Magnetic nanoparticles for oligodendrocyte precursor cell transplantation therapies: progress and challenges
Abstract
Oligodendrocyte precursor cells (OPCs) have shown high promise as a transplant population to promote regeneration in the central nervous system, specifically, for the production of myelin – the protective sheath around nerve fibers. While clinical trials for these cells have commenced in some areas, there are currently key barriers to the translation of neural cell therapies. These include the ability to (a) image transplant populations in vivo; (b) genetically engineer transplant cells to augment their repair potential; and (c) safely target cells to sites of pathology. Here, we review the evidence that magnetic nanoparticles (MNPs) are a ‘multifunctional nanoplatform’ that can aid in safely addressing these translational challenges in neural cell/OPC therapy: by facilitating real-time and post-mortem assessment of transplant cell biodistribution, and biomolecule delivery to transplant cells, as well as non-invasive ‘magnetic cell targeting’ to injury sites by application of high gradient fields. We identify key issues relating to the standardization and reporting of physicochemical and biological data in the field; we consider that it will be essential to systematically address these issues in order to fully evaluate the utility of the MNP platform for neural cell transplantation, and to develop efficacious neurocompatible particles for translational applications.
Downloads
References
Jolanda Münzel E, Williams A: Promoting remyelination in multiple sclerosis-recent advances. Drugs. 2013, 73: 2017-2029.
PubMedCentralCrossRefPubMedGoogle Scholar
Boulanger JJ, Messier C: From precursors to myelinating oligodendrocytes: Contribution of intrinsic and extrinsic factors to white matter plasticity in the adult brain. Neuroscience. 2014, 269C: 343-366.
CrossRefGoogle Scholar
Chari DM: Remyelination in Multiple Sclerosis. Int Rev Neurobiol. 2007, 79: 589-620.
CrossRefPubMedGoogle Scholar
Keegan BM, Noseworthy JH: Multiple Sclerosis. Annu Rev Med. 2002, 53: 285-302.
CrossRefPubMedGoogle Scholar
Franklin RJM, Gallo V: The translational biology of remyelination: Past, present, and future. Glia. 2014, [Epub ahead of print]
Google Scholar
Sharp J, Frame J, Siegenthaler M, Nistor G, Keirstead HS: Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants improve recovery after cervical spinal cord injury. Stem Cells. 2010, 28: 152-163.
PubMedCentralPubMedGoogle Scholar
Webber DJ, Compston A, Chandran S: Minimally manipulated oligodendrocyte precursor cells retain exclusive commitment to the oligodendrocyte lineage following transplantation into intact and injured hippocampus. Eur J Neurosci. 2007, 26: 1791-1800.
CrossRefPubMedGoogle Scholar
Groves AK, Barnett SC, Franklin RJM, Crang AJ, Mayer M, Blakemore WF, Noble M: Repair of demyelinated lesions by transplantation of purified O-2A progenitor cells. Nature. 1993, 362: 453-455.
CrossRefPubMedGoogle Scholar
Lachapelle F, Duhamel-Clerin E, Gansmuller A, Baron-Van Evercooren A, Villarroya H, Gumpel M: Transplanted transgenically marked oligodendrocytes survive, migrate and myelinate in the normal mouse brain as they do in the shiverer mouse brain. Eur J Neurosci. 1994, 6: 814-824.
CrossRefPubMedGoogle Scholar
Windrem MS, Schanz SJ, Guo M, Tian G-F, Washco V, Stanwood N, Rasband M, Roy NS, Nedergaard M, Havton LA, Wang S, Goldman SA: Neonatal chimerization with human glial progenitor cells can both remyelinate and rescue the otherwise lethally hypomyelinated shiverer mouse. Cell Stem Cell. 2008, 2: 553-565.
PubMedCentralCrossRefPubMedGoogle Scholar
Givogri MI, Galbiati F, Fasano S, Amadio S, Perani L, Superchi D, Morana P, Del Carro U, Marchesini S, Brambilla R, Wrabetz L, Bongarzone E: Oligodendroglial progenitor cell therapy limits central neurological deficits in mice with metachromatic leukodystrophy. J Neurosci. 2006, 26: 3109-3119.
CrossRefPubMedGoogle Scholar
Keirstead HS, Nistor G, Bernal G, Totoiu M, Cloutier F, Sharp K, Steward O: Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury. J Neurosci. 2005, 25: 4694-4705.
CrossRefPubMedGoogle Scholar
Brüstle O, Jones KN, Learish RD, Karram K, Choudhary K, Wiestler OD, Duncan ID, McKay RD: Embryonic stem cell-derived glial precursors: a source of myelinating transplants. Science. 1999, 285: 754-756.
CrossRefPubMedGoogle Scholar
Chandran S, Compston A: Neural stem cells as a potential source of oligodendrocytes for myelin repair. J Neurol Sci. 2005, 233: 179-181.
CrossRefPubMedGoogle Scholar
Buchet D, Baron-Van Evercooren A: In search of human oligodendroglia for myelin repair. Neurosci Lett. 2009, 456: 112-119.
CrossRefPubMedGoogle Scholar
Sypecka J: Searching for oligodendrocyte precursors for cell replacement therapies. Acta Neurobiol Exp. 2011, 71: 94-102.
Google Scholar
Watson RA, Yeung TM: What is the potential of oligodendrocyte progenitor cells to successfully treat human spinal cord injury?. BMC Neurol. 2011, 11: 113-
PubMedCentralCrossRefPubMedGoogle Scholar
Lebkowski J: GRNOPC1: the world’s first embryonic stem cell-derived therapy. Interview with Jane Lebkowski. Regen Med. 2011, 6 (6 Suppl.): 11-13.
CrossRefPubMedGoogle Scholar
Abbasalizadeh S, Baharvand H: Technological progress and challenges towards cGMP manufacturing of human pluripotent stem cells based therapeutic products for allogeneic and autologous cell therapies. Biotechnol Adv. 2013, 31: 1600-1623.
CrossRefPubMedGoogle Scholar
Solbakk JH, Zoloth L: The tragedy of translation: the case of “first use” in human embryonic stem cell research. Cell Stem Cell. 2011, 8: 479-481.
CrossRefPubMedGoogle Scholar
Volarevic V, Erceg S, Bhattacharya SS, Stojkovic P, Horner PJ, Stojkovic M: Stem cell-based therapy for spinal cord injury. Cell Transplant. 2013, 22: 1309-1323.
CrossRefPubMedGoogle Scholar
Frantz S: Embryonic stem cell pioneer Geron exits field, cuts losses. Nat Biotechnol. 2012, 30: 12-13.
CrossRefPubMedGoogle Scholar
Brindley D, Mason C: Human embryonic stem cell therapy in the post-Geron era. Regen Med. 2012, 7: 17-18.
CrossRefPubMedGoogle Scholar
Shankar M, Roopa Kumar D, Ramesh B, Niranjan Babu M: Stem cells - a review. Eur J Pharmacol Toxicol. 2014, 1: 26-32.
Google Scholar
Wang Y-XJ: Superparamagnetic iron oxide based MRI contrast agents: Current status of clinical application. Quant Imaging Med Surg. 2011, 1: 35-40.
PubMedCentralPubMedGoogle Scholar
Taylor A, Wilson KM, Murray P, Fernig DG, Lévy R: Long-term tracking of cells using inorganic nanoparticles as contrast agents: are we there yet?. Chem Soc Rev. 2012, 41: 2707-2717.
CrossRefPubMedGoogle Scholar
Rosner MH, Auerbach M: Ferumoxytol for the treatment of iron deficiency. Expert Rev Hematol. 2011, 4: 399-406.
CrossRefPubMedGoogle Scholar
Muja N, Bulte JWMM: Magnetic resonance imaging of cells in experimental disease models. Prog Nucl Magn Reson Spectrosc. 2009, 55: 61-77.
PubMedCentralCrossRefPubMedGoogle Scholar
Bulte JWM, Zhang S, van Gelderen P, Herynek V, Jordan EK, Duncan ID, Frank JA: Neurotransplantation of magnetically labeled oligodendrocyte progenitors: Magnetic resonance tracking of cell migration and myelination. Proc Natl Acad Sci U S A. 1999, 96: 15256-15261.
PubMedCentralCrossRefPubMedGoogle Scholar
Franklin RJM, Blaschuk KL, Bearchell MC, Prestoz LL, Setzu A, Brindle KM, Ffrench-Constant C: Magnetic resonance imaging of transplanted oligodendrocyte precursors in the rat brain. Neuroreport. 1999, 10: 3961-3965.
CrossRefPubMedGoogle Scholar
Bulte JWM, Douglas T, Witwer B, Lewis BK, van Gelderen P, Duncan ID, Frank JA: Magnetic labeling and tracking of cells using magnetodendrimers as MR contrast agent. Eur Cells Mater. 2002, 3: 7-8.
Google Scholar
Lepore AC, Walczak P, Rao MS, Fischer I, Bulte JWM: MR imaging of lineage-restricted neural precursors following transplantation into the adult spinal cord. Exp Neurol. 2006, 201: 49-59.
CrossRefPubMedGoogle Scholar
Frank JA, Miller BR, Arbab AS, Zywicke HA, Jordan EK, Lewis BK, Bryant LH, Bulte JWM: Clinically applicable labeling of mammalian and stem cells by combining superparamagnetic iron oxides and transfection agents. Radiology. 2003, 228: 480-487.
CrossRefPubMedGoogle Scholar
Modo M, Cash D, Mellodew K, Williams SC, Fraser SE, Meade TJ, Price J, Hodges H: Tracking transplanted stem cell migration using bifunctional, contrast agent-enhanced, magnetic resonance imaging. Neuroimage. 2002, 17: 803-811.
CrossRefPubMedGoogle Scholar
Nathoo N, Yong VW, Dunn JF: Using magnetic resonance imaging in animal models to guide drug development in multiple sclerosis. Mult Scler. 2014, 20: 3-11.
CrossRefPubMedGoogle Scholar
Shubayev VI, Pisanic TR, Jin S: Magnetic nanoparticles for theragnostics. Adv Drug Deliv Rev. 2009, 61: 467-477.
PubMedCentralCrossRefPubMedGoogle Scholar
Na HB, Song IC, Hyeon T: Inorganic nanoparticles for MRI contrast agents. Adv Mater. 2009, 21: 2133-2148.
CrossRefGoogle Scholar
Fang C, Zhang M: Multifunctional magnetic nanoparticles for medical imaging applications. J Mater Chem. 2009, 19: 6258-6266.
PubMedCentralCrossRefPubMedGoogle Scholar
Hinds KA, Hill JM, Shapiro EM, Laukkanen MO, Silva AC, Combs CA, Varney TR, Balaban RS, Koretsky AP, Dunbar CE: Highly efficient endosomal labeling of progenitor and stem cells with large magnetic particles allows magnetic resonance imaging of single cells. Blood. 2003, 102: 867-872.
CrossRefPubMedGoogle Scholar
Cianciaruso C, Pagani A, Martelli C, Bacigaluppi M, Squadrito ML, Lo DA, De Palma M, Furlan R, Lucignani G, Falini A, Biffi A, Ottobrini L, Politi LS: Cellular magnetic resonance with iron oxide nanoparticles: long-term persistence of SPIO signal in the CNS after transplanted cell death. Nanomedicine (Lond). 2014, [Epub ahead of print]
Google Scholar
Wang YX, Hussain SM, Krestin GP: Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. Eur Radiol. 2001, 11: 2319-2331.
CrossRefPubMedGoogle Scholar
Jain T, Richey J, Strand M, Leslie-Pelecky DL, Flask C, Labhasetwar V: Magnetic nanoparticles with dual functional properties: drug delivery and magnetic resonance imaging. Biomaterials. 2008, 29: 4012-4021.
PubMedCentralCrossRefPubMedGoogle Scholar
Jasmin , Torres ALM, Nunes HMP, Passipieri JA, Jelicks LA, Gasparetto EL, Spray DC, de Carvalho AC C, Mendez-Otero R: Optimized labeling of bone marrow mesenchymal cells with superparamagnetic iron oxide nanoparticles and in vivo visualization by magnetic resonance imaging. J Nanobiotechnology. 2011, 9: 4-
PubMedCentralCrossRefPubMedGoogle Scholar
Kalish H, Arbab AS, Miller BR, Lewis BK, Zywicke HA, Bulte JWM, Bryant LH, Frank JA: Combination of transfection agents and magnetic resonance contrast agents for cellular imaging: relationship between relaxivities, electrostatic forces, and chemical composition. Magn Reson Med. 2003, 50: 275-282.
CrossRefPubMedGoogle Scholar
Bulte JW, Douglas T, Witwer B, Zhang SC, Strable E, Lewis BK, Zywicke H, Miller B, Van Gelderen P, Moskowitz BM, Duncan ID, Frank JA: Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells. Nat Biotechnol. 2001, 19: 1141-1147.
CrossRefPubMedGoogle Scholar
Strable E, Bulte JWM, Moskowitz B, Vivekanandan K, Allen M, Douglas T: Synthesis and characterization of soluble iron oxide-dendrimer composites. Chem Mater. 2001, 13: 2201-2209.
CrossRefGoogle Scholar
Hohnholt M, Geppert M, Dringen R: Effects of iron chelators, iron salts, and iron oxide nanoparticles on the proliferation and the iron content of oligodendroglial OLN-93 cells. Neurochem Res. 2010, 35: 1259-1268.
CrossRefPubMedGoogle Scholar
Hohnholt MC, Dringen R: Iron-dependent formation of reactive oxygen species and glutathione depletion after accumulation of magnetic iron oxide nanoparticles by oligodendroglial cells. J Nanoparticle Res. 2011, 13: 6761-6774.
CrossRefGoogle Scholar
Hohnholt MC, Geppert M, Dringen R: Treatment with iron oxide nanoparticles induces ferritin synthesis but not oxidative stress in oligodendroglial cells. Acta Biomater. 2011, 7: 3946-3954.
CrossRefPubMedGoogle Scholar
Jenkins SI, Pickard MR, Granger N, Chari DM: Magnetic nanoparticle-mediated gene transfer to oligodendrocyte precursor cell transplant populations is enhanced by magnetofection strategies. ACS Nano. 2011, 5: 6527-6538.
CrossRefPubMedGoogle Scholar
Pickard MR, Chari DM: Enhancement of magnetic nanoparticle-mediated gene transfer to astrocytes by “magnetofection”: effects of static and oscillating fields. Nanomedicine (Lond). 2010, 5: 217-232.
CrossRefGoogle Scholar
Jenkins SI, Pickard MR, Furness DN, Yiu HHP, Chari DM: Differences in magnetic particle uptake by CNS neuroglial subclasses: implications for neural tissue engineering. Nanomedicine (Lond). 2013, 8: 951-968.
CrossRefGoogle Scholar
Jenkins SI: Applications of magnetic particles for oligodendrocyte precursor cell transplantation strategies. PhD thesis. 2013, Keele University: Institute for Science and Technology in Medicine
Google Scholar
Yiu HHP, Pickard MR, Olariu CI, Williams SR, Chari DM, Rosseinsky MJ: Fe3O4-PEI-RITC magnetic nanoparticles with imaging and gene transfer capability: development of a tool for neural cell transplantation therapies. Pharm Res. 2012, 29: 1328-1343.
CrossRefPubMedGoogle Scholar
Petters C, Bulcke F, Thiel K, Bickmeyer U, Dringen R: Uptake of fluorescent iron oxide nanoparticles by oligodendroglial OLN-93 cells. Neurochem Res. 2014, 39: 372-383.
CrossRefPubMedGoogle Scholar
Kircher MF, Mahmood U, King RS, Weissleder R, Josephson L: A multimodal nanoparticle for preoperative magnetic resonance imaging and intraoperative optical brain tumor delineation. Cancer Res. 2003, 63: 8122-8125.
PubMedGoogle Scholar
Gironi M, Borgiani B, Mariani E, Cursano C, Mendozzi L, Cavarretta R, Saresella M, Clerici M, Comi G, Rovaris M, Furlan R: Oxidative stress is differentially present in multiple sclerosis courses, early evident, and unrelated to treatment. J Immunol Res. 2014, 2014: 961863-
PubMedCentralCrossRefPubMedGoogle Scholar
Hirrlinger J, Resch A, Gutterer JM, Dringen R: Oligodendroglial cells in culture effectively dispose of exogenous hydrogen peroxide: comparison with cultured neurones, astroglial and microglial cells. J Neurochem. 2002, 82: 635-644.
CrossRefPubMedGoogle Scholar
Soenen SJH, Himmelreich U, Nuytten N, De Cuyper M: Cytotoxic effects of iron oxide nanoparticles and implications for safety in cell labelling. Biomaterials. 2011, 32: 195-205.
CrossRefPubMedGoogle Scholar
Pisanic TR, Blackwell JD, Shubayev VI, Fiñones RR, Jin S: Nanotoxicity of iron oxide nanoparticle internalization in growing neurons. Biomaterials. 2007, 28: 2572-2581.
CrossRefPubMedGoogle Scholar
Cupaioli FA, Zucca FA, Boraschi D, Zecca L: Engineered nanoparticles. How brain friendly is this new guest?. Prog Neurobiol. 2014, [Epub ahead of print]
Google Scholar
Fisichella M, Dabboue H, Bhattacharyya S, Saboungi M-L, Salvetat J-P, Hevor T, Guerin M: Mesoporous silica nanoparticles enhance MTT formazan exocytosis in HeLa cells and astrocytes. Toxicol Vitr. 2009, 23: 697-703.
CrossRefGoogle Scholar
Soenen SJH, Himmelreich U, Nuytten N, Pisanic TR, Ferrari A, De Cuyper M: Intracellular nanoparticle coating stability determines nanoparticle diagnostics efficacy and cell functionality. Small. 2010, 6: 2136-2145.
CrossRefPubMedGoogle Scholar
Berry CC, Wells S, Charles S, Curtis ASG: Dextran and albumin derivatised iron oxide nanoparticles: influence on fibroblasts in vitro. Biomaterials. 2003, 24: 4551-4557.
CrossRefPubMedGoogle Scholar
Hohnholt MC: Metabolism of iron and iron oxide nanoparticles in glial cells. PhD thesis. 2011, Bremen University: Centre for Biomolecular Interactions
Google Scholar
Karimi-Abdolrezaee S, Eftekharpour E, Wang J, Schut D, Fehlings MG: Synergistic effects of transplanted adult neural stem/progenitor cells, chondroitinase, and growth factors promote functional repair and plasticity of the chronically injured spinal cord. J Neurosci. 2010, 30: 1657-1676.
CrossRefPubMedGoogle Scholar
Stangel M, Trebst C: Remyelination strategies: new advancements toward a regenerative treatment in multiple sclerosis. Curr Neurol Neurosci Rep. 2006, 6: 229-235.
CrossRefPubMedGoogle Scholar
Cao Q, He Q, Wang Y, Cheng X, Howard RM, Zhang Y, DeVries WH, Shields CB, Magnuson DSK, Xu X-M, Kim DH, Whittemore SR: Transplantation of ciliary neurotrophic factor-expressing adult oligodendrocyte precursor cells promotes remyelination and functional recovery after spinal cord injury. J Neurosci. 2010, 30: 2989-3001.
PubMedCentralCrossRefPubMedGoogle Scholar
Franklin RJM: Remyelination of the demyelinated CNS: the case for and against transplantation of central, peripheral and olfactory glia. Brain Res Bull. 2002, 57: 827-832.
CrossRefPubMedGoogle Scholar
Mekhail M, Almazan G, Tabrizian M: Oligodendrocyte-protection and remyelination post-spinal cord injuries: a review. Prog Neurobiol. 2012, 96: 322-339.
CrossRefPubMedGoogle Scholar
Cao Q, Xu X-M, DeVries WH, Enzmann GU, Ping P, Tsoulfas P, Wood PM, Bunge MB, Whittemore SR: Functional recovery in traumatic spinal cord injury after transplantation of multineurotrophin-expressing glial-restricted precursor cells. J Neurosci. 2005, 25: 6947-6957.
PubMedCentralCrossRefPubMedGoogle Scholar
Jenkins SI, Pickard MR, Chari DM: Magnetic nanoparticle mediated gene delivery in oligodendroglial cells: A comparison of differentiated cells versus precursor forms. Nano Life. 2013, 3: 1243001-
CrossRefGoogle Scholar
Vaněček V, Zablotskii V, Forostyak S, Růřička J, Herynek V, Babič M, Jendelová P, Kubinová S, Dejneka A, Syková E: Highly efficient magnetic targeting of mesenchymal stem cells in spinal cord injury. Int J Nanomedicine. 2012, 7: 3719-3730.
PubMedCentralPubMedGoogle Scholar
Sasaki H, Tanaka N, Nakanishi K, Nishida K, Hamasaki T, Yamada K, Ochi M: Therapeutic effects with magnetic targeting of bone marrow stromal cells in a rat spinal cord injury model. Spine (Phila Pa 1976). 2011, 36: 933-938.
CrossRefGoogle Scholar
Yanai A, Häfeli UO, Metcalfe AL, Soema P, Addo L, Gregory-Evans CY, Po K, Shan X, Moritz OL, Gregory-Evans K: Focused magnetic stem cell targeting to the retina using superparamagnetic iron oxide nanoparticles. Cell Transplant. 2012, 21: 1137-1148.
CrossRefPubMedGoogle Scholar
Hallmark B, Darton NJ, Han X, Palit S, Mackley MR, Slater NKH: Observation and modelling of capillary flow occlusion resulting from the capture of superparamagnetic nanoparticles in a magnetic field. Chem Eng Sci. 2008, 63: 3960-3965.
CrossRefGoogle Scholar
Pinkernelle J, Calatayud P, Goya GF, Fansa H, Keilhoff G: Magnetic nanoparticles in primary neural cell cultures are mainly taken up by microglia. BMC Neurosci. 2012, 13: 32-
PubMedCentralCrossRefPubMedGoogle Scholar

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright
Copyright on any open access article in Molecular and Cellular Therapies published bythe Institute is retained by the author(s). Authors can grant any third party the right to use
the article freely as long as its integrity is maintained and its original authors, citation details and publisher are identified. Please contact the Office of Molecular and Cellular
Therapies for more information specifically regarding permissions if there are questions.