Targeting the Wnt pathways for therapies

  • Artem Blagodatski
  • Dmitry Poteryaev
  • Vladimir Katanaev
Keywords: Wnt, Frizzled, Cancer, Regeneration, Drug discovery

Abstract

The Wnt/β-catenin signaling pathway is crucial in animal development from sponges to humans. Its activity in the adulthood is less general, with exceptions having huge medical importance. Namely, improper activation of this pathway is carcinogenic in many tissues, most notably in the colon, liver and the breast. On the other hand, the Wnt/β-catenin signaling must be re-activated in cases of tissue damage, and insufficient activation results in regeneration failure and degeneration. These both medically important implications are unified by the emerging importance of this signaling pathway in the control of proliferation of various types of stem cells, crucial for tissue regeneration and, in case of cancer stem cells – cancer progression and relapse. This article aims at briefly reviewing the current state of knowledge in the field of Wnt signaling, followed by a detailed discussion of current medical developments targeting distinct branches of the Wnt pathway for anti-cancer and pro-regeneration therapies.

Downloads

Download data is not yet available.

References

Logan CY, Nusse R: The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol. 2004, 20: 781-810.

PubMedGoogle Scholar

Adell T, Nefkens I, Muller WE: Polarity factor ‘Frizzled’ in the demosponge Suberites domuncula: identification, expression and localization of the receptor in the epithelium/pinacoderm(1). FEBS Lett. 2003, 554 (3): 363-368.

PubMedGoogle Scholar

Moroz LL, Kocot KM, Citarella MR, Dosung S, Norekian TP, Povolotskaya IS, Grigorenko AP, Dailey C, Berezikov E, Buckley KM, Ptitsyn A, Reshetov D, Mukherjee K, Moroz TP, Bobkova Y, Yu F, Kapitonov VV, Jurka J, Bobkov YV, Swore JJ, Girardo DO, Fodor A, Gusev F, Sanford R, Bruders R, Kittler E, Mills CE, Rast JP, Derelle R, Solovyev VV: The ctenophore genome and the evolutionary origins of neural systems. Nature. 2014, 510 (7503): 109-114.

PubMedCentralPubMedGoogle Scholar

Solis GP, Luchtenborg AM, Katanaev VL: Wnt secretion and gradient formation. Int J Mol Sci. 2013, 14 (3): 5130-5145.

PubMedCentralPubMedGoogle Scholar

Vinson CR, Conover S, Adler PN: A Drosophila tissue polarity locus encodes a protein containing seven potential transmembrane domains. Nature. 1989, 338 (6212): 263-264.

PubMedGoogle Scholar

Katanaev VL, Ponzielli R, Semeriva M, Tomlinson A: Trimeric G protein-dependent frizzled signaling in Drosophila. Cell. 2005, 120 (1): 111-122.

PubMedGoogle Scholar

Katanaev VL, Buestorf S: Frizzled Proteins are bona fide G Protein-Coupled Receptors. Available from Nature Precedings. 2009,http://hdlhandlenet/10101/npre200927651,

Google Scholar

Koval A, Katanaev VL: Wnt3a stimulation elicits G-protein-coupled receptor properties of mammalian Frizzled proteins. Biochem J. 2011, 433 (3): 435-440.

PubMedGoogle Scholar

Kilander MB, Dijksterhuis JP, Ganji RS, Bryja V, Schulte G: WNT-5A stimulates the GDP/GTP exchange at pertussis toxin-sensitive heterotrimeric G proteins. Cell Signal. 2011, 23 (3): 550-554.

PubMedGoogle Scholar

Egger-Adam D, Katanaev VL: Trimeric G protein-dependent signaling by Frizzled receptors in animal development. Front Biosci. 2008, 13: 4740-4755.

PubMedGoogle Scholar

Dijksterhuis JP, Petersen J, Schulte G: WNT/Frizzled signalling: receptor-ligand selectivity with focus on FZD-G protein signalling and its physiological relevance: IUPHAR Review 3. Br J Pharmacol. 2014, 171 (5): 1195-1209.

PubMedCentralPubMedGoogle Scholar

Gao C, Chen YG: Dishevelled: The hub of Wnt signaling. Cell Signal. 2010, 22 (5): 717-727.

PubMedGoogle Scholar

Egger-Adam D, Katanaev VL: The trimeric G protein Go inflicts a double impact on axin in the Wnt/frizzled signaling pathway. Dev Dyn. 2010, 239 (1): 168-183.

PubMedGoogle Scholar

Cliffe A, Hamada F, Bienz M: A role of Dishevelled in relocating Axin to the plasma membrane during wingless signaling. Curr Biol. 2003, 13 (11): 960-966.

PubMedGoogle Scholar

Kimelman D, Xu W: beta-catenin destruction complex: insights and questions from a structural perspective. Oncogene. 2006, 25 (57): 7482-7491.

PubMedGoogle Scholar

Willert K, Jones KA: Wnt signaling: is the party in the nucleus?. Genes Dev. 2006, 20 (11): 1394-1404.

PubMedGoogle Scholar

Karim R, Tse G, Putti T, Scolyer R, Lee S: The significance of the Wnt pathway in the pathology of human cancers. Pathology. 2004, 36 (2): 120-128.

PubMedGoogle Scholar

Purvanov V, Koval A, Katanaev VL: A direct and functional interaction between Go and Rab5 during G protein-coupled receptor signaling. Sci Signal. 2010, 3 (136): ra65.

PubMedGoogle Scholar

Blitzer JT, Nusse R: A critical role for endocytosis in Wnt signaling. BMC Cell Biol. 2006, 7: 28.

PubMedCentralPubMedGoogle Scholar

Veeman MT, Axelrod JD, Moon RT: A second canon. Functions and mechanisms of beta-catenin-independent Wnt signaling. Dev Cell. 2003, 5 (3): 367-377.

PubMedGoogle Scholar

Mikels AJ, Nusse R: Purified Wnt5a protein activates or inhibits beta-catenin-TCF signaling depending on receptor context. PLoS Biol. 2006, 4 (4): e115.

PubMedCentralPubMedGoogle Scholar

Willert K, Brown JD, Danenberg E, Duncan AW, Weissman IL, Reya T, Yates JR, Nusse R: Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature. 2003, 423 (6938): 448-452.

PubMedGoogle Scholar

Kalani MY, Cheshier SH, Cord BJ, Bababeygy SR, Vogel H, Weissman IL, Palmer TD, Nusse R: Wnt-mediated self-renewal of neural stem/progenitor cells. Proc Natl Acad Sci U S A. 2008, 105 (44): 16970-16975.

PubMedCentralPubMedGoogle Scholar

Lu J, Hou R, Booth CJ, Yang SH, Snyder M: Defined culture conditions of human embryonic stem cells. Proc Natl Acad Sci U S A. 2006, 103 (15): 5688-5693.

PubMedCentralPubMedGoogle Scholar

Zeng YA, Nusse R: Wnt proteins are self-renewal factors for mammary stem cells and promote their long-term expansion in culture. Cell Stem Cell. 2010, 6 (6): 568-577.

PubMedCentralPubMedGoogle Scholar

Sato T, Stange DE, Ferrante M, Vries RG, Van Es JH, Van den Brink S, Van Houdt WJ, Pronk A, Van Gorp J, Siersema PD, Clevers H: Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology. 2011, 141 (5): 1762-1772.

PubMedGoogle Scholar

Curtin JC, Lorenzi MV: Drug discovery approaches to target Wnt signaling in cancer stem cells. Oncotarget. 2010, 1 (7): 552-566.

PubMedCentralPubMedGoogle Scholar

Elshamy WM, Duhe RJ: Overview: cellular plasticity, cancer stem cells and metastasis. Cancer Lett. 2013, 341 (1): 2-8.

PubMedGoogle Scholar

Polakis P: Wnt signaling in cancer. Cold Spring Harb Perspect Biol. 2012, 4 (5): a008052.

PubMedCentralPubMedGoogle Scholar

Munemitsu S, Albert I, Souza B, Rubinfeld B, Polakis P: Regulation of intracellular beta-catenin levels by the adenomatous polyposis coli (APC) tumor-suppressor protein. Proc Natl Acad Sci U S A. 1995, 92 (7): 3046-3050.

PubMedCentralPubMedGoogle Scholar

Geyer FC, Lacroix-Triki M, Savage K, Arnedos M, Lambros MB, MacKay A, Natrajan R, Reis-Filho JS: beta-Catenin pathway activation in breast cancer is associated with triple-negative phenotype but not with CTNNB1 mutation. Mod Pathol. 2011, 24 (2): 209-231.

PubMedGoogle Scholar

Parmar A, Marz S, Rushton S, Holzwarth C, Lind K, Kayser S, Dohner K, Peschel C, Oostendorp RA, Gotze KS: Stromal niche cells protect early leukemic FLT3-ITD + progenitor cells against first-generation FLT3 tyrosine kinase inhibitors. Cancer Res. 2011, 71 (13): 4696-4706.

PubMedGoogle Scholar

Naujokat C: Targeting Human Cancer Stem Cells with Monoclonal Antibodies. J Clin Cell Immunol. 2012, S5: 007.

Google Scholar

Takahashi-Yanaga F, Kahn M: Targeting Wnt signaling: can we safely eradicate cancer stem cells?. Clin Cancer Res. 2010, 16 (12): 3153-3162.

PubMedGoogle Scholar

Liu J, Pan S, Hsieh MH, Ng N, Sun F, Wang T, Kasibhatla S, Schuller AG, Li AG, Cheng D, Li J, Tompkins C, Pferdekamper A, Steffy A, Cheng J, Kowal C, Phung V, Guo G, Wang Y, Graham MP, Flynn S, Brenner JC, Li C, Villarroel MC, Schultz PG, Wu X, McNamara P, Sellers WR, Petruzzelli L, Boral AL: Targeting Wnt-driven cancer through the inhibition of Porcupine by LGK974. Proc Natl Acad Sci U S A. 2013, 110 (50): 20224-20229.

PubMedCentralPubMedGoogle Scholar

Takada R, Satomi Y, Kurata T, Ueno N, Norioka S, Kondoh H, Takao T, Takada S: Monounsaturated Fatty Acid Modification of Wnt Protein: Its Role in Wnt Secretion. Dev Cell. 2006, 11 (6): 791-801.

PubMedGoogle Scholar

Huang SM, Mishina YM, Liu S, Cheung A, Stegmeier F, Michaud GA, Charlat O, Wiellette E, Zhang Y, Wiessner S, Hild M, Shi X, Wilson CJ, Mickanin C, Myer V, Fazal A, Tomlinson R, Serluca F, Shao W, Cheng H, Shultz M, Rau C, Schirle M, Schlegl J, Ghidelli S, Fawell S, Lu C, Curtis D, Kirschner MW, Lengauer C: Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature. 2009, 461 (7264): 614-620.

PubMedGoogle Scholar

Lau T, Chan E, Callow M, Waaler J, Boggs J, Blake RA, Magnuson S, Sambrone A, Schutten M, Firestein R, Machon O, Korinek V, Choo E, Diaz D, Merchant M, Polakis P, Holsworth DD, Krauss S, Costa M: A novel tankyrase small-molecule inhibitor suppresses APC mutation-driven colorectal tumor growth. Cancer Res. 2013, 73 (10): 3132-3144.

PubMedGoogle Scholar

Lee E, Salic A, Kruger R, Heinrich R, Kirschner MW: The roles of APC and Axin derived from experimental and theoretical analysis of the Wnt pathway. PLoS Biol. 2003, 1 (1): E10.

PubMedCentralPubMedGoogle Scholar

Polakis P: The many ways of Wnt in cancer. Curr Opin Genet Dev. 2007, 17 (1): 45-51.

PubMedGoogle Scholar

Chen M, Wang J, Lu J, Bond MC, Ren XR, Lyerly HK, Barak LS, Chen W: The anti-helminthic niclosamide inhibits Wnt/Frizzled1 signaling. Biochemistry. 2009, 48 (43): 10267-10274.

PubMedCentralPubMedGoogle Scholar

Londono-Joshi AI, Arend RC, Aristizabal L, Lu W, Samant RS, Metge BJ, Hidalgo B, Grizzle WE, Conner M, Forero-Torres A, Lobuglio AF, Li Y, Buchsbaum DJ: Effect of niclosamide on basal-like breast cancers. Mol Cancer Ther. 2014, 13 (4): 800-811.

PubMedCentralPubMedGoogle Scholar

Li Y, Li PK, Roberts MJ, Arend RC, Samant RS, Buchsbaum DJ: Multi-targeted therapy of cancer by niclosamide: A new application for an old drug. Cancer Lett. 2014, 349 (1): 8-14.

PubMedCentralPubMedGoogle Scholar

Koval AV, Vlasov P, Shichkova P, Khunderyakova S, Markov Y, Panchenko J, Volodina A, Kondrashov FA, Katanaev VL: Anti-leprosy drug clofazimine inhibits growth of triple-negative breast cancer cells via inhibition of canonical Wnt signaling. Biochem Pharmacol. 2014, 87 (4): 571-578.

PubMedGoogle Scholar

Hanaki H, Yamamoto H, Sakane H, Matsumoto S, Ohdan H, Sato A, Kikuchi A: An anti-Wnt5a antibody suppresses metastasis of gastric cancer cells in vivo by inhibiting receptor-mediated endocytosis. Mol Cancer Ther. 2012, 11 (2): 298-307.

PubMedGoogle Scholar

He B, Reguart N, You L, Mazieres J, Xu Z, Lee AY, Mikami I, McCormick F, Jablons DM: Blockade of Wnt-1 signaling induces apoptosis in human colorectal cancer cells containing downstream mutations. Oncogene. 2005, 24 (18): 3054-3058.

PubMedGoogle Scholar

DeAlmeida VI, Miao L, Ernst JA, Koeppen H, Polakis P, Rubinfeld B: The soluble wnt receptor Frizzled8CRD-hFc inhibits the growth of teratocarcinomas in vivo. Cancer Res. 2007, 67 (11): 5371-5379.

PubMedGoogle Scholar

Koval A, Katanaev VL: Platforms for high-throughput screening of Wnt/Frizzled antagonists. Drug Discov Today. 2012, 17 (23–24): 1316-1322.

PubMedGoogle Scholar

Kola I, Landis J: Can the pharmaceutical industry reduce attrition rates?. Nat Rev Drug Discov. 2004, 3 (8): 711-715.

PubMedGoogle Scholar

Hutchings CJ, Koglin M, Marshall FH: Therapeutic antibodies directed at G protein-coupled receptors. MAbs. 2010, 2 (6): 594-606.

PubMedCentralPubMedGoogle Scholar

Jenei V, Sherwood V, Howlin J, Linnskog R, Safholm A, Axelsson L, Andersson T: A t-butyloxycarbonyl-modified Wnt5a-derived hexapeptide functions as a potent antagonist of Wnt5a-dependent melanoma cell invasion. Proc Natl Acad Sci U S A. 2009, 106 (46): 19473-19478.

PubMedCentralPubMedGoogle Scholar

Safholm A, Leandersson K, Dejmek J, Nielsen CK, Villoutreix BO, Andersson T: A formylated hexapeptide ligand mimics the ability of Wnt-5a to impair migration of human breast epithelial cells. J Biol Chem. 2006, 281 (5): 2740-2749.

PubMedGoogle Scholar

Safholm A, Tuomela J, Rosenkvist J, Dejmek J, Harkonen P, Andersson T: The Wnt-5a-derived hexapeptide Foxy-5 inhibits breast cancer metastasis in vivo by targeting cell motility. Clin Cancer Res. 2008, 14 (20): 6556-6563.

PubMedGoogle Scholar

Fukukawa C, Hanaoka H, Nagayama S, Tsunoda T, Toguchida J, Endo K, Nakamura Y, Katagiri T: Radioimmunotherapy of human synovial sarcoma using a monoclonal antibody against FZD10. Cancer Sci. 2008, 99 (2): 432-440.

PubMedGoogle Scholar

King TD, Zhang W, Suto MJ, Li Y: Frizzled7 as an emerging target for cancer therapy. Cell Signal. 2012, 24 (4): 846-851.

PubMedCentralPubMedGoogle Scholar

Yang L, Wu X, Wang Y, Zhang K, Wu J, Yuan YC, Deng X, Chen L, Kim CC, Lau S, Somlo G, Yen Y: FZD7 has a critical role in cell proliferation in triple negative breast cancer. Oncogene. 2011, 30 (43): 4437-4446.

PubMedGoogle Scholar

Gurney A, Axelrod F, Bond CJ, Cain J, Chartier C, Donigan L, Fischer M, Chaudhari A, Ji M, Kapoun AM, Lam A, Lazetic S, Ma S, Mitra S, Park IK, Pickell K, Sato A, Satyal S, Stroud M, Tran H, Yen WC, Lewicki J, Hoey T: Wnt pathway inhibition via the targeting of Frizzled receptors results in decreased growth and tumorigenicity of human tumors. Proc Natl Acad Sci U S A. 2012, 109 (29): 11717-11722.

PubMedCentralPubMedGoogle Scholar

Warrier S, Balu SK, Kumar AP, Millward M, Dharmarajan A: Wnt antagonist, secreted frizzled-related protein 4 (sFRP4), increases chemotherapeutic response of glioma stem-like cells. Oncol Res. 2013, 21 (2): 93-102.

PubMedGoogle Scholar

Kaur P, Mani S, Cros MP, Scoazec JY, Chemin I, Hainaut P, Herceg Z: Epigenetic silencing of sFRP1 activates the canonical Wnt pathway and contributes to increased cell growth and proliferation in hepatocellular carcinoma. Tumour Biol. 2012, 33 (2): 325-336.

PubMedGoogle Scholar

Chung MT, Lai HC, Sytwu HK, Yan MD, Shih YL, Chang CC, Yu MH, Liu HS, Chu DW, Lin YW: SFRP1 and SFRP2 suppress the transformation and invasion abilities of cervical cancer cells through Wnt signal pathway. Gynecol Oncol. 2009, 112 (3): 646-653.

PubMedGoogle Scholar

Fontenot E, Rossi E, Mumper R, Snyder S, Siamakpour-Reihani S, Ma P, Hilliard E, Bone B, Ketelsen D, Santos C, Patterson C, Klauber-DeMore N: A novel monoclonal antibody to secreted frizzled-related protein 2 inhibits tumor growth. Mol Cancer Ther. 2013, 12 (5): 685-695.

PubMedCentralPubMedGoogle Scholar

Holland JD, Gyorffy B, Vogel R, Eckert K, Valenti G, Fang L, Lohneis P, Elezkurtaj S, Ziebold U, Birchmeier W: Combined Wnt/beta-catenin, Met, and CXCL12/CXCR4 signals characterize basal breast cancer and predict disease outcome. Cell Rep. 2013, 5 (5): 1214-1227.

PubMedGoogle Scholar

Nejak-Bowen K, Monga SP: Wnt/beta-catenin signaling in hepatic organogenesis. Organogenesis. 2008, 4 (2): 92-99.

PubMedCentralPubMedGoogle Scholar

Tan X, Yuan Y, Zeng G, Apte U, Thompson MD, Cieply B, Stolz DB, Michalopoulos GK, Kaestner KH, Monga SP: Beta-catenin deletion in hepatoblasts disrupts hepatic morphogenesis and survival during mouse development. Hepatology. 2008, 47 (5): 1667-1679.

PubMedCentralPubMedGoogle Scholar

Rossi JM, Dunn NR, Hogan BL, Zaret KS: Distinct mesodermal signals, including BMPs from the septum transversum mesenchyme, are required in combination for hepatogenesis from the endoderm. Genes Dev. 2001, 15 (15): 1998-2009.

PubMedCentralPubMedGoogle Scholar

Gonzalez FJ: Role of beta-catenin in the adult liver. Hepatology. 2006, 43 (4): 650-653.

PubMedCentralPubMedGoogle Scholar

Monga SP, Pediaditakis P, Mule K, Stolz DB, Michalopoulos GK: Changes in WNT/beta-catenin pathway during regulated growth in rat liver regeneration. Hepatology. 2001, 33 (5): 1098-1109.

PubMedCentralPubMedGoogle Scholar

Petersen BE, Grossbard B, Hatch H, Pi L, Deng J, Scott EW: Mouse A6-positive hepatic oval cells also express several hematopoietic stem cell markers. Hepatology. 2003, 37 (3): 632-640.

PubMedGoogle Scholar

Lagasse E, Connors H, Al-Dhalimy M, Reitsma M, Dohse M, Osborne L, Wang X, Finegold M, Weissman IL, Grompe M: Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nat Med. 2000, 6 (11): 1229-1234.

PubMedGoogle Scholar

Yang W, Yan HX, Chen L, Liu Q, He YQ, Yu LX, Zhang SH, Huang DD, Tang L, Kong XN, Chen C, Liu SQ, Wu MC, Wang HY: Wnt/beta-catenin signaling contributes to activation of normal and tumorigenic liver progenitor cells. Cancer Res. 2008, 68 (11): 4287-4295.

PubMedGoogle Scholar

Williams JM, Oh SH, Jorgensen M, Steiger N, Darwiche H, Shupe T, Petersen BE: The role of the Wnt family of secreted proteins in rat oval "stem" cell-based liver regeneration: Wnt1 drives differentiation. Am J Pathol. 2010, 176 (6): 2732-2742.

PubMedCentralPubMedGoogle Scholar

Xu D, Yang F, Yuan JH, Zhang L, Bi HS, Zhou CC, Liu F, Wang F, Sun SH: Long noncoding RNAs associated with liver regeneration 1 accelerates hepatocyte proliferation during liver regeneration by activating Wnt/beta-catenin signaling. Hepatology. 2013, 58 (2): 739-751.

PubMedGoogle Scholar

Ding ZY, Liang HF, Jin GN, Chen WX, Wang W, Datta PK, Zhang MZ, Zhang B, Chen XP: Smad6 suppresses the growth and self-renewal of hepatic progenitor cells. J Cell Physiol. 2014, 229 (5): 651-660.

PubMedGoogle Scholar

Nakamura I, Fernandez-Barrena MG, Ortiz-Ruiz MC, Almada LL, Hu C, Elsawa SF, Mills LD, Romecin PA, Gulaid KH, Moser CD, Han JJ, Vrabel A, Hanse EA, Akogyeram NA, Albrecht JH, Monga SP, Sanderson SO, Prieto J, Roberts LR, Fernandez-Zapico ME: Activation of the transcription factor GLI1 by WNT signaling underlies the role of SULFATASE 2 as a regulator of tissue regeneration. J Biol Chem. 2013, 288 (29): 21389-21398.

PubMedCentralPubMedGoogle Scholar

Huch M, Dorrell C, Boj SF, Van Es JH, Li VS, van de Wetering M, Sato T, Hamer K, Sasaki N, Finegold MJ, Haft A, Vries RG, Grompe M, Clevers H: In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration. Nature. 2013, 494 (7436): 247-250.

PubMedCentralPubMedGoogle Scholar

Kuncewitch M, Yang WL, Molmenti E, Nicastro J, Coppa GF, Wang P: Wnt agonist attenuates liver injury and improves survival after hepatic ischemia/reperfusion. Shock. 2013, 39 (1): 3-10.

PubMedCentralPubMedGoogle Scholar

Leucht P, Minear S, Ten Berge D, Nusse R, Helms JA: Translating insights from development into regenerative medicine: the function of Wnts in bone biology. Semin Cell Dev Biol. 2008, 19 (5): 434-443.

PubMedGoogle Scholar

Moore KA, Lemischka IR: Stem cells and their niches. Science. 2006, 311 (5769): 1880-1885.

PubMedGoogle Scholar

Boyden LM, Mao J, Belsky J, Mitzner L, Farhi A, Mitnick MA, Wu D, Insogna K, Lifton RP: High bone density due to a mutation in LDL-receptor-related protein 5. N Engl J Med. 2002, 346 (20): 1513-1521.

PubMedGoogle Scholar

Little RD, Carulli JP, Del Mastro RG, Dupuis J, Osborne M, Folz C, Manning SP, Swain PM, Zhao SC, Eustace B, Lappe MM, Spitzer L, Zweier S, Braunschweiger K, Benchekroun Y, Hu X, Adair R, Chee L, FitzGerald MG, Tulig C, Caruso A, Tzellas N, Bawa A, Franklin B, McGuire S, Nogues X, Gong G, Allen KM, Anisowicz A, Morales AJ: A mutation in the LDL receptor-related protein 5 gene results in the autosomal dominant high-bone-mass trait. Am J Hum Genet. 2002, 70 (1): 11-19.

PubMedCentralPubMedGoogle Scholar

Babij P, Zhao W, Small C, Kharode Y, Yaworsky PJ, Bouxsein ML, Reddy PS, Bodine PV, Robinson JA, Bhat B, Marzolf J, Moran RA, Bex F: High bone mass in mice expressing a mutant LRP5 gene. J Bone Miner Res. 2003, 18 (6): 960-974.

PubMedGoogle Scholar

Morvan F, Boulukos K, Clement-Lacroix P, Roman Roman S, Suc-Royer I, Vayssiere B, Ammann P, Martin P, Pinho S, Pognonec P, Mollat P, Niehrs C, Baron R, Rawadi G: Deletion of a single allele of the Dkk1 gene leads to an increase in bone formation and bone mass. J Bone Miner Res. 2006, 21 (6): 934-945.

PubMedGoogle Scholar

Bodine PV, Zhao W, Kharode YP, Bex FJ, Lambert AJ, Goad MB, Gaur T, Stein GS, Lian JB, Komm BS: The Wnt antagonist secreted frizzled-related protein-1 is a negative regulator of trabecular bone formation in adult mice. Mol Endocrinol. 2004, 18 (5): 1222-1237.

PubMedGoogle Scholar

Gaur T, Lengner CJ, Hovhannisyan H, Bhat RA, Bodine PV, Komm BS, Javed A, Van Wijnen AJ, Stein JL, Stein GS, Lian JB: Canonical WNT signaling promotes osteogenesis by directly stimulating Runx2 gene expression. J Biol Chem. 2005, 280 (39): 33132-33140.

PubMedGoogle Scholar

Glass DA, Bialek P, Ahn JD, Starbuck M, Patel MS, Clevers H, Taketo MM, Long F, McMahon AP, Lang RA, Karsenty G: Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation. Dev Cell. 2005, 8 (5): 751-764.

PubMedGoogle Scholar

Holmen SL, Zylstra CR, Mukherjee A, Sigler RE, Faugere MC, Bouxsein ML, Deng L, Clemens TL, Williams BO: Essential role of beta-catenin in postnatal bone acquisition. J Biol Chem. 2005, 280 (22): 21162-21168.

PubMedGoogle Scholar

Day TF, Guo X, Garrett-Beal L, Yang Y: Wnt/beta-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. Dev Cell. 2005, 8 (5): 739-750.

PubMedGoogle Scholar

Hill TP, Taketo MM, Birchmeier W, Hartmann C: Multiple roles of mesenchymal beta-catenin during murine limb patterning. Development. 2006, 133 (7): 1219-1229.

PubMedGoogle Scholar

Ten Berge D, Brugmann SA, Helms JA, Nusse R: Wnt and FGF signals interact to coordinate growth with cell fate specification during limb development. Development. 2008, 135 (19): 3247-3257.

PubMedCentralPubMedGoogle Scholar

Hadjiargyrou M, Lombardo F, Zhao S, Ahrens W, Joo J, Ahn H, Jurman M, White DW, Rubin CT: Transcriptional profiling of bone regeneration. Insight into the molecular complexity of wound repair. J Biol Chem. 2002, 277 (33): 30177-30182.

PubMedGoogle Scholar

Zhong N, Gersch RP, Hadjiargyrou M: Wnt signaling activation during bone regeneration and the role of Dishevelled in chondrocyte proliferation and differentiation. Bone. 2006, 39 (1): 5-16.

PubMedGoogle Scholar

Chen Y, Whetstone HC, Lin AC, Nadesan P, Wei Q, Poon R, Alman BA: Beta-catenin signaling plays a disparate role in different phases of fracture repair: implications for therapy to improve bone healing. PLoS Med. 2007, 4 (7): e249.

PubMedCentralPubMedGoogle Scholar

Dean DB, Watson JT, Jin W, Peters C, Enders JT, Chen A, Moed BR, Zhang Z: Distinct functionalities of bone morphogenetic protein antagonists during fracture healing in mice. J Anat. 2010, 216 (5): 625-630.

PubMedCentralPubMedGoogle Scholar

Caetano-Lopes J, Lopes A, Rodrigues A, Fernandes D, Perpetuo IP, Monjardino T, Lucas R, Monteiro J, Konttinen YT, Canhao H, Fonseca JE: Upregulation of inflammatory genes and downregulation of sclerostin gene expression are key elements in the early phase of fragility fracture healing. PLoS One. 2011, 6 (2): e16947.

PubMedCentralPubMedGoogle Scholar

Albers J, Schulze J, Beil FT, Gebauer M, Baranowsky A, Keller J, Marshall RP, Wintges K, Friedrich FW, Priemel M, Schilling AF, Rueger JM, Cornils K, Fehse B, Streichert T, Sauter G, Jakob F, Insogna KL, Pober B, Knobeloch KP, Francke U, Amling M, Schinke T: Control of bone formation by the serpentine receptor Frizzled-9. J Cell Biol. 2011, 192 (6): 1057-1072.

PubMedCentralPubMedGoogle Scholar

Heilmann A, Schinke T, Bindl R, Wehner T, Rapp A, Haffner-Luntzer M, Nemitz C, Liedert A, Amling M, Ignatius A: The Wnt serpentine receptor Frizzled-9 regulates new bone formation in fracture healing. PLoS One. 2013, 8 (12): e84232.

PubMedCentralPubMedGoogle Scholar

Takada I, Suzawa M, Matsumoto K, Kato S: Suppression of PPAR transactivation switches cell fate of bone marrow stem cells from adipocytes into osteoblasts. Ann N Y Acad Sci. 2007, 1116: 182-195.

PubMedGoogle Scholar

Yamaguchi TP, Bradley A, McMahon AP, Jones S: A Wnt5a pathway underlies outgrowth of multiple structures in the vertebrate embryo. Development. 1999, 126 (6): 1211-1223.

PubMedGoogle Scholar

Almeida M, Han L, Bellido T, Manolagas SC, Kousteni S: Wnt proteins prevent apoptosis of both uncommitted osteoblast progenitors and differentiated osteoblasts by beta-catenin-dependent and -independent signaling cascades involving Src/ERK and phosphatidylinositol 3-kinase/AKT. J Biol Chem. 2005, 280 (50): 41342-41351.

PubMedGoogle Scholar

Li X, Grisanti M, Fan W, Asuncion FJ, Tan HL, Dwyer D, Han CY, Yu L, Lee J, Lee E, Barrero M, Kurimoto P, Niu QT, Geng Z, Winters A, Horan T, Steavenson S, Jacobsen F, Chen Q, Haldankar R, Lavallee J, Tipton B, Daris M, Sheng J, Lu HS, Daris K, Deshpande R, Valente EG, Salimi-Moosavi H, Kostenuik PJ: Dickkopf-1 regulates bone formation in young growing rodents and upon traumatic injury. J Bone Miner Res. 2011, 26 (11): 2610-2621.

PubMedGoogle Scholar

Agholme F, Li X, Isaksson H, Ke HZ, Aspenberg P: Sclerostin antibody treatment enhances metaphyseal bone healing in rats. J Bone Miner Res. 2010, 25 (11): 2412-2418.

PubMedGoogle Scholar

Agholme F, Isaksson H, Li X, Ke HZ, Aspenberg P: Anti-sclerostin antibody and mechanical loading appear to influence metaphyseal bone independently in rats. Acta Orthop. 2011, 82 (5): 628-632.

PubMedCentralPubMedGoogle Scholar

Ominsky MS, Li C, Li X, Tan HL, Lee E, Barrero M, Asuncion FJ, Dwyer D, Han CY, Vlasseros F, Samadfam R, Jolette J, Smith SY, Stolina M, Lacey DL, Simonet WS, Paszty C, Li G, Ke HZ: Inhibition of sclerostin by monoclonal antibody enhances bone healing and improves bone density and strength of nonfractured bones. J Bone Miner Res. 2011, 26 (5): 1012-1021.

PubMedGoogle Scholar

Jawad MU, Fritton KE, Ma T, Ren PG, Goodman SB, Ke HZ, Babij P, Genovese MC: Effects of sclerostin antibody on healing of a non-critical size femoral bone defect. J Orthop Res. 2013, 31 (1): 155-163.

PubMedGoogle Scholar

Gaur T, Wixted JJ, Hussain S, O’Connell SL, Morgan EF, Ayers DC, Komm BS, Bodine PV, Stein GS, Lian JB: Secreted frizzled related protein 1 is a target to improve fracture healing. J Cell Physiol. 2009, 220 (1): 174-181.

PubMedCentralPubMedGoogle Scholar

Minear S, Leucht P, Jiang J, Liu B, Zeng A, Fuerer C, Nusse R, Helms JA: Wnt proteins promote bone regeneration. Sci Transl Med. 2010, 2 (29): 29ra30.

PubMedGoogle Scholar

Arioka M, Takahashi-Yanaga F, Sasaki M, Yoshihara T, Morimoto S, Hirata M, Mori Y, Sasaguri T: Acceleration of bone regeneration by local application of lithium: Wnt signal-mediated osteoblastogenesis and Wnt signal-independent suppression of osteoclastogenesis. Biochem Pharmacol. 2014, 90 (4): 397-405.

PubMedGoogle Scholar

Brack AS, Conboy IM, Conboy MJ, Shen J, Rando TA: A temporal switch from notch to Wnt signaling in muscle stem cells is necessary for normal adult myogenesis. Cell Stem Cell. 2008, 2 (1): 50-59.

PubMedGoogle Scholar

Tanaka S, Terada K, Nohno T: Canonical Wnt signaling is involved in switching from cell proliferation to myogenic differentiation of mouse myoblast cells. J Mol Signal. 2011, 6: 12.

PubMedCentralPubMedGoogle Scholar

Fujimaki S, Hidaka R, Asashima M, Takemasa T, Kuwabara T: Wnt protein-mediated satellite cell conversion in adult and aged mice following voluntary wheel running. J Biol Chem. 2014, 289 (11): 7399-7412.

PubMedCentralPubMedGoogle Scholar

Kuroda K, Kuang S, Taketo MM, Rudnicki MA: Canonical Wnt signaling induces BMP-4 to specify slow myofibrogenesis of fetal myoblasts. Skelet Muscle. 2013, 3 (1): 5.

PubMedCentralPubMedGoogle Scholar

Le Grand F, Jones AE, Seale V, Scime A, Rudnicki MA: Wnt7a activates the planar cell polarity pathway to drive the symmetric expansion of satellite stem cells. Cell Stem Cell. 2009, 4 (6): 535-547.

PubMedCentralPubMedGoogle Scholar

Kuang S, Kuroda K, Le Grand F, Rudnicki MA: Asymmetric self-renewal and commitment of satellite stem cells in muscle. Cell. 2007, 129 (5): 999-1010.

PubMedCentralPubMedGoogle Scholar

Von Maltzahn J, Bentzinger CF, Rudnicki MA: Wnt7a-Fzd7 signalling directly activates the Akt/mTOR anabolic growth pathway in skeletal muscle. Nat Cell Biol. 2012, 14 (2): 186-191.

PubMedCentralGoogle Scholar

Bentzinger CF, Von Maltzahn J, Dumont NA, Stark DA, Wang YX, Nhan K, Frenette J, Cornelison DD, Rudnicki MA: Wnt7a stimulates myogenic stem cell motility and engraftment resulting in improved muscle strength. J Cell Biol. 2014, 205 (1): 97-111.

PubMedCentralPubMedGoogle Scholar

Von Maltzahn J, Zinoviev R, Chang NC, Bentzinger CF, Rudnicki MA: A truncated Wnt7a retains full biological activity in skeletal muscle. Nat Commun. 2013, 4: 2869.

PubMedCentralPubMedGoogle Scholar

Lim X, Tan SH, Koh WL, Chau RM, Yan KS, Kuo CJ, Van Amerongen R, Klein AM, Nusse R: Interfollicular epidermal stem cells self-renew via autocrine Wnt signaling. Science. 2013, 342 (6163): 1226-1230.

PubMedCentralPubMedGoogle Scholar

Rishikaysh P, Dev K, Diaz D, Qureshi WM, Filip S, Mokry J: Signaling involved in hair follicle morphogenesis and development. Int J Mol Sci. 2014, 15 (1): 1647-1670.

PubMedCentralPubMedGoogle Scholar

Chua AW, Ma D, Gan SU, Fu Z, Han HC, Song C, Sabapathy K, Phan TT: The role of R-spondin2 in keratinocyte proliferation and epidermal thickening in keloid scarring. J Invest Dermatol. 2011, 131 (3): 644-654.

PubMedGoogle Scholar

Merrill BJ, Gat U, DasGupta R, Fuchs E: Tcf3 and Lef1 regulate lineage differentiation of multipotent stem cells in skin. Genes Dev. 2001, 15 (13): 1688-1705.

PubMedCentralPubMedGoogle Scholar

Nguyen H, Merrill BJ, Polak L, Nikolova M, Rendl M, Shaver TM, Pasolli HA, Fuchs E: Tcf3 and Tcf4 are essential for long-term homeostasis of skin epithelia. Nat Genet. 2009, 41 (10): 1068-1075.

PubMedCentralPubMedGoogle Scholar

Huelsken J, Vogel R, Erdmann B, Cotsarelis G, Birchmeier W: beta-Catenin controls hair follicle morphogenesis and stem cell differentiation in the skin. Cell. 2001, 105 (4): 533-545.

PubMedGoogle Scholar

Choi YS, Zhang Y, Xu M, Yang Y, Ito M, Peng T, Cui Z, Nagy A, Hadjantonakis AK, Lang RA, Cotsarelis G, Andl T, Morrisey EE, Millar SE: Distinct functions for Wnt/beta-catenin in hair follicle stem cell proliferation and survival and interfollicular epidermal homeostasis. Cell Stem Cell. 2013, 13 (6): 720-733.

PubMedCentralPubMedGoogle Scholar

Deschene ER, Myung P, Rompolas P, Zito G, Sun TY, Taketo MM, Saotome I, Greco V: beta-Catenin activation regulates tissue growth non-cell autonomously in the hair stem cell niche. Science. 2014, 343 (6177): 1353-1356.

PubMedCentralPubMedGoogle Scholar

Lei M, Guo H, Qiu W, Lai X, Tian Y, Widelitz RB, Chuong CM, Xiaohua L, Yang L: Modulating hair follicle size with Wnt10b/DKK1 during hair regeneration. Exp Dermatol. 2014, 23 (6): 407-413.

PubMedCentralPubMedGoogle Scholar

Whyte JL, Smith AA, Liu B, Manzano WR, Evans ND, Dhamdhere GR, Fang MY, Chang HY, Oro AE, Helms JA: Augmenting endogenous Wnt signaling improves skin wound healing. PLoS One. 2013, 8 (10): e76883.

PubMedCentralPubMedGoogle Scholar

Dong L, Hao H, Xia L, Liu J, Ti D, Tong C, Hou Q, Han Q, Zhao Y, Liu H, Fu X, Han W: Treatment of MSCs with Wnt1a-conditioned medium activates DP cells and promotes hair follicle regrowth. Sci Rep. 2014, 4: 5432.

PubMedCentralPubMedGoogle Scholar

Zimber MP, Ziering C, Zeigler F, Hubka M, Mansbridge JN, Baumgartner M, Hubka K, Kellar R, Perez-Meza D, Sadick N, Naughton GK: Hair regrowth following a Wnt- and follistatin containing treatment: safety and efficacy in a first-in-man phase 1 clinical trial. J Drugs Dermatol. 2011, 10 (11): 1308-1312.

PubMedGoogle Scholar

Lee SH, Zahoor M, Hwang JK, Min Do S, Choi KY: Valproic acid induces cutaneous wound healing in vivo and enhances keratinocyte motility. PLoS One. 2012, 7 (11): e48791.

PubMedCentralPubMedGoogle Scholar

Jo SJ, Choi SJ, Yoon SY, Lee JY, Park WS, Park PJ, Kim KH, Eun HC, Kwon O: Valproic acid promotes human hair growth in in vitro culture model. J Dermatol Sci. 2013, 72 (1): 16-24.

PubMedGoogle Scholar

Lee SH, Yoon J, Shin SH, Zahoor M, Kim HJ, Park PJ, Park WS, Min Do S, Kim HY, Choi KY: Valproic acid induces hair regeneration in murine model and activates alkaline phosphatase activity in human dermal papilla cells. PLoS One. 2012, 7 (4): e34152.

PubMedCentralPubMedGoogle Scholar

Jo SJ, Shin H, Park YW, Paik SH, Park WS, Jeong YS, Shin HJ, Kwon O: Topical valproic acid increases the hair count in male patients with androgenetic alopecia: a randomized, comparative, clinical feasibility study using phototrichogram analysis. J Dermatol. 2014, 41 (4): 285-291.

PubMedGoogle Scholar

Dickins EM, Salinas PC: Wnts in action: from synapse formation to synaptic maintenance. Front Cell Neurosci. 2013, 7: 162.

PubMedCentralPubMedGoogle Scholar

Purro SA, Galli S, Salinas PC: Dysfunction of Wnt signaling and synaptic disassembly in neurodegenerative diseases. J Mol Cell Biol. 2014, 6 (1): 75-80.

PubMedCentralPubMedGoogle Scholar

Inestrosa NC, Varela-Nallar L: Wnt signaling in the nervous system and in Alzheimer’s disease. J Mol Cell Biol. 2014, 6 (1): 64-74.

PubMedGoogle Scholar

Magdesian MH, Carvalho MM, Mendes FA, Saraiva LM, Juliano MA, Juliano L, Garcia-Abreu J, Ferreira ST: Amyloid-beta binds to the extracellular cysteine-rich domain of Frizzled and inhibits Wnt/beta-catenin signaling. J Biol Chem. 2008, 283 (14): 9359-9368.

PubMedCentralPubMedGoogle Scholar

De Ferrari GV, Chacon MA, Barria MI, Garrido JL, Godoy JA, Olivares G, Reyes AE, Alvarez A, Bronfman M, Inestrosa NC: Activation of Wnt signaling rescues neurodegeneration and behavioral impairments induced by beta-amyloid fibrils. Mol Psychiatry. 2003, 8 (2): 195-208.

PubMedGoogle Scholar

Chacon MA, Varela-Nallar L, Inestrosa NC: Frizzled-1 is involved in the neuroprotective effect of Wnt3a against Abeta oligomers. J Cell Physiol. 2008, 217 (1): 215-227.

PubMedGoogle Scholar

Silva-Alvarez C, Arrazola MS, Godoy JA, Ordenes D, Inestrosa NC: Canonical Wnt signaling protects hippocampal neurons from Abeta oligomers: role of non-canonical Wnt-5a/Ca(2+) in mitochondrial dynamics. Front Cell Neurosci. 2013, 7: 97.

PubMedCentralPubMedGoogle Scholar

Robin NC, Agoston Z, Biechele TL, James RG, Berndt JD, Moon RT: Simvastatin Promotes Adult Hippocampal Neurogenesis by Enhancing Wnt/beta-Catenin Signaling. Stem Cell Rep. 2014, 2 (1): 9-17.

Google Scholar

Toledo EM, Inestrosa NC: Activation of Wnt signaling by lithium and rosiglitazone reduced spatial memory impairment and neurodegeneration in brains of an APPswe/PSEN1DeltaE9 mouse model of Alzheimer’s disease. Mol Psychiatry. 2010, 15 (3): 272-285. 228

PubMedGoogle Scholar

Tiwari SK, Agarwal S, Seth B, Yadav A, Nair S, Bhatnagar P, Karmakar M, Kumari M, Chauhan LK, Patel DK, Srivastava V, Singh D, Gupta SK, Tripathi A, Chaturvedi RK, Gupta KC: Curcumin-loaded nanoparticles potently induce adult neurogenesis and reverse cognitive deficits in Alzheimer’s disease model via canonical Wnt/beta-catenin pathway. ACS Nano. 2014, 8 (1): 76-103.

PubMedGoogle Scholar

Halleskog C, Mulder J, Dahlström J, Mackie K, Hortobágyi T, Tanila H, Kumar Puli L, Färber K, Harkany T, Schulte G: WNT signaling in activated microglia is proinflammatory. Glia. 2011, 59 (1): 119-131.

PubMedCentralPubMedGoogle Scholar

Rodriguez JP, Coulter M, Miotke J, Meyer RL, Takemaru K, Levine JM: Abrogation of β-Catenin Signaling in Oligodendrocyte Precursor Cells Reduces Glial Scarring and Promotes Axon Regeneration after CNS Injury. J Neurosci. 2014, 34 (31): 10285-10297.

PubMedCentralPubMedGoogle Scholar

Halleskog C, Dijksterhuis JP, Kilander MB, Becerril-Ortega J, Villaescusa JC, Lindgren E, Arenas E, Schulte G: Heterotrimeric G protein-dependent WNT-5A signaling to ERK1/2 mediates distinct aspects of microglia proinflammatory transformation. J Neuroinflammation. 2012, 9: 111.

PubMedCentralPubMedGoogle Scholar

Janda CY, Waghray D, Levin AM, Thomas C, Garcia KC: Structural basis of Wnt recognition by Frizzled. Science. 2012, 337 (6090): 59-64.

PubMedCentralPubMedGoogle Scholar

Blagodatski A, Katanaev VL: Technologies of directed protein evolution in vivo. Cell Mol Life Sci. 2011, 68 (7): 1207-1214.

PubMedGoogle Scholar

Reis M, Liebner S: Wnt signaling in the vasculature. Exp Cell Res. 2013, 319 (9): 1317-1323.

PubMedGoogle Scholar

Daskalopoulos EP, Hermans KC, Janssen BJ, Matthijs Blankesteijn W: Targeting the Wnt/frizzled signaling pathway after myocardial infarction: a new tool in the therapeutic toolbox?. Trends Cardiovasc Med. 2013, 23 (4): 121-127.

PubMedGoogle Scholar

Laeremans H, Hackeng TM, Van Zandvoort MA, Thijssen VL, Janssen BJ, Ottenheijm HC, Smits JF, Blankesteijn WM: Blocking of frizzled signaling with a homologous peptide fragment of wnt3a/wnt5a reduces infarct expansion and prevents the development of heart failure after myocardial infarction. Circulation. 2011, 124 (15): 1626-1635.

PubMedGoogle Scholar

Eiraku M, Takata N, Ishibashi H, Kawada M, Sakakura E, Okuda S, Sekiguchi K, Adachi T, Sasai Y: Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature. 2011, 472 (7341): 51-56.

PubMedGoogle Scholar

Kahn M: Can we safely target the WNT pathway?. Nat Rev Drug Discov. 2014, 13 (7): 513-532.

PubMedCentralPubMedGoogle Scholar

Kuhnert F, Davis CR, Wang HT, Chu P, Lee M, Yuan J, Nusse R, Kuo CJ: Essential requirement for Wnt signaling in proliferation of adult small intestine and colon revealed by adenoviral expression of Dickkopf-1. Proc Natl Acad Sci U S A. 2004, 101 (1): 266-271.

PubMedCentralPubMedGoogle Scholar

Andl T, Reddy ST, Gaddapara T, Millar SE: WNT signals are required for the initiation of hair follicle development. Dev Cell. 2002, 2 (5): 643-653.

PubMedGoogle Scholar

Liu CC, Prior J, Piwnica-Worms D, Bu G: LRP6 overexpression defines a class of breast cancer subtype and is a target for therapy. Proc Natl Acad Sci U S A. 2010, 107 (11): 5136-5141.

PubMedCentralPubMedGoogle Scholar

Liang H, Chen Q, Coles AH, Anderson SJ, Pihan G, Bradley A, Gerstein R, Jurecic R, Jones SN: Wnt5a inhibits B cell proliferation and functions as a tumor suppressor in hematopoietic tissue. Cancer Cell. 2003, 4 (5): 349-360.

PubMedGoogle Scholar

Chien AJ, Moore EC, Lonsdorf AS, Kulikauskas RM, Rothberg BG, Berger AJ, Major MB, Hwang ST, Rimm DL, Moon RT: Activated Wnt/beta-catenin signaling in melanoma is associated with decreased proliferation in patient tumors and a murine melanoma model. Proc Natl Acad Sci U S A. 2009, 106 (4): 1193-1198.

PubMedCentralPubMedGoogle Scholar

Barker N, Clevers H: Mining the Wnt pathway for cancer therapeutics. Nat Rev Drug Discov. 2006, 5 (12): 997-1014.

PubMedGoogle Scholar

Katanaev VL: Prospects of targeting Wnt signaling in cancer. J Pharmacol Toxicol Res. 2014, 1 (1): 1-3.

Google Scholar

Published
2019-01-30
Section
Review