Gene therapy for malignant glioma

  • Hidehiro Okura
  • Christian Smith
  • James Rutka
Keywords: Glioblastoma, Gene therapy, Prodrug suicide, Oncolytic, Cytokine mediated, Tumor suppressor gene

Abstract

Glioblastoma multiforme (GBM) is the most frequent and devastating primary brain tumor in adults. Despite current treatment modalities, such as surgical resection followed by chemotherapy and radiotherapy, only modest improvements in median survival have been achieved. Frequent recurrence and invasiveness of GBM are likely due to the resistance of glioma stem cells to conventional treatments; therefore, novel alternative treatment strategies are desperately needed. Recent advancements in molecular biology and gene technology have provided attractive novel treatment possibilities for patients with GBM. Gene therapy is defined as a technology that aims to modify the genetic complement of cells to obtain therapeutic benefit. To date, gene therapy for the treatment of GBM has demonstrated anti-tumor efficacy in pre-clinical studies and promising safety profiles in clinical studies. However, while this approach is obviously promising, concerns still exist regarding issues associated with transduction efficiency, viral delivery, the pathologic response of the brain, and treatment efficacy. Tumor development and progression involve alterations in a wide spectrum of genes, therefore a variety of gene therapy approaches for GBM have been proposed. Improved viral vectors are being evaluated, and the potential use of gene therapy alone or in synergy with other treatments against GBM are being studied. In this review, we will discuss the most commonly studied gene therapy approaches for the treatment of GBM in preclinical and clinical studies including: prodrug/suicide gene therapy; oncolytic gene therapy; cytokine mediated gene therapy; and tumor suppressor gene therapy. In addition, we review the principles and mechanisms of current gene therapy strategies as well as advantages and disadvantages of each.

Downloads

Download data is not yet available.

References

Wen PY, Kesari S: Malignant gliomas in adults. N Engl J Med. 2008, 359: 492-507.

PubMedGoogle Scholar

Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO: Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005, 352: 987-996.

PubMedGoogle Scholar

Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC, Ludwin SK, Allgeier A, Fisher B, Belanger K, Hau P, Brandes AA, Gijtenbeek J, Marosi C, Vecht CJ, Mokhtari K, Wesseling P, Villa S, Eisenhauer E, Gorlia T, Weller M, Lacombe D, Cairncross JG, Mirimanoff RO: Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009, 10: 459-466.

PubMedGoogle Scholar

van den Bent MJ, Hegi ME, Stupp R: Recent developments in the use of chemotherapy in brain tumours. Eur J Cancer. 2006, 42: 582-588.

PubMedGoogle Scholar

Kanu OO, Mehta A, Di C, Lin N, Bortoff K, Bigner DD, Yan H, Adamson DC: Glioblastoma multiforme: a review of therapeutic targets. Expert Opin Ther Targets. 2009, 13: 701-718.

PubMedGoogle Scholar

Altaner C: Glioblastoma and stem cells. Neoplasma. 2008, 55: 369-374.

PubMedGoogle Scholar

Huang Z, Cheng L, Guryanova OA, Wu Q, Bao S: Cancer stem cells in glioblastoma–molecular signaling and therapeutic targeting. Protein Cell. 2010, 1: 638-655.

PubMedGoogle Scholar

Nduom EK, Hadjipanayis CG, Van Meir EG: Glioblastoma cancer stem-like cells: implications for pathogenesis and treatment. Cancer J. 2012, 18: 100-106.

PubMedCentralPubMedGoogle Scholar

Bansal K, Engelhard HH: Gene therapy for brain tumors. Curr Oncol Rep. 2000, 2: 463-472.

PubMedGoogle Scholar

Russell SJ, Peng KW, Bell JC: Oncolytic virotherapy. Nat Biotechnol. 2012, 30: 658-670.

PubMedCentralPubMedGoogle Scholar

Sonabend AM, Ulasov IV, Lesniak MS: Gene therapy trials for the treatment of high-grade gliomas. Gene Ther Mol Biol. 2007, 11: 79-92.

PubMedCentralPubMedGoogle Scholar

Culver KW, Ram Z, Wallbridge S, Ishii H, Oldfield EH, Blaese RM: In vivo gene transfer with retroviral vector-producer cells for treatment of experimental brain tumors. Science. 1992, 256: 1550-1552.

PubMedGoogle Scholar

Natsume A, Yoshida J: Gene therapy for high-grade glioma: current approaches and future directions. Cell Adh Migr. 2008, 2: 186-191.

PubMedCentralPubMedGoogle Scholar

Yoshida J, Mizuno M: Clinical gene therapy for brain tumors. Liposomal delivery of anticancer molecule to glioma. J Neurooncol. 2003, 65: 261-267.

PubMedGoogle Scholar

Juratli TA, Schackert G, Krex D: Current status of local therapy in malignant gliomas–a clinical review of three selected approaches. Pharmacol Ther. 2013, 139: 341-358.

PubMedGoogle Scholar

Rainov NG, Heidecke V: Clinical development of experimental therapies for malignant glioma. Sultan Qaboos Univ Med J. 2011, 11: 5-28.

PubMedCentralPubMedGoogle Scholar

Tobias A, Ahmed A, Moon KS, Lesniak MS: The art of gene therapy for glioma: a review of the challenging road to the bedside. J Neurol Neurosurg Psychiatry. 2013, 84: 213-222.

PubMedCentralPubMedGoogle Scholar

Duarte S, Carle G, Faneca H, de Lima MC, Pierrefite-Carle V: Suicide gene therapy in cancer: where do we stand now?. Cancer Lett. 2012, 324: 160-170.

PubMedGoogle Scholar

Kaliberov SA, Market JM, Gillespie GY, Krendelchtchikova V, Della Manna D, Sellers JC, Kaliberova LN, Black ME, Buchsbaum DJ: Mutation of Escherichia coli cytosine deaminase significantly enhances molecular chemotherapy of human glioma. Gene Ther. 2007, 14: 1111-1119.

PubMedGoogle Scholar

Immonen A, Vapalahti M, Tyynela K, Hurskainen H, Sandmair A, Vanninen R, Langford G, Murray N, Yla-Herttuala S: AdvHSV-tk gene therapy with intravenous ganciclovir improves survival in human malignant glioma: a randomised, controlled study. Mol Ther. 2004, 10: 967-972.

PubMedGoogle Scholar

Germano IM, Fable J, Gultekin SH, Silvers A: Adenovirus/herpes simplex-thymidine kinase/ganciclovir complex: preliminary results of a phase I trial in patients with recurrent malignant gliomas. J Neurooncol. 2003, 65: 279-289.

PubMedGoogle Scholar

Sandmair AM, Loimas S, Puranen P, Immonen A, Kossila M, Puranen M, Hurskainen H, Tyynela K, Turunen M, Vanninen R, Lehtolainen P, Paljarvi L, Johansson R, Vapalahti M, Yla-Herttuala S: Thymidine kinase gene therapy for human malignant glioma, using replication-deficient retroviruses or adenoviruses. Hum Gene Ther. 2000, 11: 2197-2205.

PubMedGoogle Scholar

Trask TW, Trask RP, Aguilar-Cordova E, Shine HD, Wyde PR, Goodman JC, Hamilton WJ, Rojas-Martinez A, Chen SH, Woo SL, Grossman RG: Phase I study of adenoviral delivery of the HSV-tk gene and ganciclovir administration in patients with current malignant brain tumors. Mol Ther. 2000, 1: 195-203.

PubMedGoogle Scholar

Ito S, Natsume A, Shimato S, Ohno M, Kato T, Chansakul P, Wakabayashi T, Kim SU: Human neural stem cells transduced with IFN-beta and cytosine deaminase genes intensify bystander effect in experimental glioma. Cancer Gene Ther. 2010, 17: 299-306.

PubMedGoogle Scholar

Valerie K, Hawkins W, Farnsworth J, Schmidt-Ullrich R, Lin PS, Amir C, Feden J: Substantially improved in vivo radiosensitization of rat glioma with mutant HSV-TK and acyclovir. Cancer Gene Ther. 2001, 8: 3-8.

PubMedGoogle Scholar

Kroeger KM, Muhammad AK, Baker GJ, Assi H, Wibowo MK, Xiong W, Yagiz K, Candolfi M, Lowenstein PR, Castro MG: Gene therapy and virotherapy: novel therapeutic approaches for brain tumors. Discov Med. 2010, 10: 293-304.

PubMedCentralPubMedGoogle Scholar

Kwiatkowska A, Nandhu MS, Behera P, Chiocca EA, Viapiano MS: Strategies in gene therapy for glioblastoma. Cancers (Basel). 2013, 5: 1271-1305.

Google Scholar

Moolten FL: Tumor chemosensitivity conferred by inserted herpes thymidine kinase genes: paradigm for a prospective cancer control strategy. Cancer Res. 1986, 46: 5276-5281.

PubMedGoogle Scholar

Elion GB: The biochemistry and mechanism of action of acyclovir. J Antimicrob Chemother. 1983, 12 (Suppl B): 9-17.

PubMedGoogle Scholar

Fischer U, Steffens S, Frank S, Rainov NG, Schulze-Osthoff K, Kramm CM: Mechanisms of thymidine kinase/ganciclovir and cytosine deaminase/5-fluorocytosine suicide gene therapy-induced cell death in glioma cells. Oncogene. 2005, 24: 1231-1243.

PubMedGoogle Scholar

Paillard F: Bystander effects in enzyme/prodrug gene therapy. Hum Gene Ther. 1997, 8: 1733-1735.

PubMedGoogle Scholar

Touraine RL, Vahanian N, Ramsey WJ, Blaese RM: Enhancement of the herpes simplex virus thymidine kinase/ganciclovir bystander effect and its antitumor efficacy in vivo by pharmacologic manipulation of gap junctions. Hum Gene Ther. 1998, 9: 2385-2391.

PubMedGoogle Scholar

Touraine RL, Ishii-Morita H, Ramsey WJ, Blaese RM: The bystander effect in the HSVtk/ganciclovir system and its relationship to gap junctional communication. Gene Ther. 1998, 5: 1705-1711.

PubMedGoogle Scholar

Fick J, Barker FG, Dazin P, Westphale EM, Beyer EC, Israel MA: The extent of heterocellular communication mediated by gap junctions is predictive of bystander tumor cytotoxicity in vitro. Proc Natl Acad Sci U S A. 1995, 92: 11071-11075.

PubMedCentralPubMedGoogle Scholar

Hamel W, Magnelli L, Chiarugi VP, Israel MA: Herpes simplex virus thymidine kinase/ganciclovir-mediated apoptotic death of bystander cells. Cancer Res. 1996, 56: 2697-2702.

PubMedGoogle Scholar

van Dillen IJ, Mulder NH, Vaalburg W, de Vries EF, Hospers GA: Influence of the bystander effect on HSV-tk/GCV gene therapy. A review. Curr Gene Ther. 2002, 2: 307-322.

PubMedGoogle Scholar

Freeman SM, Abboud CN, Whartenby KA, Packman CH, Koeplin DS, Moolten FL, Abraham GN: The “bystander effect”: tumor regression when a fraction of the tumor mass is genetically modified. Cancer Res. 1993, 53: 5274-5283.

PubMedGoogle Scholar

Ram Z, Culver KW, Walbridge S, Blaese RM, Oldfield EH: In situ retroviral-mediated gene transfer for the treatment of brain tumors in rats. Cancer Res. 1993, 53: 83-88.

PubMedGoogle Scholar

Prados MD, McDermott M, Chang SM, Wilson CB, Fick J, Culver KW, Van Gilder J, Keles GE, Spence A, Berger M: Treatment of progressive or recurrent glioblastoma multiforme in adults with herpes simplex virus thymidine kinase gene vector-producer cells followed by intravenous ganciclovir administration: a phase I/II multi-institutional trial. J Neurooncol. 2003, 65: 269-278.

PubMedGoogle Scholar

Valerie K, Brust D, Farnsworth J, Amir C, Taher MM, Hershey C, Feden J: Improved radiosensitization of rat glioma cells with adenovirus-expressed mutant herpes simplex virus-thymidine kinase in combination with acyclovir. Cancer Gene Ther. 2000, 7: 879-884.

PubMedGoogle Scholar

Kim SH, Kim JH, Kolozsvary A, Brown SL, Freytag SO: Preferential radiosensitization of 9L glioma cells transduced with HSV-tk gene by acyclovir. J Neurooncol. 1997, 33: 189-194.

PubMedGoogle Scholar

Rainov NG, Fels C, Droege JW, Schafer C, Kramm CM, Chou TC: Temozolomide enhances herpes simplex virus thymidine kinase/ganciclovir therapy of malignant glioma. Cancer Gene Ther. 2001, 8: 662-668.

PubMedGoogle Scholar

Rainov NG: A phase III clinical evaluation of herpes simplex virus type 1 thymidine kinase and ganciclovir gene therapy as an adjuvant to surgical resection and radiation in adults with previously untreated glioblastoma multiforme. Hum Gene Ther. 2000, 11: 2389-2401.

PubMedGoogle Scholar

Sandmair AM, Turunen M, Tyynela K, Loimas S, Vainio P, Vanninen R, Vapalahti M, Bjerkvig R, Janne J, Yla-Herttuala S: Herpes simplex virus thymidine kinase gene therapy in experimental rat BT4C glioma model: effect of the percentage of thymidine kinase-positive glioma cells on treatment effect, survival time, and tissue reactions. Cancer Gene Ther. 2000, 7: 413-421.

PubMedGoogle Scholar

Mullen CA, Kilstrup M, Blaese RM: Transfer of the bacterial gene for cytosine deaminase to mammalian cells confers lethal sensitivity to 5-fluorocytosine: a negative selection system. Proc Natl Acad Sci U S A. 1992, 89: 33-37.

PubMedCentralPubMedGoogle Scholar

Schilsky RL: Biochemical and clinical pharmacology of 5-fluorouracil. Oncology (Williston Park). 1998, 12: 13-18.

Google Scholar

Kurozumi K, Tamiya T, Ono Y, Otsuka S, Kambara H, Adachi Y, Ichikawa T, Hamada H, Ohmoto T: Apoptosis induction with 5-fluorocytosine/cytosine deaminase gene therapy for human malignant glioma cells mediated by adenovirus. J Neurooncol. 2004, 66: 117-127.

PubMedGoogle Scholar

Altaner C: Prodrug cancer gene therapy. Cancer Lett. 2008, 270: 191-201.

PubMedGoogle Scholar

Dachs GU, Tupper J, Tozer GM: From bench to bedside for gene-directed enzyme prodrug therapy of cancer. Anticancer Drugs. 2005, 16: 349-359.

PubMedGoogle Scholar

Trinh QT, Austin EA, Murray DM, Knick VC, Huber BE: Enzyme/prodrug gene therapy: comparison of cytosine deaminase/5-fluorocytosine versus thymidine kinase/ganciclovir enzyme/prodrug systems in a human colorectal carcinoma cell line. Cancer Res. 1995, 55: 4808-4812.

PubMedGoogle Scholar

Dong Y, Wen P, Manome Y, Parr M, Hirshowitz A, Chen L, Hirschowitz EA, Crystal R, Weichselbaum R, Kufe DW, Fine HA: In vivo replication-deficient adenovirus vector-mediated transduction of the cytosine deaminase gene sensitizes glioma cells to 5-fluorocytosine. Hum Gene Ther. 1996, 7: 713-720.

PubMedGoogle Scholar

Adachi Y, Tamiya T, Ichikawa T, Terada K, Ono Y, Matsumoto K, Furuta T, Hamada H, Ohmoto T: Experimental gene therapy for brain tumors using adenovirus-mediated transfer of cytosine deaminase gene and uracil phosphoribosyltransferase gene with 5-fluorocytosine. Hum Gene Ther. 2000, 11: 77-89.

PubMedGoogle Scholar

Kambara H, Tamiya T, Ono Y, Ohtsuka S, Terada K, Adachi Y, Ichikawa T, Hamada H, Ohmoto T: Combined radiation and gene therapy for brain tumors with adenovirus-mediated transfer of cytosine deaminase and uracil phosphoribosyltransferase genes. Cancer Gene Ther. 2002, 9: 840-845.

PubMedGoogle Scholar

Ostertag D, Amundson KK, Lopez Espinoza F, Martin B, Buckley T, da Silva AP G, Lin AH, Valenta DT, Perez OD, Ibanez CE, Chen CI, Pettersson PL, Burnett R, Daublebsky V, Hlavaty J, Gunzburg W, Kasahara N, Gruber HE, Jolly DJ, Robbins JM: Brain tumor eradication and prolonged survival from intratumoral conversion of 5-fluorocytosine to 5-fluorouracil using a nonlytic retroviral replicating vector. Neuro Oncol. 2012, 14: 145-159.

PubMedCentralPubMedGoogle Scholar

Huang TT, Hlavaty J, Ostertag D, Espinoza FL, Martin B, Petznek H, Rodriguez-Aguirre M, Ibanez CE, Kasahara N, Gunzburg W, Gruber HE, Pertschuk D, Jolly DJ, Robbins JM: Toca 511 gene transfer and 5-fluorocytosine in combination with temozolomide demonstrates synergistic therapeutic efficacy in a temozolomide-sensitive glioblastoma model. Cancer Gene Ther. 2013, 20: 544-551.

PubMedGoogle Scholar

Uchida N, Buck DW, He D, Reitsma MJ, Masek M, Phan TV, Tsukamoto AS, Gage FH, Weissman IL: Direct isolation of human central nervous system stem cells. Proc Natl Acad Sci U S A. 2000, 97: 14720-14725.

PubMedCentralPubMedGoogle Scholar

Reynolds BA, Weiss S: Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science. 1992, 255: 1707-1710.

PubMedGoogle Scholar

Gage FH: Mammalian neural stem cells. Science. 2000, 287: 1433-1438.

PubMedGoogle Scholar

Aboody KS, Brown A, Rainov NG, Bower KA, Liu S, Yang W, Small JE, Herrlinger U, Ourednik V, Black PM, Breakefield XO, Snyder EY: Neural stem cells display extensive tropism for pathology in adult brain: evidence from intracranial gliomas. Proc Natl Acad Sci U S A. 2000, 97: 12846-12851.

PubMedCentralPubMedGoogle Scholar

Aboody KS, Najbauer J, Danks MK: Stem and progenitor cell-mediated tumor selective gene therapy. Gene Ther. 2008, 15: 739-752.

PubMedGoogle Scholar

Barresi V, Belluardo N, Sipione S, Mudo G, Cattaneo E, Condorelli DF: Transplantation of prodrug-converting neural progenitor cells for brain tumor therapy. Cancer Gene Ther. 2003, 10: 396-402.

PubMedGoogle Scholar

Rath P, Shi H, Maruniak JA, Litofsky NS, Maria BL, Kirk MD: Stem cells as vectors to deliver HSV/tk gene therapy for malignant gliomas. Curr Stem Cell Res Ther. 2009, 4: 44-49.

PubMedCentralPubMedGoogle Scholar

Murphy AM, Rabkin SD: Current status of gene therapy for brain tumors. Transl Res. 2013, 161: 339-354.

PubMedCentralPubMedGoogle Scholar

Dvorak HF: Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med. 1986, 315: 1650-1659.

PubMedGoogle Scholar

Bexell D, Scheding S, Bengzon J: Toward brain tumor gene therapy using multipotent mesenchymal stromal cell vectors. Mol Ther. 2010, 18: 1067-1075.

PubMedCentralPubMedGoogle Scholar

Hingtgen S, Ren X, Terwilliger E, Classon M, Weissleder R, Shah K: Targeting multiple pathways in gliomas with stem cell and viral delivered S-TRAIL and Temozolomide. Mol Cancer Ther. 2008, 7: 3575-3585.

PubMedCentralPubMedGoogle Scholar

Chang DY, Yoo SW, Hong Y, Kim S, Kim SJ, Yoon SH, Cho KG, Paek SH, Lee YD, Kim SS, Suh-Kim H: The growth of brain tumors can be suppressed by multiple transplantation of mesenchymal stem cells expressing cytosine deaminase. Int J Cancer. 2010, 127: 1975-1983.

PubMedGoogle Scholar

Bagci-Onder T, Wakimoto H, Anderegg M, Cameron C, Shah K: A dual PI3K/mTOR inhibitor, PI-103, cooperates with stem cell-delivered TRAIL in experimental glioma models. Cancer Res. 2011, 71: 154-163.

PubMedGoogle Scholar

Assi H, Candolfi M, Baker G, Mineharu Y, Lowenstein PR, Castro MG: Gene therapy for brain tumors: basic developments and clinical implementation. Neurosci Lett. 2012, 527: 71-77.

PubMedCentralPubMedGoogle Scholar

Castro MG, Candolfi M, Kroeger K, King GD, Curtin JF, Yagiz K, Mineharu Y, Assi H, Wibowo M, Ghulam Muhammad AK, Foulad D, Puntel M, Lowenstein PR: Gene therapy and targeted toxins for glioma. Curr Gene Ther. 2011, 11: 155-180.

PubMedCentralPubMedGoogle Scholar

Samaranayake H, Maatta AM, Pikkarainen J, Yla-Herttuala S: Future prospects and challenges of antiangiogenic cancer gene therapy. Hum Gene Ther. 2010, 21: 381-396.

PubMedGoogle Scholar

Kaufmann JK, Chiocca EA: Glioma virus therapies between bench and bedside. Neuro Oncol. 2014, 16: 334-351.

PubMedCentralPubMedGoogle Scholar

Chiocca EA: Oncolytic viruses. Nat Rev Cancer. 2002, 2: 938-950.

PubMedGoogle Scholar

Ikeda K, Ichikawa T, Wakimoto H, Silver JS, Deisboeck TS, Finkelstein D, Harsh GR, Louis DN, Bartus RT, Hochberg FH, Chiocca EA: Oncolytic virus therapy of multiple tumors in the brain requires suppression of innate and elicited antiviral responses. Nat Med. 1999, 5: 881-887.

PubMedGoogle Scholar

Allen C, Opyrchal M, Aderca I, Schroeder MA, Sarkaria JN, Domingo E, Federspiel MJ, Galanis E: Oncolytic measles virus strains have significant antitumor activity against glioma stem cells. Gene Ther. 2013, 20: 444-449.

PubMedCentralPubMedGoogle Scholar

Selznick LA, Shamji MF, Fecci P, Gromeier M, Friedman AH, Sampson J: Molecular strategies for the treatment of malignant glioma–genes, viruses, and vaccines. Neurosurg Rev. 2008, 31: 141-155. discussion 155

PubMedCentralPubMedGoogle Scholar

Iwami K, Natsume A, Wakabayashi T: Gene therapy for high-grade glioma. Neurol Med Chir (Tokyo). 2010, 50: 727-736.

Google Scholar

Mineta T, Rabkin SD, Yazaki T, Hunter WD, Martuza RL: Attenuated multi-mutated herpes simplex virus-1 for the treatment of malignant gliomas. Nat Med. 1995, 1: 938-943.

PubMedGoogle Scholar

Goldstein DJ, Weller SK: Factor(s) present in herpes simplex virus type 1-infected cells can compensate for the loss of the large subunit of the viral ribonucleotide reductase: characterization of an ICP6 deletion mutant. Virology. 1988, 166: 41-51.

PubMedGoogle Scholar

Shah AC, Benos D, Gillespie GY, Markert JM: Oncolytic viruses: clinical applications as vectors for the treatment of malignant gliomas. J Neurooncol. 2003, 65: 203-226.

PubMedGoogle Scholar

Aghi M, Visted T, Depinho RA, Chiocca EA: Oncolytic herpes virus with defective ICP6 specifically replicates in quiescent cells with homozygous genetic mutations in p16. Oncogene. 2008, 27: 4249-4254.

PubMedGoogle Scholar

Hoshino T, Prados M, Wilson CB, Cho KG, Lee KS, Davis RL: Prognostic implications of the bromodeoxyuridine labeling index of human gliomas. J Neurosurg. 1989, 71: 335-341.

PubMedGoogle Scholar

Coen DM, Goldstein DJ, Weller SK: Herpes simplex virus ribonucleotide reductase mutants are hypersensitive to acyclovir. Antimicrob Agents Chemother. 1989, 33: 1395-1399.

PubMedCentralPubMedGoogle Scholar

Haseley A, Alvarez-Breckenridge C, Chaudhury AR, Kaur B: Advances in oncolytic virus therapy for glioma. Recent Pat CNS Drug Discov. 2009, 4: 1-13.

PubMedCentralPubMedGoogle Scholar

He B, Gross M, Roizman B: The gamma(1)34.5 protein of herpes simplex virus 1 complexes with protein phosphatase 1alpha to dephosphorylate the alpha subunit of the eukaryotic translation initiation factor 2 and preclude the shutoff of protein synthesis by double-stranded RNA-activated protein kinase. Proc Natl Acad Sci U S A. 1997, 94: 843-848.

PubMedCentralPubMedGoogle Scholar

Chou J, Kern ER, Whitley RJ, Roizman B: Mapping of herpes simplex virus-1 neurovirulence to gamma 134.5, a gene nonessential for growth in culture. Science. 1990, 250: 1262-1266.

PubMedGoogle Scholar

Nandi S, Lesniak MS: Adenoviral virotherapy for malignant brain tumors. Expert Opin Biol Ther. 2009, 9: 737-747.

PubMedCentralPubMedGoogle Scholar

Parker JN, Bauer DF, Cody JJ, Markert JM: Oncolytic viral therapy of malignant glioma. Neurotherapeutics. 2009, 6: 558-569.

PubMedCentralPubMedGoogle Scholar

Zemp FJ, Corredor JC, Lun X, Muruve DA, Forsyth PA: Oncolytic viruses as experimental treatments for malignant gliomas: using a scourge to treat a devil. Cytokine Growth Factor Rev. 2010, 21: 103-117.

PubMedGoogle Scholar

Chambers R, Gillespie GY, Soroceanu L, Andreansky S, Chatterjee S, Chou J, Roizman B, Whitley RJ: Comparison of genetically engineered herpes simplex viruses for the treatment of brain tumors in a scid mouse model of human malignant glioma. Proc Natl Acad Sci U S A. 1995, 92: 1411-1415.

PubMedCentralPubMedGoogle Scholar

Hunter WD, Martuza RL, Feigenbaum F, Todo T, Mineta T, Yazaki T, Toda M, Newsome JT, Platenberg RC, Manz HJ, Rabkin SD: Attenuated, replication-competent herpes simplex virus type 1 mutant G207: safety evaluation of intracerebral injection in nonhuman primates. J Virol. 1999, 73: 6319-6326.

PubMedCentralPubMedGoogle Scholar

Markert JM, Malick A, Coen DM, Martuza RL: Reduction and elimination of encephalitis in an experimental glioma therapy model with attenuated herpes simplex mutants that retain susceptibility to acyclovir. Neurosurgery. 1993, 32: 597-603.

PubMedGoogle Scholar

Sundaresan P, Hunter WD, Martuza RL, Rabkin SD: Attenuated, replication-competent herpes simplex virus type 1 mutant G207: safety evaluation in mice. J Virol. 2000, 74: 3832-3841.

PubMedCentralPubMedGoogle Scholar

Markert JM, Medlock MD, Rabkin SD, Gillespie GY, Todo T, Hunter WD, Palmer CA, Feigenbaum F, Tornatore C, Tufaro F, Martuza RL: Conditionally replicating herpes simplex virus mutant, G207 for the treatment of malignant glioma: results of a phase I trial. Gene Ther. 2000, 7: 867-874.

PubMedGoogle Scholar

Markert JM, Liechty PG, Wang W, Gaston S, Braz E, Karrasch M, Nabors LB, Markiewicz M, Lakeman AD, Palmer CA, Parker JN, Whitley RJ, Gillespie GY: Phase Ib trial of mutant herpes simplex virus G207 inoculated pre-and post-tumor resection for recurrent GBM. Mol Ther. 2009, 17: 199-207.

PubMedCentralPubMedGoogle Scholar

MacLean AR, ul-Fareed M, Robertson L, Harland J, Brown SM: Herpes simplex virus type 1 deletion variants 1714 and 1716 pinpoint neurovirulence-related sequences in Glasgow strain 17+ between immediate early gene 1 and the ‘a’ sequence. J Gen Virol. 1991, 72 (Pt 3): 631-639.

PubMedGoogle Scholar

Valyi-Nagy T, Fareed MU, O’Keefe JS, Gesser RM, MacLean AR, Brown SM, Spivack JG, Fraser NW: The herpes simplex virus type 1 strain 17+ gamma 34.5 deletion mutant 1716 is avirulent in SCID mice. J Gen Virol. 1994, 75 (Pt 8): 2059-2063.

PubMedGoogle Scholar

Kesari S, Randazzo BP, Valyi-Nagy T, Huang QS, Brown SM, MacLean AR, Lee VM, Trojanowski JQ, Fraser NW: Therapy of experimental human brain tumors using a neuroattenuated herpes simplex virus mutant. Lab Invest. 1995, 73: 636-648.

PubMedGoogle Scholar

McKie EA, Brown SM, MacLean AR, Graham DI: Histopathological responses in the CNS following inoculation with a non-neurovirulent mutant (1716) of herpes simplex virus type 1 (HSV 1): relevance for gene and cancer therapy. Neuropathol Appl Neurobiol. 1998, 24: 367-372.

PubMedGoogle Scholar

Randazzo BP, Kesari S, Gesser RM, Alsop D, Ford JC, Brown SM, Maclean A, Fraser NW: Treatment of experimental intracranial murine melanoma with a neuroattenuated herpes simplex virus 1 mutant. Virology. 1995, 211: 94-101.

PubMedGoogle Scholar

Rampling R, Cruickshank G, Papanastassiou V, Nicoll J, Hadley D, Brennan D, Petty R, MacLean A, Harland J, McKie E, Mabbs R, Brown M: Toxicity evaluation of replication-competent herpes simplex virus (ICP 34.5 null mutant 1716) in patients with recurrent malignant glioma. Gene Ther. 2000, 7: 859-866.

PubMedGoogle Scholar

Papanastassiou V, Rampling R, Fraser M, Petty R, Hadley D, Nicoll J, Harland J, Mabbs R, Brown M: The potential for efficacy of the modified (ICP 34.5(−)) herpes simplex virus HSV1716 following intratumoural injection into human malignant glioma: a proof of principle study. Gene Ther. 2002, 9: 398-406.

PubMedGoogle Scholar

Harrow S, Papanastassiou V, Harland J, Mabbs R, Petty R, Fraser M, Hadley D, Patterson J, Brown SM, Rampling R: HSV1716 injection into the brain adjacent to tumour following surgical resection of high-grade glioma: safety data and long-term survival. Gene Ther. 2004, 11: 1648-1658.

PubMedGoogle Scholar

Chiocca EA, Broaddus WC, Gillies GT, Visted T, Lamfers ML: Neurosurgical delivery of chemotherapeutics, targeted toxins, genetic and viral therapies in neuro-oncology. J Neurooncol. 2004, 69: 101-117.

PubMedGoogle Scholar

MacKie RM, Stewart B, Brown SM: Intralesional injection of herpes simplex virus 1716 in metastatic melanoma. Lancet. 2001, 357: 525-526.

PubMedGoogle Scholar

Kanai R, Zaupa C, Sgubin D, Antoszczyk SJ, Martuza RL, Wakimoto H, Rabkin SD: Effect of gamma34.5 deletions on oncolytic herpes simplex virus activity in brain tumors. J Virol. 2012, 86: 4420-4431.

PubMedCentralPubMedGoogle Scholar

Wakimoto H, Kesari S, Farrell CJ, Curry WT, Zaupa C, Aghi M, Kuroda T, Stemmer-Rachamimov A, Shah K, Liu TC, Jeyaretna DS, Debasitis J, Pruszak J, Martuza RL, Rabkin SD: Human glioblastoma-derived cancer stem cells: establishment of invasive glioma models and treatment with oncolytic herpes simplex virus vectors. Cancer Res. 2009, 69: 3472-3481.

PubMedCentralPubMedGoogle Scholar

Todo T, Martuza RL, Rabkin SD, Johnson PA: Oncolytic herpes simplex virus vector with enhanced MHC class I presentation and tumor cell killing. Proc Natl Acad Sci U S A. 2001, 98: 6396-6401.

PubMedCentralPubMedGoogle Scholar

Todo T: Oncolytic virus therapy using genetically engineered herpes simplex viruses. Front Biosci. 2008, 13: 2060-2064.

PubMedGoogle Scholar

Jiang W, Kim BY, Rutka JT, Chan WC: Advances and challenges of nanotechnology-based drug delivery systems. Expert Opin Drug Deliv. 2007, 4: 621-633.

PubMedGoogle Scholar

Gambini E, Reisoli E, Appolloni I, Gatta V, Campadelli-Fiume G, Menotti L, Malatesta P: Replication-competent herpes simplex virus retargeted to HER2 as therapy for high-grade glioma. Mol Ther. 2012, 20: 994-1001.

PubMedCentralPubMedGoogle Scholar

Longo SL, Griffith C, Glass A, Shillitoe EJ, Post DE: Development of an oncolytic herpes simplex virus using a tumor-specific HIF-responsive promoter. Cancer Gene Ther. 2011, 18: 123-134.

PubMedCentralPubMedGoogle Scholar

Lang FF, Yung WK, Sawaya R, Tofilon PJ: Adenovirus-mediated p53 gene therapy for human gliomas. Neurosurgery. 1999, 45: 1093-1104.

PubMedGoogle Scholar

Bischoff JR, Kirn DH, Williams A, Heise C, Horn S, Muna M, Ng L, Nye JA, Sampson-Johannes A, Fattaey A, McCormick F: An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science. 1996, 274: 373-376.

PubMedGoogle Scholar

Heise C, Sampson-Johannes A, Williams A, McCormick F, Von Hoff DD, Kirn DH: ONYX-015, an E1B gene-attenuated adenovirus, causes tumor-specific cytolysis and antitumoral efficacy that can be augmented by standard chemotherapeutic agents. Nat Med. 1997, 3: 639-645.

PubMedGoogle Scholar

Hall AR, Dix BR, O’Carroll SJ, Braithwaite AW: p53-dependent cell death/apoptosis is required for a productive adenovirus infection. Nat Med. 1998, 4: 1068-1072.

PubMedGoogle Scholar

Geoerger B, Grill J, Opolon P, Morizet J, Aubert G, Terrier-Lacombe MJ, Bressac De-Paillerets B, Barrois M, Feunteun J, Kirn DH, Vassal G: Oncolytic activity of the E1B-55 kDa-deleted adenovirus ONYX-015 is independent of cellular p53 status in human malignant glioma xenografts. Cancer Res. 2002, 62: 764-772.

PubMedGoogle Scholar

O’Shea CC, Johnson L, Bagus B, Choi S, Nicholas C, Shen A, Boyle L, Pandey K, Soria C, Kunich J, Shen Y, Habets G, Ginzinger D, McCormick F: Late viral RNA export, rather than p53 inactivation, determines ONYX-015 tumor selectivity. Cancer Cell. 2004, 6: 611-623.

PubMedGoogle Scholar

Goodrum FD, Ornelles DA: p53 status does not determine outcome of E1B 55-kilodalton mutant adenovirus lytic infection. J Virol. 1998, 72: 9479-9490.

PubMedCentralPubMedGoogle Scholar

Rothmann T, Hengstermann A, Whitaker NJ, Scheffner M, zur Hausen H: Replication of ONYX-015, a potential anticancer adenovirus, is independent of p53 status in tumor cells. J Virol. 1998, 72: 9470-9478.

PubMedCentralPubMedGoogle Scholar

Geoerger B, Grill J, Opolon P, Morizet J, Aubert G, Lecluse Y, van Beusechem VW, Gerritsen WR, Kirn DH, Vassal G: Potentiation of radiation therapy by the oncolytic adenovirus dl1520 (ONYX-015) in human malignant glioma xenografts. Br J Cancer. 2003, 89: 577-584.

PubMedCentralPubMedGoogle Scholar

Chiocca EA, Abbed KM, Tatter S, Louis DN, Hochberg FH, Barker F, Kracher J, Grossman SA, Fisher JD, Carson K, Rosenblum M, Mikkelsen T, Olson J, Markert J, Rosenfeld S, Nabors LB, Brem S, Phuphanich S, Freeman S, Kaplan R, Zwiebel J: A phase I open-label, dose-escalation, multi-institutional trial of injection with an E1B-Attenuated adenovirus, ONYX-015, into the peritumoral region of recurrent malignant gliomas, in the adjuvant setting. Mol Ther. 2004, 10: 958-966.

PubMedGoogle Scholar

Makower D, Rozenblit A, Kaufman H, Edelman M, Lane ME, Zwiebel J, Haynes H, Wadler S: Phase II clinical trial of intralesional administration of the oncolytic adenovirus ONYX-015 in patients with hepatobiliary tumors with correlative p53 studies. Clin Cancer Res. 2003, 9: 693-702.

PubMedGoogle Scholar

Nemunaitis J, Khuri F, Ganly I, Arseneau J, Posner M, Vokes E, Kuhn J, McCarty T, Landers S, Blackburn A, Romel L, Randlev B, Kaye S, Kirn D: Phase II trial of intratumoral administration of ONYX-015, a replication-selective adenovirus, in patients with refractory head and neck cancer. J Clin Oncol. 2001, 19: 289-298.

PubMedGoogle Scholar

Cross D, Burmester JK: Gene therapy for cancer treatment: past, present and future. Clin Med Res. 2006, 4: 218-227.

PubMedCentralPubMedGoogle Scholar

Hamel W, Westphal M, Shepard HM: Loss in expression of the retinoblastoma gene product in human gliomas is associated with advanced disease. J Neurooncol. 1993, 16: 159-165.

PubMedGoogle Scholar

Ueki K, Ono Y, Henson JW, Efird JT, von Deimling A, Louis DN: CDKN2/p16 or RB alterations occur in the majority of glioblastomas and are inversely correlated. Cancer Res. 1996, 56: 150-153.

PubMedGoogle Scholar

Fueyo J, Gomez-Manzano C, Alemany R, Lee PS, McDonnell TJ, Mitlianga P, Shi YX, Levin VA, Yung WK, Kyritsis AP: A mutant oncolytic adenovirus targeting the Rb pathway produces anti-glioma effect in vivo. Oncogene. 2000, 19: 2-12.

PubMedGoogle Scholar

Suzuki K, Fueyo J, Krasnykh V, Reynolds PN, Curiel DT, Alemany R: A conditionally replicative adenovirus with enhanced infectivity shows improved oncolytic potency. Clin Cancer Res. 2001, 7: 120-126.

PubMedGoogle Scholar

Fueyo J, Alemany R, Gomez-Manzano C, Fuller GN, Khan A, Conrad CA, Liu TJ, Jiang H, Lemoine MG, Suzuki K, Sawaya R, Curiel DT, Yung WK, Lang FF: Preclinical characterization of the antiglioma activity of a tropism-enhanced adenovirus targeted to the retinoblastoma pathway. J Natl Cancer Inst. 2003, 95: 652-660.

PubMedGoogle Scholar

Lamfers ML, Grill J, Dirven CM, Van Beusechem VW, Geoerger B, Van Den Berg J, Alemany R, Fueyo J, Curiel DT, Vassal G, Pinedo HM, Vandertop WP, Gerritsen WR: Potential of the conditionally replicative adenovirus Ad5-Delta24RGD in the treatment of malignant gliomas and its enhanced effect with radiotherapy. Cancer Res. 2002, 62: 5736-5742.

PubMedGoogle Scholar

Auffinger B, Ahmed AU, Lesniak MS: Oncolytic virotherapy for malignant glioma: translating laboratory insights into clinical practice. Front Oncol. 2013, 3: 32-

PubMedCentralPubMedGoogle Scholar

Dorig RE, Marcil A, Chopra A, Richardson CD: The human CD46 molecule is a receptor for measles virus (Edmonston strain). Cell. 1993, 75: 295-305.

PubMedGoogle Scholar

Fishelson Z, Donin N, Zell S, Schultz S, Kirschfink M: Obstacles to cancer immunotherapy: expression of membrane complement regulatory proteins (mCRPs) in tumors. Mol Immunol. 2003, 40: 109-123.

PubMedGoogle Scholar

Anderson BD, Nakamura T, Russell SJ, Peng KW: High CD46 receptor density determines preferential killing of tumor cells by oncolytic measles virus. Cancer Res. 2004, 64: 4919-4926.

PubMedGoogle Scholar

Wollmann G, Ozduman K, van den Pol AN: Oncolytic virus therapy for glioblastoma multiforme: concepts and candidates. Cancer J. 2012, 18: 69-81.

PubMedCentralPubMedGoogle Scholar

Galanis E, Bateman A, Johnson K, Diaz RM, James CD, Vile R, Russell SJ: Use of viral fusogenic membrane glycoproteins as novel therapeutic transgenes in gliomas. Hum Gene Ther. 2001, 12: 811-821.

PubMedGoogle Scholar

Phuong LK, Allen C, Peng KW, Giannini C, Greiner S, TenEyck CJ, Mishra PK, Macura SI, Russell SJ, Galanis EC: Use of a vaccine strain of measles virus genetically engineered to produce carcinoembryonic antigen as a novel therapeutic agent against glioblastoma multiforme. Cancer Res. 2003, 63: 2462-2469.

PubMedGoogle Scholar

Peng KW, Facteau S, Wegman T, O’Kane D, Russell SJ: Non-invasive in vivo monitoring of trackable viruses expressing soluble marker peptides. Nat Med. 2002, 8: 527-531.

PubMedGoogle Scholar

Allen C, Paraskevakou G, Iankov I, Giannini C, Schroeder M, Sarkaria J, Puri RK, Russell SJ, Galanis E: Interleukin-13 displaying retargeted oncolytic measles virus strains have significant activity against gliomas with improved specificity. Mol Ther. 2008, 16: 1556-1564.

PubMedCentralPubMedGoogle Scholar

Paraskevakou G, Allen C, Nakamura T, Zollman P, James CD, Peng KW, Schroeder M, Russell SJ, Galanis E: Epidermal growth factor receptor (EGFR)-retargeted measles virus strains effectively target EGFR- or EGFRvIII expressing gliomas. Mol Ther. 2007, 15: 677-686.

PubMedGoogle Scholar

Allen C, Vongpunsawad S, Nakamura T, James CD, Schroeder M, Cattaneo R, Giannini C, Krempski J, Peng KW, Goble JM, Uhm JH, Russell SJ, Galanis E: Retargeted oncolytic measles strains entering via the EGFRvIII receptor maintain significant antitumor activity against gliomas with increased tumor specificity. Cancer Res. 2006, 66: 11840-11850.

PubMedGoogle Scholar

Gromeier M, Lachmann S, Rosenfeld MR, Gutin PH, Wimmer E: Intergeneric poliovirus recombinants for the treatment of malignant glioma. Proc Natl Acad Sci U S A. 2000, 97: 6803-6808.

PubMedCentralPubMedGoogle Scholar

Merrill MK, Bernhardt G, Sampson JH, Wikstrand CJ, Bigner DD, Gromeier M: Poliovirus receptor CD155-targeted oncolysis of glioma. Neuro Oncol. 2004, 6: 208-217.

PubMedCentralPubMedGoogle Scholar

Sloan KE, Stewart JK, Treloar AF, Matthews RT, Jay DG: CD155/PVR enhances glioma cell dispersal by regulating adhesion signaling and focal adhesion dynamics. Cancer Res. 2005, 65: 10930-10937.

PubMedGoogle Scholar

Gromeier M, Bossert B, Arita M, Nomoto A, Wimmer E: Dual stem loops within the poliovirus internal ribosomal entry site control neurovirulence. J Virol. 1999, 73: 958-964.

PubMedCentralPubMedGoogle Scholar

Gromeier M, Alexander L, Wimmer E: Internal ribosomal entry site substitution eliminates neurovirulence in intergeneric poliovirus recombinants. Proc Natl Acad Sci U S A. 1996, 93: 2370-2375.

PubMedCentralPubMedGoogle Scholar

Ahmed AU, Alexiades NG, Lesniak MS: The use of neural stem cells in cancer gene therapy: predicting the path to the clinic. Curr Opin Mol Ther. 2010, 12: 546-552.

PubMedCentralPubMedGoogle Scholar

Herrlinger U, Woiciechowski C, Sena-Esteves M, Aboody KS, Jacobs AH, Rainov NG, Snyder EY, Breakefield XO: Neural precursor cells for delivery of replication-conditional HSV-1 vectors to intracerebral gliomas. Mol Ther. 2000, 1: 347-357.

PubMedGoogle Scholar

Tyler MA, Ulasov IV, Sonabend AM, Nandi S, Han Y, Marler S, Roth J, Lesniak MS: Neural stem cells target intracranial glioma to deliver an oncolytic adenovirus in vivo. Gene Ther. 2009, 16: 262-278.

PubMedCentralPubMedGoogle Scholar

Ahmed AU, Thaci B, Alexiades NG, Han Y, Qian S, Liu F, Balyasnikova IV, Ulasov IY, Aboody KS, Lesniak MS: Neural stem cell-based cell carriers enhance therapeutic efficacy of an oncolytic adenovirus in an orthotopic mouse model of human glioblastoma. Mol Ther. 2011, 19: 1714-1726.

PubMedCentralPubMedGoogle Scholar

Ahmed AU, Rolle CE, Tyler MA, Han Y, Sengupta S, Wainwright DA, Balyasnikova IV, Ulasov IV, Lesniak MS: Bone marrow mesenchymal stem cells loaded with an oncolytic adenovirus suppress the anti-adenoviral immune response in the cotton rat model. Mol Ther. 2010, 18: 1846-1856.

PubMedCentralPubMedGoogle Scholar

Yong RL, Shinojima N, Fueyo J, Gumin J, Vecil GG, Marini FC, Bogler O, Andreeff M, Lang FF: Human bone marrow-derived mesenchymal stem cells for intravascular delivery of oncolytic adenovirus Delta24-RGD to human gliomas. Cancer Res. 2009, 69: 8932-8940.

PubMedCentralPubMedGoogle Scholar

Borden EC, Lindner D, Dreicer R, Hussein M, Peereboom D: Second-generation interferons for cancer: clinical targets. Semin Cancer Biol. 2000, 10: 125-144.

PubMedGoogle Scholar

Wang BX, Rahbar R, Fish EN: Interferon: current status and future prospects in cancer therapy. J Interferon Cytokine Res. 2011, 31: 545-552.

PubMedGoogle Scholar

Djaldetti M, Bessler H: Modulators affecting the immune dialogue between human immune and colon cancer cells. World J Gastrointest Oncol. 2014, 6: 129-138.

PubMedCentralPubMedGoogle Scholar

Sampson JH, Archer GE, Ashley DM, Fuchs HE, Hale LP, Dranoff G, Bigner DD: Subcutaneous vaccination with irradiated, cytokine-producing tumor cells stimulates CD8+ cell-mediated immunity against tumors located in the “immunologically privileged” central nervous system. Proc Natl Acad Sci U S A. 1996, 93: 10399-10404.

PubMedCentralPubMedGoogle Scholar

Wakimoto H, Abe J, Tsunoda R, Aoyagi M, Hirakawa K, Hamada H: Intensified antitumor immunity by a cancer vaccine that produces granulocyte-macrophage colony-stimulating factor plus interleukin 4. Cancer Res. 1996, 56: 1828-1833.

PubMedGoogle Scholar

Belardelli F, Gresser I: The neglected role of type I interferon in the T-cell response: implications for its clinical use. Immunol Today. 1996, 17: 369-372.

PubMedGoogle Scholar

Qin XQ, Tao N, Dergay A, Moy P, Fawell S, Davis A, Wilson JM, Barsoum J: Interferon-beta gene therapy inhibits tumor formation and causes regression of established tumors in immune-deficient mice. Proc Natl Acad Sci U S A. 1998, 95: 14411-14416.

PubMedCentralPubMedGoogle Scholar

Qin XQ, Beckham C, Brown JL, Lukashev M, Barsoum J: Human and mouse IFN-beta gene therapy exhibits different anti-tumor mechanisms in mouse models. Mol Ther. 2001, 4: 356-364.

PubMedGoogle Scholar

Chiocca EA, Smith KM, McKinney B, Palmer CA, Rosenfeld S, Lillehei K, Hamilton A, DeMasters BK, Judy K, Kirn D: A phase I trial of Ad.hIFN-beta gene therapy for glioma. Mol Ther. 2008, 16: 618-626.

PubMedGoogle Scholar

Mizuno M, Yoshida J: Effect of human interferon beta gene transfer upon human glioma, transplanted into nude mouse brain, involves induced natural killer cells. Cancer Immunol Immunother. 1998, 47: 227-232.

PubMedGoogle Scholar

Yagi K, Hayashi Y, Ishida N, Ohbayashi M, Ohishi N, Mizuno M, Yoshida J: Interferon-beta endogenously produced by intratumoral injection of cationic liposome-encapsulated gene: cytocidal effect on glioma transplanted into nude mouse brain. Biochem Mol Biol Int. 1994, 32: 167-171.

PubMedGoogle Scholar

Natsume A, Mizuno M, Ryuke Y, Yoshida J: Antitumor effect and cellular immunity activation by murine interferon-beta gene transfer against intracerebral glioma in mouse. Gene Ther. 1999, 6: 1626-1633.

PubMedGoogle Scholar

Natsume A, Tsujimura K, Mizuno M, Takahashi T, Yoshida J: IFN-beta gene therapy induces systemic antitumor immunity against malignant glioma. J Neurooncol. 2000, 47: 117-124.

PubMedGoogle Scholar

Yoshida J, Mizuno M, Fujii M, Kajita Y, Nakahara N, Hatano M, Saito R, Nobayashi M, Wakabayashi T: Human gene therapy for malignant gliomas (glioblastoma multiforme and anaplastic astrocytoma) by in vivo transduction with human interferon beta gene using cationic liposomes. Hum Gene Ther. 2004, 15: 77-86.

PubMedGoogle Scholar

Wakabayashi T, Natsume A, Hashizume Y, Fujii M, Mizuno M, Yoshida J: A phase I clinical trial of interferon-beta gene therapy for high-grade glioma: novel findings from gene expression profiling and autopsy. J Gene Med. 2008, 10: 329-339.

PubMedGoogle Scholar

Motomura K, Natsume A, Kishida Y, Higashi H, Kondo Y, Nakasu Y, Abe T, Namba H, Wakai K, Wakabayashi T: Benefits of interferon-beta and temozolomide combination therapy for newly diagnosed primary glioblastoma with the unmethylated MGMT promoter: a multicenter study. Cancer. 2011, 117: 1721-1730.

PubMedGoogle Scholar

Schroder K, Hertzog PJ, Ravasi T, Hume DA: Interferon-gamma: an overview of signals, mechanisms and functions. J Leukoc Biol. 2004, 75: 163-189.

PubMedGoogle Scholar

Knupfer MM, Poppenborg H, Van Gool S, Domula M, Wolff JE: Interferon-gamma inhibits proliferation and adhesion of T98G human malignant glioma cells in vitro. Klin Padiatr. 1997, 209: 271-274.

PubMedGoogle Scholar

Ehtesham M, Samoto K, Kabos P, Acosta FL, Gutierrez MA, Black KL, Yu JS: Treatment of intracranial glioma with in situ interferon-gamma and tumor necrosis factor-alpha gene transfer. Cancer Gene Ther. 2002, 9: 925-934.

PubMedGoogle Scholar

Enderlin M, Kleinmann EV, Struyf S, Buracchi C, Vecchi A, Kinscherf R, Kiessling F, Paschek S, Sozzani S, Rommelaere J, Cornelis JJ, Van Damme J, Dinsart C: TNF-alpha and the IFN-gamma-inducible protein 10 (IP-10/CXCL-10) delivered by parvoviral vectors act in synergy to induce antitumor effects in mouse glioblastoma. Cancer Gene Ther. 2009, 16: 149-160.

PubMedGoogle Scholar

Sidky YA, Borden EC: Inhibition of angiogenesis by interferons: effects on tumor- and lymphocyte-induced vascular responses. Cancer Res. 1987, 47: 5155-5161.

PubMedGoogle Scholar

Einhorn S, Grander D: Why do so many cancer patients fail to respond to interferon therapy?. J Interferon Cytokine Res. 1996, 16: 275-281.

PubMedGoogle Scholar

Grander D, Einhorn S: Interferon and malignant disease–how does it work and why doesn’t it always?. Acta Oncol. 1998, 37: 331-338.

PubMedGoogle Scholar

Colombo MP, Trinchieri G: Interleukin-12 in anti-tumor immunity and immunotherapy. Cytokine Growth Factor Rev. 2002, 13: 155-168.

PubMedGoogle Scholar

Ma X, Chow JM, Gri G, Carra G, Gerosa F, Wolf SF, Dzialo R, Trinchieri G: The interleukin 12 p40 gene promoter is primed by interferon gamma in monocytic cells. J Exp Med. 1996, 183: 147-157.

PubMedGoogle Scholar

Chen B, Timiryasova TM, Andres ML, Kajioka EH, Dutta-Roy R, Gridley DS, Fodor I: Evaluation of combined vaccinia virus-mediated antitumor gene therapy with p53, IL-2, and IL-12 in a glioma model. Cancer Gene Ther. 2000, 7: 1437-1447.

PubMedGoogle Scholar

Chiu TL, Wang MJ, Su CC: The treatment of glioblastoma multiforme through activation of microglia and TRAIL induced by rAAV2-mediated IL-12 in a syngeneic rat model. J Biomed Sci. 2012, 19: 45-

PubMedCentralPubMedGoogle Scholar

Hellums EK, Markert JM, Parker JN, He B, Perbal B, Roizman B, Whitley RJ, Langford CP, Bharara S, Gillespie GY: Increased efficacy of an interleukin-12-secreting herpes simplex virus in a syngeneic intracranial murine glioma model. Neuro Oncol. 2005, 7: 213-224.

PubMedCentralPubMedGoogle Scholar

Markert JM, Cody JJ, Parker JN, Coleman JM, Price KH, Kern ER, Quenelle DC, Lakeman AD, Schoeb TR, Palmer CA, Cartner SC, Gillespie GY, Whitley RJ: Preclinical evaluation of a genetically engineered herpes simplex virus expressing interleukin-12. J Virol. 2012, 86: 5304-5313.

PubMedCentralPubMedGoogle Scholar

Colombo F, Barzon L, Franchin E, Pacenti M, Pinna V, Danieli D, Zanusso M, Palu G: Combined HSV-TK/IL-2 gene therapy in patients with recurrent glioblastoma multiforme: biological and clinical results. Cancer Gene Ther. 2005, 12: 835-848.

PubMedGoogle Scholar

Puri RK, Leland P, Kreitman RJ, Pastan I: Human neurological cancer cells express interleukin-4 (IL-4) receptors which are targets for the toxic effects of IL4-Pseudomonas exotoxin chimeric protein. Int J Cancer. 1994, 58: 574-581.

PubMedGoogle Scholar

Hu-Li J, Shevach EM, Mizuguchi J, Ohara J, Mosmann T, Paul WE: B cell stimulatory factor 1 (interleukin 4) is a potent costimulant for normal resting T lymphocytes. J Exp Med. 1987, 165: 157-172.

PubMedGoogle Scholar

Kawakami Y, Rosenberg SA, Lotze MT: Interleukin 4 promotes the growth of tumor-infiltrating lymphocytes cytotoxic for human autologous melanoma. J Exp Med. 1988, 168: 2183-2191.

PubMedGoogle Scholar

Noelle R, Krammer PH, Ohara J, Uhr JW, Vitetta ES: Increased expression of Ia antigens on resting B cells: an additional role for B-cell growth factor. Proc Natl Acad Sci U S A. 1984, 81: 6149-6153.

PubMedCentralPubMedGoogle Scholar

Golumbek PT, Lazenby AJ, Levitsky HI, Jaffee LM, Karasuyama H, Baker M, Pardoll DM: Treatment of established renal cancer by tumor cells engineered to secrete interleukin-4. Science. 1991, 254: 713-716.

PubMedGoogle Scholar

Tepper RI, Pattengale PK, Leder P: Murine interleukin-4 displays potent anti-tumor activity in vivo. Cell. 1989, 57: 503-512.

PubMedGoogle Scholar

Yu JS, Wei MX, Chiocca EA, Martuza RL, Tepper RI: Treatment of glioma by engineered interleukin 4-secreting cells. Cancer Res. 1993, 53: 3125-3128.

PubMedGoogle Scholar

Wei MX, Tamiya T, Hurford RK, Boviatsis EJ, Tepper RI, Chiocca EA: Enhancement of interleukin-4-mediated tumor regression in athymic mice by in situ retroviral gene transfer. Hum Gene Ther. 1995, 6: 437-443.

PubMedGoogle Scholar

Okada H, Giezeman-Smits KM, Tahara H, Attanucci J, Fellows WK, Lotze MT, Chambers WH, Bozik ME: Effective cytokine gene therapy against an intracranial glioma using a retrovirally transduced IL-4 plus HSVtk tumor vaccine. Gene Ther. 1999, 6: 219-226.

PubMedGoogle Scholar

Okada H, Pollack IF, Lotze MT, Lunsford LD, Kondziolka D, Lieberman F, Schiff D, Attanucci J, Edington H, Chambers W, Robbins P, Baar J, Kinzler D, Whiteside T, Elder E: Gene therapy of malignant gliomas: a phase I study of IL-4-HSV-TK gene-modified autologous tumor to elicit an immune response. Hum Gene Ther. 2000, 11: 637-653.

PubMedGoogle Scholar

Prives C, Hall PA: The p53 pathway. J Pathol. 1999, 187: 112-126.

PubMedGoogle Scholar

Vogelstein B, Lane D, Levine AJ: Surfing the p53 network. Nature. 2000, 408: 307-310.

PubMedGoogle Scholar

Vecil GG, Lang FF: Clinical trials of adenoviruses in brain tumors: a review of Ad-p53 and oncolytic adenoviruses. J Neurooncol. 2003, 65: 237-246.

PubMedGoogle Scholar

Lane DP: Cancer. p53, guardian of the genome. Nature. 1992, 358: 15-16.

PubMedGoogle Scholar

Levine AJ: p53, the cellular gatekeeper for growth and division. Cell. 1997, 88: 323-331.

PubMedGoogle Scholar

Woods DB, Vousden KH: Regulation of p53 function. Exp Cell Res. 2001, 264: 56-66.

PubMedGoogle Scholar

Kanu OO, Hughes B, Di C, Lin N, Fu J, Bigner DD, Yan H, Adamson C: Glioblastoma multiforme oncogenomics and signaling pathways. Clin Med Oncol. 2009, 3: 39-52.

PubMedCentralPubMedGoogle Scholar

Bogler O, Huang HJ, Kleihues P, Cavenee WK: The p53 gene and its role in human brain tumors. Glia. 1995, 15: 308-327.

PubMedGoogle Scholar

England B, Huang T, Karsy M: Current understanding of the role and targeting of tumor suppressor p53 in glioblastoma multiforme. Tumour Biol. 2013, 34: 2063-2074.

PubMedGoogle Scholar

Li H, Alonso-Vanegas M, Colicos MA, Jung SS, Lochmuller H, Sadikot AF, Snipes GJ, Seth P, Karpati G, Nalbantoglu J: Intracerebral adenovirus-mediated p53 tumor suppressor gene therapy for experimental human glioma. Clin Cancer Res. 1999, 5: 637-642.

PubMedGoogle Scholar

Gomez-Manzano C, Fueyo J, Kyritsis AP, Steck PA, Roth JA, McDonnell TJ, Steck KD, Levin VA, Yung WK: Adenovirus-mediated transfer of the p53 gene produces rapid and generalized death of human glioma cells via apoptosis. Cancer Res. 1996, 56: 694-699.

PubMedGoogle Scholar

Lang FF, Yung WK, Raju U, Libunao F, Terry NH, Tofilon PJ: Enhancement of radiosensitivity of wild-type p53 human glioma cells by adenovirus-mediated delivery of the p53 gene. J Neurosurg. 1998, 89: 125-132.

PubMedGoogle Scholar

Shono T, Tofilon PJ, Schaefer TS, Parikh D, Liu TJ, Lang FF: Apoptosis induced by adenovirus-mediated p53 gene transfer in human glioma correlates with site-specific phosphorylation. Cancer Res. 2002, 62: 1069-1076.

PubMedGoogle Scholar

Li H, Lochmuller H, Yong VW, Karpati G, Nalbantoglu J: Adenovirus-mediated wild-type p53 gene transfer and overexpression induces apoptosis of human glioma cells independent of endogenous p53 status. J Neuropathol Exp Neurol. 1997, 56: 872-878.

PubMedGoogle Scholar

Kock H, Harris MP, Anderson SC, Machemer T, Hancock W, Sutjipto S, Wills KN, Gregory RJ, Shepard HM, Westphal M, Maneval DC: Adenovirus-mediated p53 gene transfer suppresses growth of human glioblastoma cells in vitro and in vivo. Int J Cancer. 1996, 67: 808-815.

PubMedGoogle Scholar

Cirielli C, Inyaku K, Capogrossi MC, Yuan X, Williams JA: Adenovirus-mediated wild-type p53 expression induces apoptosis and suppresses tumorigenesis of experimental intracranial human malignant glioma. J Neurooncol. 1999, 43: 99-108.

PubMedGoogle Scholar

Badie B, Kramar MH, Lau R, Boothman DA, Economou JS, Black KL: Adenovirus-mediated p53 gene delivery potentiates the radiation-induced growth inhibition of experimental brain tumors. J Neurooncol. 1998, 37: 217-222.

PubMedGoogle Scholar

Van Meir EG, Polverini PJ, Chazin VR, Su Huang HJ, de Tribolet N, Cavenee WK: Release of an inhibitor of angiogenesis upon induction of wild type p53 expression in glioblastoma cells. Nat Genet. 1994, 8: 171-176.

PubMedGoogle Scholar

Badie B, Drazan KE, Kramar MH, Shaked A, Black KL: Adenovirus-mediated p53 gene delivery inhibits 9L glioma growth in rats. Neurol Res. 1995, 17: 209-216.

PubMedGoogle Scholar

Biroccio A, Bufalo DD, Ricca A, D’Angelo C, D’Orazi G, Sacchi A, Soddu S, Zupi G: Increase of BCNU sensitivity by wt-p53 gene therapy in glioblastoma lines depends on the administration schedule. Gene Ther. 1999, 6: 1064-1072.

PubMedGoogle Scholar

Shinoura N, Yoshida Y, Asai A, Kirino T, Hamada H: Adenovirus-mediated transfer of p53 and Fas ligand drastically enhances apoptosis in gliomas. Cancer Gene Ther. 2000, 7: 732-738.

PubMedGoogle Scholar

Pan D, Wei X, Liu M, Feng S, Tian X, Feng X, Zhang X: Adenovirus mediated transfer of p53, GM-CSF and B7-1 suppresses growth and enhances immunogenicity of glioma cells. Neurol Res. 2010, 32: 502-509.

PubMedGoogle Scholar

Lang FF, Bruner JM, Fuller GN, Aldape K, Prados MD, Chang S, Berger MS, McDermott MW, Kunwar SM, Junck LR, Chandler W, Zwiebel JA, Kaplan RS, Yung WK: Phase I trial of adenovirus-mediated p53 gene therapy for recurrent glioma: biological and clinical results. J Clin Oncol. 2003, 21: 2508-2518.

PubMedGoogle Scholar

Hong YK, Joe YA, Yang YJ, Lee KS, Son BC, Jeun SS, Chung DS, Cho KK, Park CK, Kim MC, Kim HK, Yung WK, Kang JK: Potentials and limitations of adenovirus-p53 gene therapy for brain tumors. J Korean Med Sci. 2000, 15: 315-322.

PubMedCentralPubMedGoogle Scholar

Chintala SK, Fueyo J, Gomez-Manzano C, Venkaiah B, Bjerkvig R, Yung WK, Sawaya R, Kyritsis AP, Rao JS: Adenovirus-mediated p16/CDKN2 gene transfer suppresses glioma invasion in vitro. Oncogene. 1997, 15: 2049-2057.

PubMedGoogle Scholar

Dunn GP, Rinne ML, Wykosky J, Genovese G, Quayle SN, Dunn IF, Agarwalla PK, Chheda MG, Campos B, Wang A, Brennan C, Ligon KL, Furnari F, Cavenee WK, Depinho RA, Chin L, Hahn WC: Emerging insights into the molecular and cellular basis of glioblastoma. Genes Dev. 2012, 26: 756-784.

PubMedCentralPubMedGoogle Scholar

Lu W, Zhou X, Hong B, Liu J, Yue Z: Suppression of invasion in human U87 glioma cells by adenovirus-mediated co-transfer of TIMP-2 and PTEN gene. Cancer Lett. 2004, 214: 205-213.

PubMedGoogle Scholar

Abe T, Terada K, Wakimoto H, Inoue R, Tyminski E, Bookstein R, Basilion JP, Chiocca EA: PTEN decreases in vivo vascularization of experimental gliomas in spite of proangiogenic stimuli. Cancer Res. 2003, 63: 2300-2305.

PubMedGoogle Scholar

Published
2019-01-31
Section
Review