, 343 (6169): 428-432.

PubMedCentralCrossRefPubMedGoogle Scholar

Sheehy AM, Gaddis NC, Choi JD, Malim MH: Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature. 2002, 418 (6898): 646-650.

CrossRefPubMedGoogle Scholar

Zhang H, Yang B, Pomerantz RJ, Zhang C, Arunachalam SC, Gao L: The cytidine deaminase CEM15 induces hypermutation in newly synthesized HIV-1 DNA. Nature. 2003, 424 (6944): 94-98.

PubMedCentralCrossRefPubMedGoogle Scholar

Mangeat B, Turelli P, Caron G, Friedli M, Perrin L, Trono D: Broad antiretroviral defence by human APOBEC3G through lethal editing of nascent reverse transcripts. Nature. 2003, 424 (6944): 99-103.

CrossRefPubMedGoogle Scholar

Stremlau M, Owens CM, Perron MJ, Kiessling M, Autissier P, Sodroski J: The cytoplasmic body component TRIM5alpha restricts HIV-1 infection in Old World monkeys. Nature. 2004, 427 (6977): 848-853.

CrossRefPubMedGoogle Scholar

Zhang J, Attar E, Cohen K, Crumpacker C, Scadden D: Silencing p21(Waf1/Cip1/Sdi1) expression increases gene transduction efficiency in primitive human hematopoietic cells. Gene Ther. 2005, 12 (19): 1444-1452.

CrossRefPubMedGoogle Scholar

Zhang J, Scadden DT, Crumpacker CS: Primitive hematopoietic cells resist HIV-1 infection via p21. J Clin Invest. 2007, 117 (2): 473-481.

PubMedCentralCrossRefPubMedGoogle Scholar

Allouch A, David A, Amie SM, Lahouassa H, Chartier L, Margottin-Goguet F, Barre-Sinoussi F, Kim B, Saez-Cirion A, Pancino G: p21-mediated RNR2 repression restricts HIV-1 replication in macrophages by inhibiting dNTP biosynthesis pathway. Proc Natl Acad Sci U S A. 2013, 110 (42): E3997-E4006.

PubMedCentralCrossRefPubMedGoogle Scholar

Pauls E, Ruiz A, Riveira-Munoz E, Permanyer M, Badia R, Clotet B, Keppler OT, Ballana E, Este JA: p21 regulates the HIV-1 restriction factor SAMHD1. Proc Natl Acad Sci U S A. 2014, 111 (14): E1322-E1324.

PubMedCentralCrossRefPubMedGoogle Scholar

Cooper A, Garcia M, Petrovas C, Yamamoto T, Koup RA, Nabel GJ: HIV-1 causes CD4 cell death through DNA-dependent protein kinase during viral integration. Nature. 2013, 498 (7454): 376-379.

CrossRefPubMedGoogle Scholar

Ventoso I, Navarro J, Munoz MA, Carrasco L: Involvement of HIV-1 protease in virus-induced cell killing. Antiviral Res. 2005, 66 (1): 47-55.

CrossRefPubMedGoogle Scholar

Nie Z, Phenix BN, Lum JJ, Alam A, Lynch DH, Beckett B, Krammer PH, Sekaly RP, Badley AD: HIV-1 protease processes procaspase 8 to cause mitochondrial release of cytochrome c, caspase cleavage and nuclear fragmentation. Cell Death Differ. 2002, 9 (11): 1172-1184.

CrossRefPubMedGoogle Scholar

Nie Z, Bren GD, Vlahakis SR, Schimnich AA, Brenchley JM, Trushin SA, Warren S, Schnepple DJ, Kovacs CM, Loutfy MR, Douek DC, Badley AD: Human immunodeficiency virus type 1 protease cleaves procaspase 8 in vivo. J Virol. 2007, 81 (13): 6947-6956.

PubMedCentralCrossRefPubMedGoogle Scholar

Nie Z, Bren GD, Rizza SA, Badley AD: HIV Protease Cleavage of Procaspase 8 is Necessary for Death of HIV-Infected Cells. Open Virol J. 2008, 2: 1-7.

PubMedCentralCrossRefPubMedGoogle Scholar

Taylor JA, Cummins NW, Bren GD, Rizza SA, Kolbert CP, Behrens MD, Knutson KL, Kahl JC, Asmann YW, Badley AD: Casp8p41 expression in primary T cells induces a proinflammatory response. Aids. 2010, 24 (9): 1251-1258.

PubMedCentralPubMedGoogle Scholar

Algeciras-Schimnich A, Belzacq-Casagrande AS, Bren GD, Nie Z, Taylor JA, Rizza SA, Brenner C, Badley AD: Analysis of HIV protease killing through caspase 8 reveals a novel interaction between caspase 8 and mitochondria. Open Virol J. 2007, 1: 39-46.

PubMedCentralPubMedGoogle Scholar

Sainski AM, Natesampillai S, Cummins NW, Bren GD, Taylor J, Saenz DT, Poeschla EM, Badley AD: The HIV-1-specific protein Casp8p41 induces death of infected cells through Bax/Bak. J Virol. 2011, 85 (16): 7965-7975.

PubMedCentralCrossRefPubMedGoogle Scholar

Castedo M, Ferri KF, Blanco J, Roumier T, Larochette N, Barretina J, Amendola A, Nardacci R, Metivier D, Este JA, Piacentini M, Kroemer G: Human immunodeficiency virus 1 envelope glycoprotein complex-induced apoptosis involves mammalian target of rapamycin/FKBP12-rapamycin-associated protein-mediated p53 phosphorylation. J Exp Med. 2001, 194 (8): 1097-1110.

PubMedCentralCrossRefPubMedGoogle Scholar

Perfettini JL, Castedo M, Nardacci R, Ciccosanti F, Boya P, Roumier T, Larochette N, Piacentini M, Kroemer G: Essential role of p53 phosphorylation by p38 MAPK in apoptosis induction by the HIV-1 envelope. J Exp Med. 2005, 201 (2): 279-289.

PubMedCentralCrossRefPubMedGoogle Scholar

Cummins NW, Jiang W, McGinty J, Bren GD, Bosch RJ, Landay A, Deeks SG, Martin JN, Douek D, Lederman MM, Brenchley J, Badley AD: Intracellular Casp8p41 content is inversely associated with CD4 T cell count. J Infect Dis. 2010, 202 (3): 386-391.

PubMedCentralCrossRefPubMedGoogle Scholar

Cummins NW, Neuhaus J, Sainski AM, Strausbauch MA, Wettstein PJ, Lewin SR, Plana M, Rizza SA, Temesgen Z, Touloumi G, Freiberg M, Neaton J, Badley AD: CD4 T cell declines occurring during suppressive antiretroviral therapy reflect continued production of Casp8p41. AIDS Res Hum Retroviruses. 2014

Google Scholar

Natesampillai S, Nie Z, Cummins NW, Jochmans D, Bren GD, Angel JB, Badley AD: Patients with discordant responses to antiretroviral therapy have impaired killing of HIV-infected T cells. PLoS Pathog. 2010, 6 (11): e1001213-

PubMedCentralCrossRefPubMedGoogle Scholar

Shan L, Deng K, Shroff NS, Durand CM, Rabi SA, Yang HC, Zhang H, Margolick JB, Blankson JN, Siliciano RF: Stimulation of HIV-1-specific cytolytic T lymphocytes facilitates elimination of latent viral reservoir after virus reactivation. Immunity. 2012, 36 (3): 491-501.

PubMedCentralCrossRefPubMedGoogle Scholar

Bosque A, Famiglietti M, Weyrich AS, Goulston C, Planelles V: Homeostatic proliferation fails to efficiently reactivate HIV-1 latently infected central memory CD4+ T cells. PLoS Pathog. 2011, 7 (10): e1002288-

PubMedCentralCrossRefPubMedGoogle Scholar

Siegmund B, Zeitz M: Pralnacasan (vertex pharmaceuticals). IDrugs. 2003, 6 (2): 154-158.

PubMedGoogle Scholar

Wannamaker W, Davies R, Namchuk M, Pollard J, Ford P, Ku G, Decker C, Charifson P, Weber P, Germann UA, Kuida K, Randle JC: (S)-1-((S)-2-{[1-(4-amino-3-chloro-phenyl)-methanoyl]-amino}-3,3-dimethyl-butanoy l)-pyrrolidine-2-carboxylic acid ((2R,3S)-2-ethoxy-5-oxo-tetrahydro-furan-3-yl)-amide (VX-765), an orally available selective interleukin (IL)-converting enzyme/caspase-1 inhibitor, exhibits potent anti-inflammatory activities by inhibiting the release of IL-1beta and IL-18. J Pharmacol Exp Ther. 2007, 321 (2): 509-516.

CrossRefPubMedGoogle Scholar

Haddad JJ: Current opinion on 3-[2-[(2-tert-butyl-phenylaminooxalyl)-amino]-propionylamino]- 4-oxo-5-(2,3,5,6-tetrafluoro-phenoxy)-pentanoic acid, an investigational drug targeting caspases and caspase-like proteases: the clinical trials in sight and recent anti-inflammatory advances. Recent Pat Inflamm Allergy Drug Discov. 2013, 7 (3): 229-258.

CrossRefPubMedGoogle Scholar

Davidson D, Amrein L, Panasci L, Aloyz R: Small Molecules, Inhibitors of DNA-PK, Targeting DNA Repair, and Beyond. Front Pharmacol. 2013, 4: 5-

PubMedCentralCrossRefPubMedGoogle Scholar

Cummins NW SA, Natesampillai S, Bren GD, Badley AD: Choice of antiretroviral therapy differentially impacts survival of HIV-infected CD4 T cells; implications for eradication strategies. Molecular and Cellular Therapies. 2014, 2 (1): 1-7.

PubMedCentralCrossRefPubMedGoogle Scholar

Vieira MC, Kumar RN, Jansen JP: Comparative effectiveness of efavirenz, protease inhibitors, and raltegravir-based regimens as first-line treatment for HIV-infected adults: a mixed treatment comparison. HIV Clin Trials. 2011, 12 (4): 175-189.

CrossRefPubMedGoogle Scholar

Rizza SR, Tangalos EG, McClees MD, Strausbauch MA, Targonski PV, McKean DJ, Wettstein PJ, Badley AD: Nelfinavir monotherapy increases naive T-cell numbers in HIV-negative healthy young adults. Front Biosci. 2008, 13: 1605-1609.

PubMedCentralCrossRefPubMedGoogle Scholar

Badley AD, Sainski A, Wightman F, Lewin SR: Altering cell death pathways as an approach to cure HIV infection. Cell Death Dis. 2013, 4: e718-

PubMedCentralCrossRefPubMedGoogle Scholar

Published
2019-01-31
Section
Review