Stem cell in alternative treatments for brain tumors: potential for gene delivery

  • Veronica Mariotti
  • Steven Greco
  • Ryan Mohan
  • George Nahas
  • Pranela Rameshwar
Keywords: Stem cells, Cell therapy, Glioblastoma, Cancer

Abstract

Despite ongoing research efforts and attempts to bring new drugs into trial, the prognosis for brain tumors remains poor. Patients with the most common and lethal intracranial neoplasia, glioblastoma multiforme (GBM), have an average survival of one year with combination of surgical resection, radiotherapy and temozolomide. One of the main problems in the treatment of GBM is getting drugs across the blood brain barrier (BBB) efficiently. In an attempt to solve this problem, there are ongoing experimental and clinical trials to deliver drugs within stem cells. The purpose for this method is the ease by which stem cells home to the brain. This review discusses the experimental and clinical applications of stem cells for GBM. We also discuss the different properties of stem cells. This information is important to understand why one stem cell would be advantageous over another in cell therapy. We provide an overview of the different drug delivery methods, gene-based treatments and cancer vaccines for GBM, including the stem cell subset.

Downloads

Download data is not yet available.

References

Kim SU, Jeung EB, Kim YB, Cho MH, Choi KC: Potential tumor-tropic effect of genetically engineered stem cells expressing suicide enzymes to selectively target invasive cancer in animal models. Anticancer Res. 2011, 31: 1249-1258.

PubMedGoogle Scholar

Munoz JL, Bliss SA, Greco SJ, Ramkissoon SH, Ligon KL, Rameshwar P: Delivery of functional anti-miR-9 by mesenchymal stem cell-derived exosomes to glioblastoma multiforme cells conferred chemosensitivity. Mol Ther Nucleic Acids. 2013, 2: e126-

PubMedCentralCrossRefPubMedGoogle Scholar

Greco SJ, Rameshwar P: Mesenchymal stem cells in drug/gene delivery: implications for cell therapy. Ther Deliv. 2012, 3: 997-1004.

CrossRefPubMedGoogle Scholar

Chang DJ, Oh SH, Lee N, Choi C, Jeon I, Kim HS, Shin DA, Lee SE, Kim D, Song J: Contralaterally transplanted human embryonic stem cell-derived neural precursor cells (ENStem-A) migrate and improve brain functions in stroke-damaged rats. Exp Mol Med. 2013, 45: e53-

PubMedCentralCrossRefPubMedGoogle Scholar

Wang S, Cheng H, Dai G, Wang X, Hua R, Liu X, Wang P, Chen G, Yue W, An Y: Umbilical cord mesenchymal stem cell transplantation significantly improves neurological function in patients with sequelae of traumatic brain injury. Brain Res. 2013, 1532: 76-84.

CrossRefPubMedGoogle Scholar

Takahashi K, Yamanaka S: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006, 126: 663-676.

CrossRefPubMedGoogle Scholar

Emsley JG, Mitchell BD, Kempermann G, Macklis JD: Adult neurogenesis and repair of the adult CNS with neural progenitors, precursors, and stem cells. Prog Neurobiol. 2005, 75: 321-341.

CrossRefPubMedGoogle Scholar

Young HE: Existence of reserve quiescent stem cells in adults, from amphibians to humans. Curr Top Microbiol Immunol. 2004, 280: 71-109.

PubMedGoogle Scholar

Sanai N, Alvarez-Buylla A, Berger MS: Neural stem cells and the origin of gliomas. N Engl J Med. 2005, 353: 811-822.

CrossRefPubMedGoogle Scholar

Harting MT, Sloan LE, Jimenez F, Baumgartner J, Cox CS: Subacute neural stem cell therapy for traumatic brain injury. J Surg Res. 2009, 153: 188-194.

PubMedCentralCrossRefPubMedGoogle Scholar

Phinney DG, Prockop DJ: Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repairΓÇöCurrent views. Stem Cells. 2007, 25: 2896-2902.

CrossRefPubMedGoogle Scholar

Castillo M, Liu K, Bonilla L, Rameshwar P: The immune properties of mesenchymal stem cells. Int J Biomed Sci. 2007, 3: 76-80.

PubMedCentralPubMedGoogle Scholar

Gutierrez-Fernandez M, Rodriguez-Frutos B, Ramos-Cejudo J, Teresa Vallejo-Cremades M, Fuentes B, Cerdan S, Diez-Tejedor E: Effects of intravenous administration of allogenic bone marrow- and adipose tissue-derived mesenchymal stem cells on functional recovery and brain repair markers in experimental ischemic stroke. Stem Cell Res Ther. 2013, 4: 11-

PubMedCentralCrossRefPubMedGoogle Scholar

Sigurjonsson OE, Perreault MC, Egeland T, Glover JC: Adult human hematopoietic stem cells produce neurons efficiently in the regenerating chicken embryo spinal cord. Proc Natl Acad Sci. 2005, 102: 5227-5232.

PubMedCentralCrossRefPubMedGoogle Scholar

Weissman IL: Stem cells: units of development, units of regeneration, and units in evolution. Cell. 2000, 100: 157-168.

CrossRefPubMedGoogle Scholar

Kogler G, Radke TF, Lefort A, Sensken S, Fischer J, Sorg RV, Wernet P: Cytokine production and hematopoiesis supporting activity of cord blood-derived unrestricted somatic stem cells. Exp Hematol. 2005, 33: 573-583.

CrossRefPubMedGoogle Scholar

Nakagomi T, Taguchi A, Fujimori Y, Saino O, Nakano-Doi A, Kubo S, Gotoh A, Soma T, Yoshikawa H, Nishizaki T, Nakagomi N, Stern DM, Matsuyama T: Isolation and characterization of neural stem/progenitor cells from post-stroke cerebral cortex in mice. Eur J Neurosci. 2009, 29: 1842-1852.

CrossRefPubMedGoogle Scholar

Nunes MC, Roy NS, Keyoung HM, Goodman RR, McKhann G, Jiang L, Kang J, Nedergaard M, Goldman SA: Identification and isolation of multipotential neural progenitor cells from the subcortical white matter of the adult human brain. Nat Med. 2003, 9: 439-447.

CrossRefPubMedGoogle Scholar

Cramer SC: Repairing the human brain after stroke: I. Mechanisms of spontaneous recovery. Ann Neurol. 2008, 63: 272-287.

CrossRefPubMedGoogle Scholar

Peddi PF, Hurvitz SA: PI3K pathway inhibitors for the treatment of brain metastases with a focus on HER2+ breast cancer. J Neurooncol. 2014, 117: 7-13.

PubMedCentralCrossRefPubMedGoogle Scholar

Balyasnikova IV, Prasol MS, Ferguson SD, Han Y, Ahmed AU, Gutova M, Tobias AL, Mustafi D, Rincon E, Zhang L, Aboody KS, Lesniak MS: Intranasal delivery of mesenchymal stem cells significantly extends survival of irradiated mice with experimental brain tumors. Mol Ther online. 2014, 22: 140-148.

Google Scholar

Burgess A, Ayala-Grosso CA, Ganguly M, Jordao JF, Aubert I, Hynynen K: Targeted delivery of neural stem cells to the brain using MRI-guided focused ultrasound to disrupt the blood–brain barrier. PLoS One. 2011, 6: e27877-

PubMedCentralCrossRefPubMedGoogle Scholar

Aryal M, Arvanitis CD, Alexander PM, McDannold N: Ultrasound-mediated blood–brain barrier disruption for targeted drug delivery in the central nervous system. Adv Drug Deliv Rev. 2014, 72: 94-109.

CrossRefPubMedGoogle Scholar

Varamini P, Toth I: Lipid- and sugar-modified endomorphins: novel targets for the treatment of neuropathic pain. Frontiers Pharmacol. 2013, 4: 1-7.

CrossRefGoogle Scholar

Bhujbal SV, de Vos P, Niclou SP: Drug and cell encapsulation: alternative delivery options for the treatment of malignant brain tumors. Adv Drug Deliv Rev. 2014, 67-68: 142-153.

CrossRefPubMedGoogle Scholar

Gurudevan S, Kanwar RK, Veedu RN, Sasidharan S, Kennedy RL, Walder K, Prasad N, Kanwar JR: Targeted multimodal liposomes for nano-delivery and imaging: an avenger for drug resistance and cancer. Curr Gene Ther. 2013, 13: 322-334.

CrossRefPubMedGoogle Scholar

Altaner C, Altanerova V, Cihova M, Ondicova K, Rychly B, Baciak L, Mravec B: Complete regression of glioblastoma by mesenchymal stem cells mediated prodrug gene therapy simulating clinical therapeutic scenario. Int J Cancer. 2014, 134: 1458-1465.

CrossRefPubMedGoogle Scholar

Roger M, Clavreul A, Huynh NT, Passirani C, Schiller P, Vessieres A, Montero-Menei C, Menei P: Ferrociphenol lipid nanocapsule delivery by mesenchymal stromal cells in brain tumor therapy. Intl J Pharmaceutics. 2012, 423: 63-68.

CrossRefGoogle Scholar

Kim SM, Woo JS, Jeong CH, Ryu CH, Jang JD, Jeun SS: Potential application of temozolomide in mesenchymal stem cell-based TRAIL gene therapy against malignant glioma. Stem Cells Transl Med. 2014, 3: 172-182.

PubMedCentralCrossRefPubMedGoogle Scholar

Kim SM, Woo JS, Jeong CH, Ryu CH, Lim JY, Jeun SS: Effective combination therapy for malignant glioma with TRAIL-secreting mesenchymal stem cells and lipoxygenase inhibitor MK886. Cancer Res. 2012, 72: 4807-4817.

CrossRefPubMedGoogle Scholar

Roger M, Clavreul A, Venier-Julienne MC, Passirani C, Sindji L, Schiller P, Montero-Menei C, Menei P: Mesenchymal stem cells as cellular vehicles for delivery of nanoparticles to brain tumors. Biomaterials. 2010, 31: 8393-8401.

CrossRefPubMedGoogle Scholar

Choi SA, Lee JY, Wang KC, Phi JH, Song SH, Song J, Kim SK: Human adipose tissue-derived mesenchymal stem cells: characteristics and therapeutic potential as cellular vehicles for prodrug gene therapy against brainstem gliomas. Eur J Cancer. 48: 129-137.

Google Scholar

Kim SK, Kim SU, Park IH, Bang JH, Aboody KS, Wang KC, Cho BK, Kim M, Menon LG, Black PM, Carroll RS: Human neural stem cells target experimental intracranial medulloblastoma and deliver a therapeutic gene leading to tumor regression. Clin Cancer Res. 2006, 12: 5550-5556.

CrossRefPubMedGoogle Scholar

Metz MZ, Gutova M, Lacey SF, Abramyants Y, Vo T, Gilchrist M, Tirughana R, Ghoda LY, Barish ME, Brown CE, Najbauer J, Potter PM, Portnow J, Synold TW, Aboody KS: Neural stem cell-mediated delivery of Irinotecan-activating carboxylesterases to glioma: implications for clinical use. Stem Cells Transl Med. 2013, 2: 983-992.

PubMedCentralCrossRefPubMedGoogle Scholar

Ahmed AU, Thaci B, Tobias AL, Auffinger B, Zhang L, Cheng Y, Kim CK, Yunis C, Han Y, Alexiades NG, Fan X, Aboody KS, Lesniak MS: A preclinical evaluation of neural stem cell-based cell carrier for targeted antiglioma oncolytic virotherapy. J Natl Cancer Inst. 2013, 105: 968-977.

PubMedCentralCrossRefPubMedGoogle Scholar

Aboody KS, Najbauer J, Metz MZ, D’Apuzzo M, Gutova M, Annala AJ, Synold TW, Couture LA, Blanchard S, Moats RA, Garcia E, Aramburo S, Valenzuela VV, Frank RT, Barish ME, Bown CE, Kim SU, Badie B, Portnow J: Neural stem cell-mediated enzyme/prodrug therapy for glioma: preclinical studies. Sci Transl Med. 2013, 5: 184ra59-

CrossRefPubMedGoogle Scholar

Stock AD, Wen J, Putterman C: Neuropsychiatric lupus, the blood brain barrier, and the TWEAK/Fn14 pathway. Front Immunol. 2013, 4: 484-

PubMedCentralCrossRefPubMedGoogle Scholar

Lee H, Pienaar IS: Disruption of the blood–brain barrier in Parkinson’s disease: curse or route to a cure?. Front Biosci. 2014, 19: 272-280.

CrossRefGoogle Scholar

Hurtado-Alvarado G, Cabanas-Morales AM, Gomez-Gonzalez B: Pericytes: brain-immune interface modulators. Front Integr Neurosci. 2014, 7: 80-

PubMedCentralCrossRefPubMedGoogle Scholar

Marsh JC, Goldfarb J, Shafman TD, Diaz AZ: Current status of immunotherapy and gene therapy for high-grade gliomas. Cancer Control. 2013, 20: 43-48.

PubMedGoogle Scholar

Culver KW, Ram Z, Wallbridge S, Ishii H, Oldfield EH, Blaese RM: In vivo gene transfer with retroviral vector-producer cells for treatment of experimental brain tumors. Science. 1992, 256: 1550-1552.

CrossRefPubMedGoogle Scholar

Trask TW, Trask RP, Aguilar-Cordova E, Shine HD, Wyde PR, Goodman JC, Hamilton WJ, Rojas-Martinez A, Chen SH, Woo SLC, Grossman RG: Phase I study of adenoviral delivery of the HSV-tk gene and Ganciclovir administration in patients with recurrent malignant brain tumors. Mol Ther. 2000, 1: 195-203.

CrossRefPubMedGoogle Scholar

Chiocca EA, Aguilar LK, Bell SD, Kaur B, Hardcastle J, Cavaliere R, McGregor J, Lo S, Ray-Chaudhuri A, Chakravarti A, Grecula J, Newton H, Harris KS, Grossman RG, Trask TW, Baskin DS, Monterroso C, Manzanera AG, Aguilar-Cordova E, New PZ: Phase IB study of gene-mediated cytotoxic immunotherapy adjuvant to up-front surgery and intensive timing radiation for malignant glioma. J Clin Oncol. 2011, 29: 3611-3619.

PubMedCentralCrossRefPubMedGoogle Scholar

Sandmair AM, Loimas S, Puranen P, Immonen A, Kossila M, Puranen M, Hurskainen H, Tyynela K, Turunen M, Vanninen R, Lehtolainen P, Paljarvi L, Johansson R, Vapalahti M, Yla-Herttuala S: Thymidine kinase gene therapy for human malignant glioma, using replication-deficient retroviruses or adenoviruses. Hum Gene Ther. 2000, 11: 2197-2205.

CrossRefPubMedGoogle Scholar

Rainov NG: A phase III clinical evaluation of herpes simplex virus type 1 thymidine kinase and ganciclovir gene therapy as an adjuvant to surgical resection and radiation in adults with previously untreated glioblastoma multiforme. Hum Gene Ther. 2000, 11: 2389-2401.

CrossRefPubMedGoogle Scholar

Westphal M, Yla-Herttuala S, Martin J, Warnke P, Menei P, Eckland D, Kinley J, Kay R, Ram Z: Adenovirus-mediated gene therapy with sitimagene ceradenovec followed by intravenous ganciclovir for patients with operable high-grade glioma (ASPECT): a randomised, open-label, phase 3 trial. Lancet Oncol. 2013, 14: 823-833.

CrossRefPubMedGoogle Scholar

Harsh GR, Deisboeck TS, Louis DN, Hilton J, Colvin M, Silver JS, Qureshi NH, Kracher J, Finkelstein D, Chiocca EA, Hochberg FH: Thymidine kinase activation of ganciclovir in recurrent malignant gliomas: a gene-marking and neuropathological study. J Neurosurg. 2000, 92: 804-811.

CrossRefPubMedGoogle Scholar

Wakimoto H, Mohapatra G, Kanai R, Curry WT, Yip S, Nitta M, Patel AP, Barnard ZR, Stemmer-Rachamimov AO, Louis DN, Martuza RL, Rabkin SD: Maintenance of primary tumor phenotype and genotype in glioblastoma stem cells. Neuro-Oncol. 2012, 14: 132-144.

PubMedCentralCrossRefPubMedGoogle Scholar

Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, Dewhirst MW, Bigner DD, Rich JN: Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 2006, 444: 756-760.

CrossRefPubMedGoogle Scholar

Chan XH, Nama S, Gopal F, Rizk P, Ramasamy S, Sundaram G, Ow GS, Ivshina AV, Tanavde V, Haybaeck J, Kuznetsov V, Sampath P: Targeting glioma stem cells by functional inhibition of a prosurvival oncomiR-138 in malignant gliomas. Cell Rep. 2012, 2: 591-602.

CrossRefPubMedGoogle Scholar

Yang YP, Chien Y, Chiou GY, Cherng JY, Wang ML, Lo WL, Chang YL, Huang PI, Chen YW, Shih YH, Chen MT, Chiou SH: Inhibition of cancer stem cell-like properties and reduced chemoradioresistance of glioblastoma using microRNA145 with cationic polyurethane-short branch PEI. Biomaterials. 2012, 33: 1462-1476.

CrossRefPubMedGoogle Scholar

Fan X, Khaki L, Zhu TS, Soules ME, Talsma CE, Gul N, Koh C, Zhang J, Li YM, Maciaczyk J, Nikkhah G, DiMeco F, Piccirillo S, Vescovi AL, Eberhart CG: NOTCH pathway blockade depletes CD133-positive glioblastoma cells and inhibits growth of tumor neurospheres and xenografts. Stem Cells. 2010, 28: 5-16.

PubMedCentralPubMedGoogle Scholar

Jeon JY, An JH, Kim SU, Park HG, Lee MA: Migration of human neural stem cells toward an intracranial glioma. Exp Mol Med. 2008, 40: 84-91.

PubMedCentralCrossRefPubMedGoogle Scholar

Auffinger B, Morshed R, Tobias A, Cheng Y, Ahmed AU, Lesniak MS: Drug-loaded nanoparticle systems and adult stem cells: a potential marriage for the treatment of malignant glioma?. Oncotarget. 2013, 4: 378-396.

PubMedCentralCrossRefPubMedGoogle Scholar

Cheng Y, Morshed R, Cheng SH, Tobias A, Auffinger B, Wainwright DA, Zhang L, Yunis C, Han Y, Chen CT, Lo LW, Aboody KS, Ahmed AU, Lesniak MC: Nanoparticle-programmed self-destructive neural stem cells for glioblastoma targeting and therapy. Small. 2013, 9: 4123-4129.

CrossRefPubMedGoogle Scholar

Sasportas LS, Kasmieh R, Wakimoto H, Hingtgen S, van de Water JAJM, Mohapatra G, Figueiredo JL, Martuza RL, Weissleder R, Shah K: Assessment of therapeutic efficacy and fate of engineered human mesenchymal stem cells for cancer therapy. Proc Natl Acad Sci. 2009, 106: 4822-4827.

PubMedCentralCrossRefPubMedGoogle Scholar

Balyasnikova IV, Ferguson SD, Sengupta S, Han Y, Lesniak MS: Mesenchymal stem cells modified with a single-chain antibody against EGFRvIII successfully inhibit the growth of human xenograft malignant glioma. PLoS One. 2010, 5: e9750-

PubMedCentralCrossRefPubMedGoogle Scholar

Wollmann G, Ozduman K, van den Pol AN: Oncolytic virus therapy for glioblastoma multiforme: concepts and candidates. Cancer J. 2012, 18: 69-81.

PubMedCentralCrossRefPubMedGoogle Scholar

Forsy P, Roldan G, George D, Wallace C, Palmer CA, Morris D, Cairncross G, Matthews MV, Markert J, Gillespie Y, Coffey M, Thompson B, Hamilton M: A phase I trial of intratumoral administration of reovirus in patients with histologically confirmed recurrent malignant gliomas. Mol Ther. 2008, 16: 627-632.

CrossRefGoogle Scholar

Harrow S, Papanastassiou V, Harland J, Mabbs R, Petty R, Fraser M, Hadley D, Patterson J, Brown SM, Rampling R: HSV1716 injection into the brain adjacent to tumour following surgical resection of high-grade glioma: safety data and long-term survival. Gene Ther. 2004, 11: 1648-1658.

CrossRefPubMedGoogle Scholar

Markert JM, Medlock MD, Rabkin SD, Gillespie GY, Todo T, Hunter WD, Palmer CA, Feigenbaum F, Tornatore C, Tufaro F, Martuza RL: Conditionally replicating herpes simplex virus mutant, G207 for the treatment of malignant glioma: results of a phase I trial. Gene Ther. 2000, 7: 867-874.

CrossRefPubMedGoogle Scholar

Cheema TA, Wakimoto H, Fecci PE, Ning J, Kuroda T, Jeyaretna DS, Martuza RL, Rabkin SD: Multifaceted oncolytic virus therapy for glioblastoma in an immunocompetent cancer stem cell model. Proc Natl Acad Sci. 2013, 110: 12006-12011.

PubMedCentralCrossRefPubMedGoogle Scholar

Ogi C, Aruga A: Immunological monitoring of anticancer vaccines in clinical trials. Oncoimmunol. 2013, 2: e26012-

CrossRefGoogle Scholar

Chang CN, Huang YC, Yang DM, Kikuta K, Wei KJ, Kubota T, Yang WK: A phase I/II clinical trial investigating the adverse and therapeutic effects of a postoperative autologous dendritic cell tumor vaccine in patients with malignant glioma. J Clin Neurosci. 2011, 18: 1048-1054.

CrossRefPubMedGoogle Scholar

Jie X, Hua L, Jiang W, Feng F, Feng G, Hua Z: Clinical application of a dendritic cell vaccine raised against heat-shocked glioblastoma. Cell Biochem Biophys. 2012, 62: 91-99.

CrossRefPubMedGoogle Scholar

Phuphanich S, Wheeler C, Rudnick J, Mazer M, Wang H, Nuno M, Richardson J, Fan X, Ji J, Chu R, Bender JG, Hawkins ES, Chirag G, Black KL, Yu JS: Phase I trial of a multi-epitope-pulsed dendritic cell vaccine for patients with newly diagnosed glioblastoma. Cancer Immunol Immunother. 2013, 62: 125-135.

PubMedCentralCrossRefPubMedGoogle Scholar

Muragaki Y, Maruyama T, Iseki H, Tanaka M, Shinohara C, Takakura K, Tsuboi K, Yamamoto T, Matsumura A, Matsutani M, Karasawa K, Shimada K, Yamaguchi N, Nakazato Y, Sato K, Uemae Y, Ohno T, Okada Y, Hori T: Phase I/IIa trial of autologous formalin-fixed tumor vaccine concomitant with fractionated radiotherapy for newly diagnosed glioblastoma. J Neurosurg. 2011, 115: 248-255.

CrossRefPubMedGoogle Scholar

Sampson JH, Heimberger AB, Archer GE, Aldape KD, Friedman AH, Friedman HS, Gilbert MR, Herndon JE, McLendon RE, Mitchell DA, Reardon DA, Sawaya R, Schmittling RJ, Shi W, Vredenburgh JJ, Bigner DD: Immunologic escape after prolonged progression-free survival with epidermal growth factor receptor variant III peptide vaccination in patients with newly diagnosed glioblastoma. J Clin Oncol. 2010, 28: 4722-4729.

PubMedCentralCrossRefPubMedGoogle Scholar

Ji J, Judkowski VA, Liu G, Wang H, Bunying A, Li Z, Xu M, Bender J, Pinilla C, Yu JS: Identification of novel human leukocyte antigen-a*0201-restricted, cytotoxic T lymphocyte epitopes on CD133 for cancer stem cell immunotherapy. Stem Cells Transl Med. 2014, 3: 356-364.

PubMedCentralCrossRefPubMedGoogle Scholar

Billingham RE, Brent L, Medawar PB: Quantitative studies on tissue transplantation immunity. II. The origin, strength and duration of actively and adoptively acquired immunity. Proc R Soc Lond B Biol Sci. 1954, 143: 58-80.

CrossRefPubMedGoogle Scholar

Eshhar Z, Waks T, Gross G, Schindler DG: Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors. Proc Natl Acad Sci. 1993, 90: 720-724.

PubMedCentralCrossRefPubMedGoogle Scholar

Miao H, Choi BD, Suryadevara CM, Sanchez-Perez L, Yang S, De Leon G, Sayour EJ, McLendon R, Herndon JE, Healy P, Archer GE, Bigner DD, Johnson LA, Sampson JH: EGFRvIII-specific Chimeric antigen receptor T cells migrate to and kill tumor deposits infiltrating the brain parenchyma in an invasive xenograft model of glioblastoma. PLoS One. 2014, 9: e94281-

PubMedCentralCrossRefPubMedGoogle Scholar

Imai C, Mihara K, Andreansky M, Nicholson IC, Pui CH, Geiger TL, Campana D: Chimeric receptors with 4-1BB signaling capacity provoke potent cytotoxicity against acute lymphoblastic leukemia. Leukemia. 2004, 18: 676-684.

CrossRefPubMedGoogle Scholar

Carpenito C, Milone MC, Hassan R, Simonet JC, Lakhal M, Suhoski MM, Varela-Rohena A, Haines KM, Heitjan DF, Albelda SM, Carroll RG, Riley JL, Pastan I, June CH: Control of large, established tumor xenografts with genetically retargeted human T cells containing CD28 and CD137 domains. Proc Natl Acad Sci. 2009, 106: 3360-3365.

PubMedCentralCrossRefPubMedGoogle Scholar

Zhao Y, Wang QJ, Yang S, Kochenderfer JN, Zheng Z, Zhong X, Sadelain M, Eshhar Z, Rosenberg SA, Morgan RA: A Herceptin-based Chimeric antigen receptor with modified signaling domains leads to enhanced survival of transduced T lymphocytes and antitumor activity. J Immunol. 2009, 183: 5563-5574.

CrossRefPubMedGoogle Scholar

Brentjens R, Yeh R, Bernal Y, Riviere I, Sadelain M: Treatment of chronic lymphocytic leukemia with genetically targeted autologous T cells: case report of an unforeseen adverse event in a phase I clinical trial. Mol Ther. 2010, 18: 666-668.

PubMedCentralCrossRefPubMedGoogle Scholar

Kochenderfer JN, Dudley ME, Feldman SA, Wilson WH, Spaner DE, Maric I, Stetler-Stevenson M, Phan GQ, Hughes MS, Sherry RM, Yang JC, Kammula US, Devillier L, Carpenter R, Nathan DA, Morgan RA, Laurencot C, Rosenberg SA: B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor-transduced T cells. Blood. 2012, 119: 2709-2720.

PubMedCentralCrossRefPubMedGoogle Scholar

Grupp SA, Kalos M, Barrett D, Aplenc R, Porter DL, Rheingold SR, Teachey DT, Chew A, Hauck B, Wright JF, Milone MC, Levine BL, June CH: Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med. 2013, 368: 1509-1518.

PubMedCentralCrossRefPubMedGoogle Scholar

Le Huu D, Matsushita T, Jin G, Hamaguchi Y, Hasegawa M, Takehara K, Fujimoto M: IL-6 blockade attenuates the development of murine sclerodermatous chronic graft-versus-host disease. J Invest Dermatol. 2012, 132: 2752-2761.

CrossRefPubMedGoogle Scholar

Pule MA, Savoldo B, Myers GD, Rossig C, Russell HV, Dotti G, Huls MH, Liu E, Gee AP, Mei Z, Yvon E, Weiss HL, Liu H, Rooney CM, Heslop HE, Brenner MK: Virus-specific T cells engineered to coexpress tumor-specific receptors: persistence and antitumor activity in individuals with neuroblastoma. Nat Med. 2008, 14: 1264-1270.

PubMedCentralCrossRefPubMedGoogle Scholar

Barkholt L, Flory E, Jekerle V, Lucas-Samuel S, Ahnert P, Bisset L, Buscher D, Fibbe W, Foussat A, Kwa M, Lantz O, Maciulaitis R, Palomaki T, Schneider CK, Sensebe L, Tachdjian G, Tarte K, Tosca L, Salmikangas P: Risk of tumorigenicity in mesenchymal stromal cell-based therapies–bridging scientific observations and regulatory viewpoints. Cytotherapy. 2013, 15: 753-759.

CrossRefPubMedGoogle Scholar

Published
2019-01-31
Section
Review