Relevance of Wnt signaling for osteoanabolic therapy

  • Timur Yorgan
  • Thorsten Schinke
Keywords: Bone remodeling, β-Catenin, Lrp5, Osteoblast, Sost, Wnt

Abstract

The Wnt signaling pathway is long known to play fundamental roles in various aspects of embryonic development, but also in several homeostatic processes controlling tissue functions in adults. The complexity of this system is best underscored by the fact that the mammalian genome encodes for 19 different Wnt ligands, most but not all of them acting through an intracellular stabilization of β-catenin, representing the key molecule within the so-called canonical Wnt signaling pathway. Wnt ligands primarily bind to 10 different serpentine receptors of the Fzd family, and this binding can be positively or negatively regulated by additional molecules present at the surface of the respective target cells. One of these molecules is the transmembrane protein Lrp5, which has been shown to act as a Wnt co-receptor. In 2001, Lrp5, and thereby Wnt signaling, entered center stage in the research area of bone remodeling, a homeostatic process controlling bone mass, whose disturbance causes osteoporosis, one of the most prevalent disorders worldwide. More specifically, it was found that inactivating mutations of the human LRP5 gene cause osteoporosis-pseudoglioma syndrome, a rare genetic disorder characterized by impaired bone formation and persistence of hyaloid vessels in the eyeballs. In addition, activating LRP5 mutations were identified in individuals with osteosclerosis, a high bone mass condition characterized by excessive bone formation. Especially explained by the lack of cost-effective osteoanabolic treatment options, these findings had an immediate impact on the research regarding the bone-forming cell type, i.e. the osteoblast, whose differentiation and function is apparently controlled by Wnt signaling. This review summarizes the most important results obtained in a large number of studies, involving tissue culture experiments, mouse models and human patients. While there are still many open questions regarding the precise molecular interactions controlling Wnt signaling in osteoblasts, it is obvious that understanding this pathway is a key to optimize the therapeutic strategies for treating various skeletal disorders, including osteoporosis.

Downloads

Download data is not yet available.

References

Nusse R, Varmus HE: Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell. 1982, 31: 99-109.

CrossRefPubMedGoogle Scholar

Nusslein-Volhard C, Wieschaus E: Mutations affecting segment number and polarity in Drosophila. Nature. 1980, 287: 795-801.

CrossRefPubMedGoogle Scholar

Saito-Diaz K, Chen TW, Wang X, Thorne CA, Wallace HA, Page-McCaw A, Lee E: The way Wnt works: components and mechanism. Growth Factors. 2013, 31: 1-31.

PubMedCentralCrossRefPubMedGoogle Scholar

Banziger C, Soldini D, Schutt C, Zipperlen P, Hausmann G, Basler K: Wntless, a conserved membrane protein dedicated to the secretion of Wnt proteins from signaling cells. Cell. 2006, 125: 509-522.

CrossRefPubMedGoogle Scholar

Zhai L, Chaturvedi D, Cumberledge S: Drosophila wnt-1 undergoes a hydrophobic modification and is targeted to lipid rafts, a process that requires porcupine. J Biol Chem. 2004, 279: 33220-33227.

CrossRefPubMedGoogle Scholar

Port F, Basler K: Wnt trafficking: new insights into Wnt maturation, secretion and spreading. Traffic. 2010, 11: 1265-1271.

CrossRefPubMedGoogle Scholar

Clevers H, Nusse R: Wnt/beta-catenin signaling and disease. Cell. 2012, 149: 1192-1205.

CrossRefPubMedGoogle Scholar

Wang HY, Liu T, Malbon CC: Structure-function analysis of Frizzleds. Cell Signal. 2006, 18: 934-941.

CrossRefPubMedGoogle Scholar

Tamai K, Semenov M, Kato Y, Spokony R, Liu C, Katsuyama Y, Hess F, Saint-Jeannet JP, He X: LDL-receptor-related proteins in Wnt signal transduction. Nature. 2000, 407: 530-535.

CrossRefPubMedGoogle Scholar

Pinson KI, Brennan J, Monkley S, Avery BJ, Skarnes WC: An LDL-receptor-related protein mediates Wnt signalling in mice. Nature. 2000, 407: 535-538.

CrossRefPubMedGoogle Scholar

Wehrli M, Dougan ST, Caldwell K, O'Keefe L, Schwartz S, Vaizel-Ohayon D, Schejter E, Tomlinson A, DiNardo S: arrow encodes an LDL-receptor-related protein essential for Wingless signalling. Nature. 2000, 407: 527-530.

CrossRefPubMedGoogle Scholar

Xu Q, Wang Y, Dabdoub A, Smallwood PM, Williams J, Woods C, Kelley MW, Jiang L, Tasman W, Zhang K, Nathans J: Vascular development in the retina and inner ear: control by Norrin and Frizzled-4, a high-affinity ligand-receptor pair. Cell. 2004, 116: 883-895.

CrossRefPubMedGoogle Scholar

Kazanskaya O, Glinka A, del Barco Barrantes I, Stannek P, Niehrs C, Wu W: R-Spondin2 is a secreted activator of Wnt/beta-catenin signaling and is required for Xenopus myogenesis. Dev Cell. 2004, 7: 525-534.

CrossRefPubMedGoogle Scholar

Bovolenta P, Esteve P, Ruiz JM, Cisneros E, Lopez-Rios J: Beyond Wnt inhibition: new functions of secreted Frizzled-related proteins in development and disease. J Cell Sci. 2008, 121: 737-746.

CrossRefPubMedGoogle Scholar

Semenov MV, Tamai K, Brott BK, Kuhl M, Sokol S, He X: Head inducer Dickkopf-1 is a ligand for Wnt coreceptor LRP6. Curr Biol. 2001, 11: 951-961.

CrossRefPubMedGoogle Scholar

Balemans W, Ebeling M, Patel N, Van Hul E, Olson P, Dioszegi M, Lacza C, Wuyts W, Van Den Ende J, Willems P, Paes-Alves AF, Hill S, Bueno M, Ramos FJ, Tacconi P, Dikkers FG, Stratakis C, Lindpainter K, Vickery B, Foernzler D, Van Hul W: Increased bone density in sclerosteosis is due to the deficiency of a novel secreted protein (SOST). Hum Mol Genet. 2001, 10: 537-543.

CrossRefPubMedGoogle Scholar

Balemans W, Patel N, Ebeling M, Van Hul E, Wuyts W, Lacza C, Dioszegi M, Dikkers FG, Hildering P, Willems PJ, Verheij JB, Lindpaintner K, Vickery B, Foernzler D, Van Hul W: Identification of a 52 kb deletion downstream of the SOST gene in patients with van Buchem disease. J Med Genet. 2002, 39: 91-97.

PubMedCentralCrossRefPubMedGoogle Scholar

Clevers H: Wnt/beta-catenin signaling in development and disease. Cell. 2006, 127: 469-480.

CrossRefPubMedGoogle Scholar

Yan D, Wiesmann M, Rohan M, Chan V, Jefferson AB, Guo L, Sakamoto D, Caothien RH, Fuller JH, Reinhard C, Garcia PD, Randazzo FM, Escobedo J, Fantl WJ, Williams LT: Elevated expression of axin2 and hnkd mRNA provides evidence that Wnt/beta -catenin signaling is activated in human colon tumors. Proc Natl Acad Sci U S A. 2001, 98: 14973-14978.

PubMedCentralCrossRefPubMedGoogle Scholar

Jho EH, Zhang T, Domon C, Joo CK, Freund JN, Costantini F: Wnt/beta-catenin/Tcf signaling induces the transcription of Axin2, a negative regulator of the signaling pathway. Mol Cell Biol. 2002, 22: 1172-1183.

PubMedCentralCrossRefPubMedGoogle Scholar

Simons M, Mlodzik M: Planar cell polarity signaling: from fly development to human disease. Annu Rev Genet. 2008, 42: 517-540.

PubMedCentralCrossRefPubMedGoogle Scholar

Kikuchi A, Yamamoto H, Sato A, Matsumoto S: Wnt5a: its signalling, functions and implication in diseases. Acta Physiol (Oxf). 2012, 204: 17-33.

CrossRefGoogle Scholar

Johnell O, Kanis JA: An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int. 2006, 17: 1726-1733.

CrossRefPubMedGoogle Scholar

Kanis JA, Oden A, McCloskey EV, Johansson H, Wahl DA, Cooper C: A systematic review of hip fracture incidence and probability of fracture worldwide. Osteoporos Int. 2012, 23: 2239-2256.

PubMedCentralCrossRefPubMedGoogle Scholar

Otto F, Thornell AP, Crompton T, Denzel A, Gilmour KC, Rosewell IR, Stamp GW, Beddington RS, Mundlos S, Olsen BR, Selby PB, Owen MJ: Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell. 1997, 89: 765-771.

CrossRefPubMedGoogle Scholar

Komori T, Yagi H, Nomura S, Yamaguchi A, Sasaki K, Deguchi K, Shimizu Y, Bronson RT, Gao YH, Inada M, Sato M, Okamoto R, Kitamura Y, Yoshiki S, Kishimoto T: Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell. 1997, 89: 755-764.

CrossRefPubMedGoogle Scholar

Nakashima K, Zhou X, Kunkel G, Zhang Z, Deng JM, Behringer RR, de Crombrugghe B: The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell. 2002, 108: 17-29.

CrossRefPubMedGoogle Scholar

Rowe PS: Regulation of bone-renal mineral and energy metabolism: the PHEX, FGF23, DMP1, MEPE ASARM pathway. Crit Rev Eukaryot Gene Expr. 2012, 22: 61-86.

PubMedCentralCrossRefPubMedGoogle Scholar

Bellido T: Osteocyte-driven bone remodeling. Calcif Tissue Int. 2014, 94: 25-34.

PubMedCentralCrossRefPubMedGoogle Scholar

Glass DA, Bialek P, Ahn JD, Starbuck M, Patel MS, Clevers H, Taketo MM, Long F, McMahon AP, Lang RA, Karsenty G: Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation. Dev Cell. 2005, 8: 751-764.

CrossRefPubMedGoogle Scholar

Martin TJ: Historically significant events in the discovery of RANK/RANKL/OPG. World J Orthop. 2013, 4: 186-197.

PubMedCentralCrossRefPubMedGoogle Scholar

Das S, Crockett JC: Osteoporosis - a current view of pharmacological prevention and treatment. Drug Des Devel Ther. 2013, 7: 435-448.

PubMedCentralPubMedGoogle Scholar

Smith MR, Egerdie B, Hernandez Toriz N, Feldman R, Tammela TL, Saad F, Heracek J, Szwedowski M, Ke C, Kupic A, Leder BZ, Goessl C: Denosumab in men receiving androgen-deprivation therapy for prostate cancer. N Engl J Med. 2009, 361: 745-755.

PubMedCentralCrossRefPubMedGoogle Scholar

Cummings SR, San Martin J, McClung MR, Siris ES, Eastell R, Reid IR, Delmas P, Zoog HB, Austin M, Wang A, Kutilek S, Adami S, Zanchetta J, Libanati C, Siddhanti S, Christiansen C: Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N Engl J Med. 2009, 361: 756-765.

CrossRefPubMedGoogle Scholar

Greenspan SL, Bone HG, Ettinger MP, Hanley DA, Lindsay R, Zanchetta JR, Blosch CM, Mathisen AL, Morris SA, Marriott TB: Effect of recombinant human parathyroid hormone (1–84) on vertebral fracture and bone mineral density in postmenopausal women with osteoporosis: a randomized trial. Ann Intern Med. 2007, 146: 326-339.

CrossRefPubMedGoogle Scholar

Neer RM, Arnaud CD, Zanchetta JR, Prince R, Gaich GA, Reginster JY, Hodsman AB, Eriksen EF, Ish-Shalom S, Genant HK, Wang O, Mitlak BH: Effect of parathyroid hormone (1–34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med. 2001, 344: 1434-1441.

CrossRefPubMedGoogle Scholar

Shane E, Burr D, Ebeling PR, Abrahamsen B, Adler RA, Brown TD, Cheung AM, Cosman F, Curtis JR, Dell R, Dempster D, Einhorn TA, Genant HK, Geusens P, Klaushofer K, Koval K, Lane JM, McKiernan F, McKinney R, Ng A, Nieves J, O'Keefe R, Papapoulos S, Sen HT, van der Meulen MC, Weinstein RS, Whyte M: Atypical subtrochanteric and diaphyseal femoral fractures: report of a task force of the American Society for Bone and Mineral Research. J Bone Miner Res. 2010, 25: 2267-2294.

CrossRefPubMedGoogle Scholar

Odvina CV, Zerwekh JE, Rao DS, Maalouf N, Gottschalk FA, Pak CY: Severely suppressed bone turnover: a potential complication of alendronate therapy. J Clin Endocrinol Metab. 2005, 90: 1294-1301.

CrossRefPubMedGoogle Scholar

Visekruna M, Wilson D, McKiernan FE: Severely suppressed bone turnover and atypical skeletal fragility. J Clin Endocrinol Metab. 2008, 93: 2948-2952.

CrossRefPubMedGoogle Scholar

Bjorgul K, Reigstad A: Atypical fracture of the ulna associated with alendronate use. Acta Orthop. 2011, 82: 761-763.

PubMedCentralCrossRefPubMedGoogle Scholar

Ang BF, Koh JS, Ng AC, Howe TS: Bilateral ulna fractures associated with bisphosphonate therapy. Osteoporos Int. 2013, 24: 1523-1525.

CrossRefPubMedGoogle Scholar

Rachner TD, Hadji P, Hofbauer LC: Novel therapies in benign and malignant bone diseases. Pharmacol Ther. 2012, 134: 338-344.

CrossRefPubMedGoogle Scholar

Gong Y, Vikkula M, Boon L, Liu J, Beighton P, Ramesar R, Peltonen L, Somer H, Hirose T, Dallapiccola B, De Paepe A, Swoboda W, Zabel B, Superti-Furga A, Steinmann B, Brunner HG, Jans A, Boles RG, Adkins W, van den Boogaard MJ, Olsen BR, Warman ML: Osteoporosis-pseudoglioma syndrome, a disorder affecting skeletal strength and vision, is assigned to chromosome region 11q12-13. Am J Hum Genet. 1996, 59: 146-151.

PubMedCentralPubMedGoogle Scholar

Johnson ML, Gong G, Kimberling W, Recker SM, Kimmel DB, Recker RB: Linkage of a gene causing high bone mass to human chromosome 11 (11q12-13). Am J Hum Genet. 1997, 60: 1326-1332.

PubMedCentralCrossRefPubMedGoogle Scholar

Frontali M, Stomeo C, Dallapiccola B: Osteoporosis-pseudoglioma syndrome: report of three affected sibs and an overview. Am J Med Genet. 1985, 22: 35-47.

CrossRefPubMedGoogle Scholar

Boyden LM, Mao J, Belsky J, Mitzner L, Farhi A, Mitnick MA, Wu D, Insogna K, Lifton RP: High bone density due to a mutation in LDL-receptor-related protein 5. N Engl J Med. 2002, 346: 1513-1521.

CrossRefPubMedGoogle Scholar

Gong Y, Slee RB, Fukai N, Rawadi G, Roman-Roman S, Reginato AM, Wang H, Cundy T, Glorieux FH, Lev D, Zacharin M, Oexle K, Marcelino J, Suwairi W, Heeger S, Sabatakos G, Apte S, Adkins WN, Allgrove J, Arslan-Kirchner M, Batch JA, Beighton P, Black GC, Boles RG, Boon LM, Borrone C, Brunner HG, Carle GF, Dallapiccola B, De P: LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell. 2001, 107: 513-523.

CrossRefPubMedGoogle Scholar

Little RD, Carulli JP, Del Mastro RG, Dupuis J, Osborne M, Folz C, Manning SP, Swain PM, Zhao SC, Eustace B, Lappe MM, Spitzer L, Zweier S, Braunschweiger K, Benchekroun Y, Hu X, Adair R, Chee L, FitzGerald MG, Tulig C, Caruso A, Tzellas N, Bawa A, Franklin B, McGuire S, Nogues X, Gong G, Allen KM, Anisowicz A, Morales AJ: A mutation in the LDL receptor-related protein 5 gene results in the autosomal dominant high-bone-mass trait. Am J Hum Genet. 2002, 70: 11-19.

PubMedCentralCrossRefPubMedGoogle Scholar

Baron R, Kneissel M: WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat Med. 2013, 19: 179-192.

CrossRefPubMedGoogle Scholar

Kato M, Patel MS, Levasseur R, Lobov I, Chang BH, Glass DA, Hartmann C, Li L, Hwang TH, Brayton CF, Lang RA, Karsenty G, Chan L: Cbfa1-independent decrease in osteoblast proliferation, osteopenia, and persistent embryonic eye vascularization in mice deficient in Lrp5, a Wnt coreceptor. J Cell Biol. 2002, 157: 303-314.

PubMedCentralCrossRefPubMedGoogle Scholar

Babij P, Zhao W, Small C, Kharode Y, Yaworsky PJ, Bouxsein ML, Reddy PS, Bodine PV, Robinson JA, Bhat B, Marzolf J, Moran RA, Bex F: High bone mass in mice expressing a mutant LRP5 gene. J Bone Miner Res. 2003, 18: 960-974.

CrossRefPubMedGoogle Scholar

Morvan F, Boulukos K, Clement-Lacroix P, Roman Roman S, Suc-Royer I, Vayssiere B, Ammann P, Martin P, Pinho S, Pognonec P, Mollat P, Niehrs C, Baron R, Rawadi G: Deletion of a single allele of the Dkk1 gene leads to an increase in bone formation and bone mass. J Bone Miner Res. 2006, 21: 934-945.

CrossRefPubMedGoogle Scholar

Ai M, Holmen SL, Van Hul W, Williams BO, Warman ML: Reduced affinity to and inhibition by DKK1 form a common mechanism by which high bone mass-associated missense mutations in LRP5 affect canonical Wnt signaling. Mol Cell Biol. 2005, 25: 4946-4955.

PubMedCentralCrossRefPubMedGoogle Scholar

Li J, Sarosi I, Cattley RC, Pretorius J, Asuncion F, Grisanti M, Morony S, Adamu S, Geng Z, Qiu W, Kostenuik P, Lacey DL, Simonet WS, Bolon B, Qian X, Shalhoub V, Ominsky MS, Zhu Ke H, Li X, Richards WG: Dkk1-mediated inhibition of Wnt signaling in bone results in osteopenia. Bone. 2006, 39: 754-766.

CrossRefPubMedGoogle Scholar

Mao B, Wu W, Davidson G, Marhold J, Li M, Mechler BM, Delius H, Hoppe D, Stannek P, Walter C, Glinka A, Niehrs C: Kremen proteins are Dickkopf receptors that regulate Wnt/beta-catenin signalling. Nature. 2002, 417: 664-667.

CrossRefPubMedGoogle Scholar

Albers J, Keller J, Baranowsky A, Beil FT, Catala-Lehnen P, Schulze J, Amling M, Schinke T: Canonical Wnt signaling inhibits osteoclastogenesis independent of osteoprotegerin. J Cell Biol. 2013, 200: 537-549.

PubMedCentralCrossRefPubMedGoogle Scholar

Wei W, Zeve D, Suh JM, Wang X, Du Y, Zerwekh JE, Dechow PC, Graff JM, Wan Y: Biphasic and dosage-dependent regulation of osteoclastogenesis by beta-catenin. Mol Cell Biol. 2011, 31: 4706-4719.

PubMedCentralCrossRefPubMedGoogle Scholar

Otero K, Shinohara M, Zhao H, Cella M, Gilfillan S, Colucci A, Faccio R, Ross FP, Teitelbaum SL, Takayanagi H, Colonna M: TREM2 and beta-catenin regulate bone homeostasis by controlling the rate of osteoclastogenesis. J Immunol. 2012, 188: 2612-2621.

PubMedCentralCrossRefPubMedGoogle Scholar

Hill TP, Spater D, Taketo MM, Birchmeier W, Hartmann C: Canonical Wnt/beta-catenin signaling prevents osteoblasts from differentiating into chondrocytes. Dev Cell. 2005, 8: 727-738.

CrossRefPubMedGoogle Scholar

Guo X, Day TF, Jiang X, Garrett-Beal L, Topol L, Yang Y: Wnt/beta-catenin signaling is sufficient and necessary for synovial joint formation. Genes Dev. 2004, 18: 2404-2417.

PubMedCentralCrossRefPubMedGoogle Scholar

Holmen SL, Zylstra CR, Mukherjee A, Sigler RE, Faugere MC, Bouxsein ML, Deng L, Clemens TL, Williams BO: Essential role of beta-catenin in postnatal bone acquisition. J Biol Chem. 2005, 280: 21162-21168.

CrossRefPubMedGoogle Scholar

Kramer I, Halleux C, Keller H, Pegurri M, Gooi JH, Weber PB, Feng JQ, Bonewald LF, Kneissel M: Osteocyte Wnt/beta-catenin signaling is required for normal bone homeostasis. Mol Cell Biol. 2010, 30: 3071-3085.

PubMedCentralCrossRefPubMedGoogle Scholar

Yadav VK, Ryu JH, Suda N, Tanaka KF, Gingrich JA, Schutz G, Glorieux FH, Chiang CY, Zajac JD, Insogna KL, Mann JJ, Hen R, Ducy P, Karsenty G: Lrp5 controls bone formation by inhibiting serotonin synthesis in the duodenum. Cell. 2008, 135: 825-837.

PubMedCentralCrossRefPubMedGoogle Scholar

Cui Y, Niziolek PJ, MacDonald BT, Zylstra CR, Alenina N, Robinson DR, Zhong Z, Matthes S, Jacobsen CM, Conlon RA, Brommage R, Liu Q, Mseeh F, Powell DR, Yang QM, Zambrowicz B, Gerrits H, Gossen JA, He X, Bader M, Williams BO, Warman ML, Robling AG: Lrp5 functions in bone to regulate bone mass. Nat Med. 2011, 17: 684-691.

PubMedCentralCrossRefPubMedGoogle Scholar

Albers J, Schulze J, Beil FT, Gebauer M, Baranowsky A, Keller J, Marshall RP, Wintges K, Friedrich FW, Priemel M, Schilling AF, Rueger JM, Cornils K, Fehse B, Streichert T, Sauter G, Jakob F, Insogna KL, Pober B, Knobeloch KP, Francke U, Amling M, Schinke T: Control of bone formation by the serpentine receptor Frizzled-9. J Cell Biol. 2011, 192: 1057-1072.

PubMedCentralCrossRefPubMedGoogle Scholar

Keupp K, Beleggia F, Kayserili H, Barnes AM, Steiner M, Semler O, Fischer B, Yigit G, Janda CY, Becker J, Breer S, Altunoglu U, Grunhagen J, Krawitz P, Hecht J, Schinke T, Makareeva E, Lausch E, Cankaya T, Caparros-Martin JA, Lapunzina P, Temtamy S, Aglan M, Zabel B, Eysel P, Koerber F, Leikin S, Garcia KC, Netzer C, Schonau E: Mutations in WNT1 cause different forms of bone fragility. Am J Hum Genet. 2013, 92: 565-574.

PubMedCentralCrossRefPubMedGoogle Scholar

Velazquez-Cruz R, Garcia-Ortiz H, Castillejos-Lopez M, Quiterio M, Valdes-Flores M, Orozco L, Villarreal-Molina T, Salmeron J: WNT3A gene polymorphisms are associated with bone mineral density variation in postmenopausal mestizo women of an urban Mexican population: findings of a pathway-based high-density single nucleotide screening. Age (Dordr). 2014, 36: 9635-

CrossRefGoogle Scholar

Bennett CN, Longo KA, Wright WS, Suva LJ, Lane TF, Hankenson KD, MacDougald OA: Regulation of osteoblastogenesis and bone mass by Wnt10b. Proc Natl Acad Sci U S A. 2005, 102: 3324-3329.

PubMedCentralCrossRefPubMedGoogle Scholar

Bennett CN, Ouyang H, Ma YL, Zeng Q, Gerin I, Sousa KM, Lane TF, Krishnan V, Hankenson KD, MacDougald OA: Wnt10b increases postnatal bone formation by enhancing osteoblast differentiation. J Bone Miner Res. 2007, 22: 1924-1932.

CrossRefPubMedGoogle Scholar

Stevens JR, Miranda-Carboni GA, Singer MA, Brugger SM, Lyons KM, Lane TF: Wnt10b deficiency results in age-dependent loss of bone mass and progressive reduction of mesenchymal progenitor cells. J Bone Miner Res. 2010, 25: 2138-2147.

PubMedCentralCrossRefPubMedGoogle Scholar

Garcia-Ibarbia C, Perez-Nunez MI, Olmos JM, Valero C, Perez-Aguilar MD, Hernandez JL, Zarrabeitia MT, Gonzalez-Macias J, Riancho JA: Missense polymorphisms of the WNT16 gene are associated with bone mass, hip geometry and fractures. Osteoporos Int. 2013, 24: 2449-2454.

CrossRefPubMedGoogle Scholar

Laine CM, Joeng KS, Campeau PM, Kiviranta R, Tarkkonen K, Grover M, Lu JT, Pekkinen M, Wessman M, Heino TJ, Nieminen-Pihala V, Aronen M, Laine T, Kroger H, Cole WG, Lehesjoki AE, Nevarez L, Krakow D, Curry CJ, Cohn DH, Gibbs RA, Lee BH, Makitie O: WNT1 mutations in early-onset osteoporosis and osteogenesis imperfecta. N Engl J Med. 2013, 368: 1809-1816.

PubMedCentralCrossRefPubMedGoogle Scholar

Pyott SM, Tran TT, Leistritz DF, Pepin MG, Mendelsohn NJ, Temme RT, Fernandez BA, Elsayed SM, Elsobky E, Verma I, Nair S, Turner EH, Smith JD, Jarvik GP, Byers PH: WNT1 mutations in families affected by moderately severe and progressive recessive osteogenesis imperfecta. Am J Hum Genet. 2013, 92: 590-597.

PubMedCentralCrossRefPubMedGoogle Scholar

Thomas KR, Musci TS, Neumann PE, Capecchi MR: Swaying is a mutant allele of the proto-oncogene Wnt-1. Cell. 1991, 67: 969-976.

CrossRefPubMedGoogle Scholar

Joeng KS, Lee YC, Jiang MM, Bertin TK, Chen Y, Abraham AM, Ding H, Bi X, Ambrose CG, Lee BH: The swaying mouse as a model of osteogenesis imperfecta caused by WNT1 mutations. Hum Mol Genet. 2014, 23: 4035-4042.

PubMedCentralCrossRefPubMedGoogle Scholar

Li X, Ominsky MS, Niu QT, Sun N, Daugherty B, D'Agostin D, Kurahara C, Gao Y, Cao J, Gong J, Asuncion F, Barrero M, Warmington K, Dwyer D, Stolina M, Morony S, Sarosi I, Kostenuik PJ, Lacey DL, Simonet WS, Ke HZ, Paszty C: Targeted deletion of the sclerostin gene in mice results in increased bone formation and bone strength. J Bone Miner Res. 2008, 23: 860-869.

CrossRefPubMedGoogle Scholar

Winkler DG, Sutherland MK, Geoghegan JC, Yu C, Hayes T, Skonier JE, Shpektor D, Jonas M, Kovacevich BR, Staehling-Hampton K, Appleby M, Brunkow ME, Latham JA: Osteocyte control of bone formation via sclerostin, a novel BMP antagonist. EMBO J. 2003, 22: 6267-6276.

PubMedCentralCrossRefPubMedGoogle Scholar

Li X, Zhang Y, Kang H, Liu W, Liu P, Zhang J, Harris SE, Wu D: Sclerostin binds to LRP5/6 and antagonizes canonical Wnt signaling. J Biol Chem. 2005, 280: 19883-19887.

CrossRefPubMedGoogle Scholar

Semenov M, Tamai K, He X: SOST is a ligand for LRP5/LRP6 and a Wnt signaling inhibitor. J Biol Chem. 2005, 280: 26770-26775.

CrossRefPubMedGoogle Scholar

Ellies DL, Viviano B, McCarthy J, Rey JP, Itasaki N, Saunders S, Krumlauf R: Bone density ligand, Sclerostin, directly interacts with LRP5 but not LRP5G171V to modulate Wnt activity. J Bone Miner Res. 2006, 21: 1738-1749.

CrossRefPubMedGoogle Scholar

Semenov MV, He X: LRP5 mutations linked to high bone mass diseases cause reduced LRP5 binding and inhibition by SOST. J Biol Chem. 2006, 281: 38276-38284.

CrossRefPubMedGoogle Scholar

Kedlaya R, Veera S, Horan DJ, Moss RE, Ayturk UM, Jacobsen CM, Bowen ME, Paszty C, Warman ML, Robling AG: Sclerostin inhibition reverses skeletal fragility in an Lrp5-deficient mouse model of OPPG syndrome. Sci Transl Med. 2013, 5: 211ra158-

PubMedCentralCrossRefPubMedGoogle Scholar

Choi HY, Dieckmann M, Herz J, Niemeier A: Lrp4, a novel receptor for Dickkopf 1 and sclerostin, is expressed by osteoblasts and regulates bone growth and turnover in vivo. PLoS One. 2009, 4: e7930-

PubMedCentralCrossRefPubMedGoogle Scholar

Chang MK, Kramer I, Keller H, Gooi JH, Collett C, Jenkins D, Ettenberg SA, Cong F, Halleux C, Kneissel M: Reversing LRP5-dependent osteoporosis and SOST deficiency-induced sclerosing bone disorders by altering WNT signaling activity. J Bone Miner Res. 2014, 29: 29-42.

CrossRefPubMedGoogle Scholar

McClung MR, Grauer A, Boonen S, Bolognese MA, Brown JP, Diez-Perez A, Langdahl BL, Reginster JY, Zanchetta JR, Wasserman SM, Katz L, Maddox J, Yang YC, Libanati C, Bone HG: Romosozumab in postmenopausal women with low bone mineral density. N Engl J Med. 2014, 370: 412-420.

CrossRefPubMedGoogle Scholar

Tian E, Zhan F, Walker R, Rasmussen E, Ma Y, Barlogie B, Shaughnessy JD: The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. N Engl J Med. 2003, 349: 2483-2494.

CrossRefPubMedGoogle Scholar

Yaccoby S, Ling W, Zhan F, Walker R, Barlogie B, Shaughnessy JD: Antibody-based inhibition of DKK1 suppresses tumor-induced bone resorption and multiple myeloma growth in vivo. Blood. 2007, 109: 2106-2111.

PubMedCentralCrossRefPubMedGoogle Scholar

Fulciniti M, Tassone P, Hideshima T, Vallet S, Nanjappa P, Ettenberg SA, Shen Z, Patel N, Tai YT, Chauhan D, Mitsiades C, Prabhala R, Raje N, Anderson KC, Stover DR, Munshi NC: Anti-DKK1 mAb (BHQ880) as a potential therapeutic agent for multiple myeloma. Blood. 2009, 114: 371-379.

PubMedCentralCrossRefPubMedGoogle Scholar

Heath DJ, Chantry AD, Buckle CH, Coulton L, Shaughnessy JD, Evans HR, Snowden JA, Stover DR, Vanderkerken K, Croucher PI: Inhibiting Dickkopf-1 (Dkk1) removes suppression of bone formation and prevents the development of osteolytic bone disease in multiple myeloma. J Bone Miner Res. 2009, 24: 425-436.

CrossRefPubMedGoogle Scholar

Diarra D, Stolina M, Polzer K, Zwerina J, Ominsky MS, Dwyer D, Korb A, Smolen J, Hoffmann M, Scheinecker C, van der Heide D, Landewe R, Lacey D, Richards WG, Schett G: Dickkopf-1 is a master regulator of joint remodeling. Nat Med. 2007, 13: 156-163.

CrossRefPubMedGoogle Scholar

Gaur T, Wixted JJ, Hussain S, O'Connell SL, Morgan EF, Ayers DC, Komm BS, Bodine PV, Stein GS, Lian JB: Secreted frizzled related protein 1 is a target to improve fracture healing. J Cell Physiol. 2009, 220: 174-181.

PubMedCentralCrossRefPubMedGoogle Scholar

McColm J, Hu L, Womack T, Tang CC, Chiang AY: Single- and multiple-dose randomized studies of blosozumab, a monoclonal antibody against sclerostin, in healthy postmenopausal women. J Bone Miner Res. 2014, 29: 935-943.

CrossRefPubMedGoogle Scholar

Black DM, Greenspan SL, Ensrud KE, Palermo L, McGowan JA, Lang TF, Garnero P, Bouxsein ML, Bilezikian JP, Rosen CJ: The effects of parathyroid hormone and alendronate alone or in combination in postmenopausal osteoporosis. N Engl J Med. 2003, 349: 1207-1215.

CrossRefPubMedGoogle Scholar

Finkelstein JS, Hayes A, Hunzelman JL, Wyland JJ, Lee H, Neer RM: The effects of parathyroid hormone, alendronate, or both in men with osteoporosis. N Engl J Med. 2003, 349: 1216-1226.

CrossRefPubMedGoogle Scholar

Tsai JN, Uihlein AV, Lee H, Kumbhani R, Siwila-Sackman E, McKay EA, Burnett-Bowie SA, Neer RM, Leder BZ: Teriparatide and denosumab, alone or combined, in women with postmenopausal osteoporosis: the DATA study randomised trial. Lancet. 2013, 382: 50-56.

PubMedCentralCrossRefPubMedGoogle Scholar

Li X, Ominsky MS, Warmington KS, Niu QT, Asuncion FJ, Barrero M, Dwyer D, Grisanti M, Stolina M, Kostenuik PJ, Simonet WS, Paszty C, Ke HZ: Increased bone formation and bone mass induced by sclerostin antibody is not affected by pretreatment or cotreatment with alendronate in osteopenic, ovariectomized rats. Endocrinology. 2011, 152: 3312-3322.

CrossRefPubMedGoogle Scholar

Published
2019-01-31
Section
Review