Magnetic nanoparticles for oligodendrocyte precursor cell transplantation therapies: progress and challenges

  • Stuart Jenkins
  • Humphrey Yiu
  • Matthew Rosseinsky
  • Divya Chari
Keywords: OPC, Uptake, Labeling, Tracking, Iron oxide, Magnetic targeting, Neural cell, Cell therapy

Abstract

Oligodendrocyte precursor cells (OPCs) have shown high promise as a transplant population to promote regeneration in the central nervous system, specifically, for the production of myelin – the protective sheath around nerve fibers. While clinical trials for these cells have commenced in some areas, there are currently key barriers to the translation of neural cell therapies. These include the ability to (a) image transplant populations in vivo; (b) genetically engineer transplant cells to augment their repair potential; and (c) safely target cells to sites of pathology. Here, we review the evidence that magnetic nanoparticles (MNPs) are a ‘multifunctional nanoplatform’ that can aid in safely addressing these translational challenges in neural cell/OPC therapy: by facilitating real-time and post-mortem assessment of transplant cell biodistribution, and biomolecule delivery to transplant cells, as well as non-invasive ‘magnetic cell targeting’ to injury sites by application of high gradient fields. We identify key issues relating to the standardization and reporting of physicochemical and biological data in the field; we consider that it will be essential to systematically address these issues in order to fully evaluate the utility of the MNP platform for neural cell transplantation, and to develop efficacious neurocompatible particles for translational applications.

Downloads

Download data is not yet available.

References

Jolanda Münzel E, Williams A: Promoting remyelination in multiple sclerosis-recent advances. Drugs. 2013, 73: 2017-2029.

PubMedCentralCrossRefPubMedGoogle Scholar

Boulanger JJ, Messier C: From precursors to myelinating oligodendrocytes: Contribution of intrinsic and extrinsic factors to white matter plasticity in the adult brain. Neuroscience. 2014, 269C: 343-366.

CrossRefGoogle Scholar

Chari DM: Remyelination in Multiple Sclerosis. Int Rev Neurobiol. 2007, 79: 589-620.

CrossRefPubMedGoogle Scholar

Keegan BM, Noseworthy JH: Multiple Sclerosis. Annu Rev Med. 2002, 53: 285-302.

CrossRefPubMedGoogle Scholar

Franklin RJM, Gallo V: The translational biology of remyelination: Past, present, and future. Glia. 2014, [Epub ahead of print]

Google Scholar

Sharp J, Frame J, Siegenthaler M, Nistor G, Keirstead HS: Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants improve recovery after cervical spinal cord injury. Stem Cells. 2010, 28: 152-163.

PubMedCentralPubMedGoogle Scholar

Webber DJ, Compston A, Chandran S: Minimally manipulated oligodendrocyte precursor cells retain exclusive commitment to the oligodendrocyte lineage following transplantation into intact and injured hippocampus. Eur J Neurosci. 2007, 26: 1791-1800.

CrossRefPubMedGoogle Scholar

Groves AK, Barnett SC, Franklin RJM, Crang AJ, Mayer M, Blakemore WF, Noble M: Repair of demyelinated lesions by transplantation of purified O-2A progenitor cells. Nature. 1993, 362: 453-455.

CrossRefPubMedGoogle Scholar

Lachapelle F, Duhamel-Clerin E, Gansmuller A, Baron-Van Evercooren A, Villarroya H, Gumpel M: Transplanted transgenically marked oligodendrocytes survive, migrate and myelinate in the normal mouse brain as they do in the shiverer mouse brain. Eur J Neurosci. 1994, 6: 814-824.

CrossRefPubMedGoogle Scholar

Windrem MS, Schanz SJ, Guo M, Tian G-F, Washco V, Stanwood N, Rasband M, Roy NS, Nedergaard M, Havton LA, Wang S, Goldman SA: Neonatal chimerization with human glial progenitor cells can both remyelinate and rescue the otherwise lethally hypomyelinated shiverer mouse. Cell Stem Cell. 2008, 2: 553-565.

PubMedCentralCrossRefPubMedGoogle Scholar

Givogri MI, Galbiati F, Fasano S, Amadio S, Perani L, Superchi D, Morana P, Del Carro U, Marchesini S, Brambilla R, Wrabetz L, Bongarzone E: Oligodendroglial progenitor cell therapy limits central neurological deficits in mice with metachromatic leukodystrophy. J Neurosci. 2006, 26: 3109-3119.

CrossRefPubMedGoogle Scholar

Keirstead HS, Nistor G, Bernal G, Totoiu M, Cloutier F, Sharp K, Steward O: Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury. J Neurosci. 2005, 25: 4694-4705.

CrossRefPubMedGoogle Scholar

Brüstle O, Jones KN, Learish RD, Karram K, Choudhary K, Wiestler OD, Duncan ID, McKay RD: Embryonic stem cell-derived glial precursors: a source of myelinating transplants. Science. 1999, 285: 754-756.

CrossRefPubMedGoogle Scholar

Chandran S, Compston A: Neural stem cells as a potential source of oligodendrocytes for myelin repair. J Neurol Sci. 2005, 233: 179-181.

CrossRefPubMedGoogle Scholar

Buchet D, Baron-Van Evercooren A: In search of human oligodendroglia for myelin repair. Neurosci Lett. 2009, 456: 112-119.

CrossRefPubMedGoogle Scholar

Sypecka J: Searching for oligodendrocyte precursors for cell replacement therapies. Acta Neurobiol Exp. 2011, 71: 94-102.

Google Scholar

Watson RA, Yeung TM: What is the potential of oligodendrocyte progenitor cells to successfully treat human spinal cord injury?. BMC Neurol. 2011, 11: 113-

PubMedCentralCrossRefPubMedGoogle Scholar

Lebkowski J: GRNOPC1: the world’s first embryonic stem cell-derived therapy. Interview with Jane Lebkowski. Regen Med. 2011, 6 (6 Suppl.): 11-13.

CrossRefPubMedGoogle Scholar

Abbasalizadeh S, Baharvand H: Technological progress and challenges towards cGMP manufacturing of human pluripotent stem cells based therapeutic products for allogeneic and autologous cell therapies. Biotechnol Adv. 2013, 31: 1600-1623.

CrossRefPubMedGoogle Scholar

Solbakk JH, Zoloth L: The tragedy of translation: the case of “first use” in human embryonic stem cell research. Cell Stem Cell. 2011, 8: 479-481.

CrossRefPubMedGoogle Scholar

Volarevic V, Erceg S, Bhattacharya SS, Stojkovic P, Horner PJ, Stojkovic M: Stem cell-based therapy for spinal cord injury. Cell Transplant. 2013, 22: 1309-1323.

CrossRefPubMedGoogle Scholar

Frantz S: Embryonic stem cell pioneer Geron exits field, cuts losses. Nat Biotechnol. 2012, 30: 12-13.

CrossRefPubMedGoogle Scholar

Brindley D, Mason C: Human embryonic stem cell therapy in the post-Geron era. Regen Med. 2012, 7: 17-18.

CrossRefPubMedGoogle Scholar

Shankar M, Roopa Kumar D, Ramesh B, Niranjan Babu M: Stem cells - a review. Eur J Pharmacol Toxicol. 2014, 1: 26-32.

Google Scholar

Wang Y-XJ: Superparamagnetic iron oxide based MRI contrast agents: Current status of clinical application. Quant Imaging Med Surg. 2011, 1: 35-40.

PubMedCentralPubMedGoogle Scholar

Taylor A, Wilson KM, Murray P, Fernig DG, Lévy R: Long-term tracking of cells using inorganic nanoparticles as contrast agents: are we there yet?. Chem Soc Rev. 2012, 41: 2707-2717.

CrossRefPubMedGoogle Scholar

Rosner MH, Auerbach M: Ferumoxytol for the treatment of iron deficiency. Expert Rev Hematol. 2011, 4: 399-406.

CrossRefPubMedGoogle Scholar

Muja N, Bulte JWMM: Magnetic resonance imaging of cells in experimental disease models. Prog Nucl Magn Reson Spectrosc. 2009, 55: 61-77.

PubMedCentralCrossRefPubMedGoogle Scholar

Bulte JWM, Zhang S, van Gelderen P, Herynek V, Jordan EK, Duncan ID, Frank JA: Neurotransplantation of magnetically labeled oligodendrocyte progenitors: Magnetic resonance tracking of cell migration and myelination. Proc Natl Acad Sci U S A. 1999, 96: 15256-15261.

PubMedCentralCrossRefPubMedGoogle Scholar

Franklin RJM, Blaschuk KL, Bearchell MC, Prestoz LL, Setzu A, Brindle KM, Ffrench-Constant C: Magnetic resonance imaging of transplanted oligodendrocyte precursors in the rat brain. Neuroreport. 1999, 10: 3961-3965.

CrossRefPubMedGoogle Scholar

Bulte JWM, Douglas T, Witwer B, Lewis BK, van Gelderen P, Duncan ID, Frank JA: Magnetic labeling and tracking of cells using magnetodendrimers as MR contrast agent. Eur Cells Mater. 2002, 3: 7-8.

Google Scholar

Lepore AC, Walczak P, Rao MS, Fischer I, Bulte JWM: MR imaging of lineage-restricted neural precursors following transplantation into the adult spinal cord. Exp Neurol. 2006, 201: 49-59.

CrossRefPubMedGoogle Scholar

Frank JA, Miller BR, Arbab AS, Zywicke HA, Jordan EK, Lewis BK, Bryant LH, Bulte JWM: Clinically applicable labeling of mammalian and stem cells by combining superparamagnetic iron oxides and transfection agents. Radiology. 2003, 228: 480-487.

CrossRefPubMedGoogle Scholar

Modo M, Cash D, Mellodew K, Williams SC, Fraser SE, Meade TJ, Price J, Hodges H: Tracking transplanted stem cell migration using bifunctional, contrast agent-enhanced, magnetic resonance imaging. Neuroimage. 2002, 17: 803-811.

CrossRefPubMedGoogle Scholar

Nathoo N, Yong VW, Dunn JF: Using magnetic resonance imaging in animal models to guide drug development in multiple sclerosis. Mult Scler. 2014, 20: 3-11.

CrossRefPubMedGoogle Scholar

Shubayev VI, Pisanic TR, Jin S: Magnetic nanoparticles for theragnostics. Adv Drug Deliv Rev. 2009, 61: 467-477.

PubMedCentralCrossRefPubMedGoogle Scholar

Na HB, Song IC, Hyeon T: Inorganic nanoparticles for MRI contrast agents. Adv Mater. 2009, 21: 2133-2148.

CrossRefGoogle Scholar

Fang C, Zhang M: Multifunctional magnetic nanoparticles for medical imaging applications. J Mater Chem. 2009, 19: 6258-6266.

PubMedCentralCrossRefPubMedGoogle Scholar

Hinds KA, Hill JM, Shapiro EM, Laukkanen MO, Silva AC, Combs CA, Varney TR, Balaban RS, Koretsky AP, Dunbar CE: Highly efficient endosomal labeling of progenitor and stem cells with large magnetic particles allows magnetic resonance imaging of single cells. Blood. 2003, 102: 867-872.

CrossRefPubMedGoogle Scholar

Cianciaruso C, Pagani A, Martelli C, Bacigaluppi M, Squadrito ML, Lo DA, De Palma M, Furlan R, Lucignani G, Falini A, Biffi A, Ottobrini L, Politi LS: Cellular magnetic resonance with iron oxide nanoparticles: long-term persistence of SPIO signal in the CNS after transplanted cell death. Nanomedicine (Lond). 2014, [Epub ahead of print]

Google Scholar

Wang YX, Hussain SM, Krestin GP: Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. Eur Radiol. 2001, 11: 2319-2331.

CrossRefPubMedGoogle Scholar

Jain T, Richey J, Strand M, Leslie-Pelecky DL, Flask C, Labhasetwar V: Magnetic nanoparticles with dual functional properties: drug delivery and magnetic resonance imaging. Biomaterials. 2008, 29: 4012-4021.

PubMedCentralCrossRefPubMedGoogle Scholar

Jasmin , Torres ALM, Nunes HMP, Passipieri JA, Jelicks LA, Gasparetto EL, Spray DC, de Carvalho AC C, Mendez-Otero R: Optimized labeling of bone marrow mesenchymal cells with superparamagnetic iron oxide nanoparticles and in vivo visualization by magnetic resonance imaging. J Nanobiotechnology. 2011, 9: 4-

PubMedCentralCrossRefPubMedGoogle Scholar

Kalish H, Arbab AS, Miller BR, Lewis BK, Zywicke HA, Bulte JWM, Bryant LH, Frank JA: Combination of transfection agents and magnetic resonance contrast agents for cellular imaging: relationship between relaxivities, electrostatic forces, and chemical composition. Magn Reson Med. 2003, 50: 275-282.

CrossRefPubMedGoogle Scholar

Bulte JW, Douglas T, Witwer B, Zhang SC, Strable E, Lewis BK, Zywicke H, Miller B, Van Gelderen P, Moskowitz BM, Duncan ID, Frank JA: Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells. Nat Biotechnol. 2001, 19: 1141-1147.

CrossRefPubMedGoogle Scholar

Strable E, Bulte JWM, Moskowitz B, Vivekanandan K, Allen M, Douglas T: Synthesis and characterization of soluble iron oxide-dendrimer composites. Chem Mater. 2001, 13: 2201-2209.

CrossRefGoogle Scholar

Hohnholt M, Geppert M, Dringen R: Effects of iron chelators, iron salts, and iron oxide nanoparticles on the proliferation and the iron content of oligodendroglial OLN-93 cells. Neurochem Res. 2010, 35: 1259-1268.

CrossRefPubMedGoogle Scholar

Hohnholt MC, Dringen R: Iron-dependent formation of reactive oxygen species and glutathione depletion after accumulation of magnetic iron oxide nanoparticles by oligodendroglial cells. J Nanoparticle Res. 2011, 13: 6761-6774.

CrossRefGoogle Scholar

Hohnholt MC, Geppert M, Dringen R: Treatment with iron oxide nanoparticles induces ferritin synthesis but not oxidative stress in oligodendroglial cells. Acta Biomater. 2011, 7: 3946-3954.

CrossRefPubMedGoogle Scholar

Jenkins SI, Pickard MR, Granger N, Chari DM: Magnetic nanoparticle-mediated gene transfer to oligodendrocyte precursor cell transplant populations is enhanced by magnetofection strategies. ACS Nano. 2011, 5: 6527-6538.

CrossRefPubMedGoogle Scholar

Pickard MR, Chari DM: Enhancement of magnetic nanoparticle-mediated gene transfer to astrocytes by “magnetofection”: effects of static and oscillating fields. Nanomedicine (Lond). 2010, 5: 217-232.

CrossRefGoogle Scholar

Jenkins SI, Pickard MR, Furness DN, Yiu HHP, Chari DM: Differences in magnetic particle uptake by CNS neuroglial subclasses: implications for neural tissue engineering. Nanomedicine (Lond). 2013, 8: 951-968.

CrossRefGoogle Scholar

Jenkins SI: Applications of magnetic particles for oligodendrocyte precursor cell transplantation strategies. PhD thesis. 2013, Keele University: Institute for Science and Technology in Medicine

Google Scholar

Yiu HHP, Pickard MR, Olariu CI, Williams SR, Chari DM, Rosseinsky MJ: Fe3O4-PEI-RITC magnetic nanoparticles with imaging and gene transfer capability: development of a tool for neural cell transplantation therapies. Pharm Res. 2012, 29: 1328-1343.

CrossRefPubMedGoogle Scholar

Petters C, Bulcke F, Thiel K, Bickmeyer U, Dringen R: Uptake of fluorescent iron oxide nanoparticles by oligodendroglial OLN-93 cells. Neurochem Res. 2014, 39: 372-383.

CrossRefPubMedGoogle Scholar

Kircher MF, Mahmood U, King RS, Weissleder R, Josephson L: A multimodal nanoparticle for preoperative magnetic resonance imaging and intraoperative optical brain tumor delineation. Cancer Res. 2003, 63: 8122-8125.

PubMedGoogle Scholar

Gironi M, Borgiani B, Mariani E, Cursano C, Mendozzi L, Cavarretta R, Saresella M, Clerici M, Comi G, Rovaris M, Furlan R: Oxidative stress is differentially present in multiple sclerosis courses, early evident, and unrelated to treatment. J Immunol Res. 2014, 2014: 961863-

PubMedCentralCrossRefPubMedGoogle Scholar

Hirrlinger J, Resch A, Gutterer JM, Dringen R: Oligodendroglial cells in culture effectively dispose of exogenous hydrogen peroxide: comparison with cultured neurones, astroglial and microglial cells. J Neurochem. 2002, 82: 635-644.

CrossRefPubMedGoogle Scholar

Soenen SJH, Himmelreich U, Nuytten N, De Cuyper M: Cytotoxic effects of iron oxide nanoparticles and implications for safety in cell labelling. Biomaterials. 2011, 32: 195-205.

CrossRefPubMedGoogle Scholar

Pisanic TR, Blackwell JD, Shubayev VI, Fiñones RR, Jin S: Nanotoxicity of iron oxide nanoparticle internalization in growing neurons. Biomaterials. 2007, 28: 2572-2581.

CrossRefPubMedGoogle Scholar

Cupaioli FA, Zucca FA, Boraschi D, Zecca L: Engineered nanoparticles. How brain friendly is this new guest?. Prog Neurobiol. 2014, [Epub ahead of print]

Google Scholar

Fisichella M, Dabboue H, Bhattacharyya S, Saboungi M-L, Salvetat J-P, Hevor T, Guerin M: Mesoporous silica nanoparticles enhance MTT formazan exocytosis in HeLa cells and astrocytes. Toxicol Vitr. 2009, 23: 697-703.

CrossRefGoogle Scholar

Soenen SJH, Himmelreich U, Nuytten N, Pisanic TR, Ferrari A, De Cuyper M: Intracellular nanoparticle coating stability determines nanoparticle diagnostics efficacy and cell functionality. Small. 2010, 6: 2136-2145.

CrossRefPubMedGoogle Scholar

Berry CC, Wells S, Charles S, Curtis ASG: Dextran and albumin derivatised iron oxide nanoparticles: influence on fibroblasts in vitro. Biomaterials. 2003, 24: 4551-4557.

CrossRefPubMedGoogle Scholar

Hohnholt MC: Metabolism of iron and iron oxide nanoparticles in glial cells. PhD thesis. 2011, Bremen University: Centre for Biomolecular Interactions

Google Scholar

Karimi-Abdolrezaee S, Eftekharpour E, Wang J, Schut D, Fehlings MG: Synergistic effects of transplanted adult neural stem/progenitor cells, chondroitinase, and growth factors promote functional repair and plasticity of the chronically injured spinal cord. J Neurosci. 2010, 30: 1657-1676.

CrossRefPubMedGoogle Scholar

Stangel M, Trebst C: Remyelination strategies: new advancements toward a regenerative treatment in multiple sclerosis. Curr Neurol Neurosci Rep. 2006, 6: 229-235.

CrossRefPubMedGoogle Scholar

Cao Q, He Q, Wang Y, Cheng X, Howard RM, Zhang Y, DeVries WH, Shields CB, Magnuson DSK, Xu X-M, Kim DH, Whittemore SR: Transplantation of ciliary neurotrophic factor-expressing adult oligodendrocyte precursor cells promotes remyelination and functional recovery after spinal cord injury. J Neurosci. 2010, 30: 2989-3001.

PubMedCentralCrossRefPubMedGoogle Scholar

Franklin RJM: Remyelination of the demyelinated CNS: the case for and against transplantation of central, peripheral and olfactory glia. Brain Res Bull. 2002, 57: 827-832.

CrossRefPubMedGoogle Scholar

Mekhail M, Almazan G, Tabrizian M: Oligodendrocyte-protection and remyelination post-spinal cord injuries: a review. Prog Neurobiol. 2012, 96: 322-339.

CrossRefPubMedGoogle Scholar

Cao Q, Xu X-M, DeVries WH, Enzmann GU, Ping P, Tsoulfas P, Wood PM, Bunge MB, Whittemore SR: Functional recovery in traumatic spinal cord injury after transplantation of multineurotrophin-expressing glial-restricted precursor cells. J Neurosci. 2005, 25: 6947-6957.

PubMedCentralCrossRefPubMedGoogle Scholar

Jenkins SI, Pickard MR, Chari DM: Magnetic nanoparticle mediated gene delivery in oligodendroglial cells: A comparison of differentiated cells versus precursor forms. Nano Life. 2013, 3: 1243001-

CrossRefGoogle Scholar

Vaněček V, Zablotskii V, Forostyak S, Růřička J, Herynek V, Babič M, Jendelová P, Kubinová S, Dejneka A, Syková E: Highly efficient magnetic targeting of mesenchymal stem cells in spinal cord injury. Int J Nanomedicine. 2012, 7: 3719-3730.

PubMedCentralPubMedGoogle Scholar

Sasaki H, Tanaka N, Nakanishi K, Nishida K, Hamasaki T, Yamada K, Ochi M: Therapeutic effects with magnetic targeting of bone marrow stromal cells in a rat spinal cord injury model. Spine (Phila Pa 1976). 2011, 36: 933-938.

CrossRefGoogle Scholar

Yanai A, Häfeli UO, Metcalfe AL, Soema P, Addo L, Gregory-Evans CY, Po K, Shan X, Moritz OL, Gregory-Evans K: Focused magnetic stem cell targeting to the retina using superparamagnetic iron oxide nanoparticles. Cell Transplant. 2012, 21: 1137-1148.

CrossRefPubMedGoogle Scholar

Hallmark B, Darton NJ, Han X, Palit S, Mackley MR, Slater NKH: Observation and modelling of capillary flow occlusion resulting from the capture of superparamagnetic nanoparticles in a magnetic field. Chem Eng Sci. 2008, 63: 3960-3965.

CrossRefGoogle Scholar

Pinkernelle J, Calatayud P, Goya GF, Fansa H, Keilhoff G: Magnetic nanoparticles in primary neural cell cultures are mainly taken up by microglia. BMC Neurosci. 2012, 13: 32-

PubMedCentralCrossRefPubMedGoogle Scholar

Published
2019-01-31
Section
Review