Extended blood circulation and joint accumulation of a p(HPMA-co-AzMA)-based nanoconjugate in a murine model of rheumatoid arthritis

  • Morten Ebbesen
  • Konrad Bienk
  • Bent Deleuran
  • Kenneth Howard
Keywords: Arthritis, Collagen Antibody-Induced Arthritis, Extended circulation, HPMA, in vivo, Image analysis, Joint accumulation, N-(3-azidopropyl)methacrylamide), Poly(N-(2-hydroxypropyl)methacrylamide)

Abstract

Background

We recently synthesized a hydrophilic polymer, poly(N-(2-hydroxypropyl)methacrylamide-co-N-(3-azidopropyl)methacrylamide), p(HPMA-co-AzMA), by RAFT polymerization using a novel azide-containing methacrylamide monomer that through a post modification strategy using click chemistry enabled facile preparation of a panel of versatile and well-defined bioconjugates. In this work we screen a panel of different molecular weight (Mw) fluorescently tagged p(HPMA-co-AzMA) in healthy mice, by live bioimaging, to select an extended circulatory half-life material for investigating joint accumulation in a murine collagen antibody-induced arthritis model.

Findings

Fluorescence image analysis revealed half-lifes of <20 min, 2.8 h and 6.4 h for p(HPMA-co-AzMA) of 15, 36 and 54 kDa, respectively, with ~10% polymer retained in the blood after 24 h for the highest Mw. p(HPMA-co-AzMA) of 54 kDa showed enhanced accumulation in the joints of the arthritic mouse model with a bioavailability (AUC = 1783% · h) ~12 times higher (P = 0.01) than healthy control (AUC = 148% · h).

Conclusions

p(HPMA-co-AzMA) of 54 kDa exhibited extended circulatory half-life and preferential accumulation in inflamed joints of a murine model of rheumatoid arthritis (RA). This combined with well-defined polymer size and versatility for conjugation of a range of biomolecules promotes p(HPMA-co-AzMA) for potential applications in the delivery of drugs for treatment of RA.

 

Downloads

Download data is not yet available.

References

O’Dell JR: Therapeutic Strategies for Rheumatoid Arthritis. N Engl J Med. 2004, 350: 2591-2602. 10.1056/NEJMra040226.

CrossRefPubMedGoogle Scholar

Arend WP: Physiology of cytokine pathways in rheumatoid arthritis. Arthritis Rheum-Arthritis Care Res. 2001, 45: 101-106. 10.1002/1529-0131(200102)45:1<101::AID-ANR90>3.0.CO;2-7.

CrossRefGoogle Scholar

Howard KA, Paludan SR, Behlke MA, Besenbacher F, Deleuran B, Kjems J: Chitosan/siRNA nanoparticle-mediated TNF-alpha knockdown in peritoneal macrophages for anti-inflammatory treatment in a murine arthritis model. Mol Ther. 2009, 17: 162-168. 10.1038/mt.2008.220.

PubMedCentralCrossRefPubMedGoogle Scholar

Olsen NJ, Stein CM: New drugs for rheumatoid arthritis. N Engl J Med. 2004, 350: 2167-2179. 10.1056/NEJMra032906.

CrossRefPubMedGoogle Scholar

Wang D, Miller SC, Sima M, Parker D, Buswell H, Goodrich KC, Kope P: The arthrotropism of macromolecules in adjuvant-induced arthritis rat model: a preliminary study. Pharm Res. 2004, 21: 1741-1749.

CrossRefPubMedGoogle Scholar

Paleolog EM: Angiogenesis in rheumatoid arthritis. Arthritis Res. 2002, 4: S81-S90. 10.1186/ar575.

PubMedCentralCrossRefPubMedGoogle Scholar

Koch AE: Angiogenesis as a target in rheumatoid arthritis. Ann Rheum Dis. 2003, 62: ii60-ii67.

PubMedCentralCrossRefPubMedGoogle Scholar

Fang J, Nakamura H, Maeda H: The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev. 2011, 63: 136-151. 10.1016/j.addr.2010.04.009.

CrossRefPubMedGoogle Scholar

Yuan F, Quan L-d, Cui L, Goldring SR, Wang D: Development of macromolecular prodrug for rheumatoid arthritis. Adv Drug Deliv Rev. 2012, 64: 1205-1219. 10.1016/j.addr.2012.03.006.

PubMedCentralCrossRefPubMedGoogle Scholar

Choy EHS, Hazleman B, Smith M, Moss K, Lisi L, Scott DGI, Patel J, Sopwith M, Isenberg DA: Efficacy of a novel PEGylated humanized anti‒TNF fragment (CDP870) in patients with rheumatoid arthritis: a phase II double‒blinded, randomized, dose‒escalating trial. Rheumatology. 2002, 41: 1133-1137. 10.1093/rheumatology/41.10.1133.

CrossRefPubMedGoogle Scholar

Duncan R, Vicent MJ: Polymer therapeutics-prospects for 21st century: the end of the beginning. Adv Drug Deliv Rev. 2013, 65: 60-70. 10.1016/j.addr.2012.08.012.

CrossRefPubMedGoogle Scholar

Barz M, Luxenhofer R, Zentel R, Vicent MJ: Overcoming the PEG-addiction: well-defined alternatives to PEG, from structure–property relationships to better defined therapeutics. Polym Chem. 2011, 2: 1900-1918. 10.1039/c0py00406e.

CrossRefGoogle Scholar

Ebbesen MF, Schaffert DH, Crowley ML, Oupický D, Howard KA: Synthesis of click-reactive HPMA copolymers using RAFT polymerization for drug delivery applications. J Polym Sci A Polym Chem. 2013, 51: 5091-5099. 10.1002/pola.26941.

CrossRefGoogle Scholar

Wang D, Miller S, Liu X-M, Anderson B, Wang XS, Goldring S: Novel dexamethasone-HPMA copolymer conjugate and its potential application in treatment of rheumatoid arthritis. Arthritis Res Ther. 2007, 9: R2-10.1186/ar2106.

PubMedCentralCrossRefPubMedGoogle Scholar

L-d Q, Yuan F, Liu X-m, Huang J-g, Alnouti Y, Wang D: Pharmacokinetic and biodistribution studies of N-(2-hydroxypropyl)methacrylamide copolymer-Dexamethasone conjugates in adjuvant-induced arthritis Rat model. Mol Pharm. 2010, 7: 1041-1049. 10.1021/mp100132h.

CrossRefGoogle Scholar

Khachigian LM: Collagen antibody-induced arthritis. Nat Protoc. 2006, 1: 2512-2516. 10.1038/nprot.2006.393.

CrossRefPubMedGoogle Scholar

Noguchi Y, Wu J, Duncan R, Strohalm J, Ulbrich K, Akaike T, Maeda H: Early phase tumor accumulation of macromolecules: a great difference in clearance rate between tumor and normal tissues. Jpn J Cancer Res. 1998, 89: 307-314. 10.1111/j.1349-7006.1998.tb00563.x.

CrossRefPubMedGoogle Scholar

Shiah JG, Dvořák M, Kopečková P, Sun Y, Peterson CM, Kopeček J: Biodistribution and antitumour efficacy of long-circulating N-(2-hydroxypropyl)methacrylamide copolymer–doxorubicin conjugates in nude mice. Eur J Cancer. 2001, 37: 131-139. 10.1016/S0959-8049(00)00374-9.

CrossRefPubMedGoogle Scholar

Leblond F, Davis SC, Valdés PA, Pogue BW: Pre-clinical whole-body fluorescence imaging: Review of instruments, methods and applications. J Photochem Photobiol B Biol. 2010, 98: 77-94. 10.1016/j.jphotobiol.2009.11.007.

CrossRefGoogle Scholar

Etrych T, Šubr V, Strohalm J, Šírová M, Říhová B, Ulbrich K: HPMA copolymer-doxorubicin conjugates: the effects of molecular weight and architecture on biodistribution and in vivo activity. J Control Release. 2012, 164: 346-354. 10.1016/j.jconrel.2012.06.029.

CrossRefPubMedGoogle Scholar

Published
2019-01-30
Section
Research Article