Aptamer technology for tracking cells’ status & function
Abstract
In fields such as cancer biology and regenerative medicine, obtaining information regarding cell bio-distribution, tropism, status, and other cellular functions are highly desired. Understanding cancer behaviors including metastasis is important for developing effective cancer treatments, while assessing the fate of therapeutic cells following implantation is critical to validate the efficacy and efficiency of the therapy. For visualization purposes with medical imaging modalities (e.g. magnetic resonance imaging), cells can be labeled with contrast agents (e.g. iron-oxide nanoparticles), which allows their identification from the surrounding environment. Despite the success of revealing cell biodistribution in vivo, most of the existing agents do not provide information about the status and functions of cells following transplantation. The emergence of aptamers, single-stranded RNA or DNA oligonucleotides of 15 to 60 bases in length, is a promising solution to address this need. When aptamers bind specifically to their cognate molecules, they undergo conformational changes which can be transduced into a change of imaging contrast (e.g. optical, magnetic resonance). Thus by monitoring this signal change, researchers can obtain information about the expression of the target molecules (e.g. mRNA, surface markers, cell metabolites), which offer clues regarding cell status/function in a non-invasive manner. In this review, we summarize recent efforts to utilize aptamers as biosensors for monitoring the status and function of transplanted cells. We focus on cancer cell tracking for cancer study, stem cell tracking for regenerative medicine, and immune cell (e.g. dendritic cells) tracking for immune therapy.
Downloads
References
Daley GQ: The promise and perils of stem cell therapeutics. Cell Stem Cell. 2012, 10: 740-749.
PubMedCentralPubMedGoogle Scholar
Lindvall O, Kokaia Z: Stem cells in human neurodegenerative disorders—time for clinical translation?. J Clin Invest. 2010, 120: 29-40.
PubMedCentralPubMedGoogle Scholar
Reya T, Morrison SJ, Clarke MF, Weissman IL: Stem cells, cancer, and cancer stem cells. Nature. 2001, 414: 105-111.
PubMedGoogle Scholar
Wheeler DL, Dunn EF, Harari PM: Understanding resistance to EGFR inhibitors—impact on future treatment strategies. Nat Rev Clin Oncol. 2010, 7: 493-507.
PubMedCentralPubMedGoogle Scholar
Mundy GR: Metastasis: Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer. 2002, 2: 584-593.
PubMedGoogle Scholar
Ahrens ET, Bulte JW: Tracking immune cells in vivo using magnetic resonance imaging. Nat Rev Immunol. 2013, 13: 755-763.
PubMedGoogle Scholar
Bremer C, Ntziachristos V, Weissleder R: Optical-based molecular imaging: contrast agents and potential medical applications. Eur Radiol. 2003, 13: 231-243.
PubMedGoogle Scholar
Sevick-Muraca EM, Houston JP, Gurfinkel M: Fluorescence-enhanced, near infrared diagnostic imaging with contrast agents. Curr Opin Chem Biol. 2002, 6: 642-650.
PubMedGoogle Scholar
Antoch G, Freudenberg LS, Beyer T, Bockisch A, Debatin JF: To enhance or not to enhance? 18F-FDG and CT contrast agents in dual-modality 18F-FDG PET/CT. J Nucl Med. 2004, 45: 56S-65S.
PubMedGoogle Scholar
Delbeke D, Coleman RE, Guiberteau MJ, Brown ML, Royal HD, Siegel BA, Townsend DW, Berland LL, Parker JA, Hubner K: Procedure guideline for tumor imaging with 18F-FDG PET/CT 1.0. J Nucl Med. 2006, 47: 885-895.
PubMedGoogle Scholar
Xu C, Tung GA, Sun S: Size and concentration effect of gold nanoparticles on X-ray attenuation as measured on computed tomography. Chem Mater. 2008, 20: 4167-4169.
PubMedCentralPubMedGoogle Scholar
Caravan P, Ellison JJ, McMurry TJ, Lauffer RB: Gadolinium (III) chelates as MRI contrast agents: structure, dynamics, and applications. Chem Rev. 1999, 99: 2293-2352.
PubMedGoogle Scholar
Babes L, Denizot B, Tanguy G, Le Jeune JJ, Jallet P: Synthesis of iron oxide nanoparticles used as MRI contrast agents: a parametric study. J Colloid Interface Sci. 1999, 212: 474-482.
PubMedGoogle Scholar
Gao X, Yang L, Petros JA, Marshall FF: In vivo molecular and cellular imaging with quantum dots. Curr Opin Biotechnol. 2005, 16: 63-72.
PubMedGoogle Scholar
Pi QM, Zhang WJ, Zhou GD, Liu W, Cao Y: Degradation or excretion of quantum dots in mouse embryonic stem cells. BMC Biotechnol. 2010, 10: 36-
PubMedCentralPubMedGoogle Scholar
Gao Y, Cui Y, Chan JK, Xu C: Stem cell tracking with optically active nanoparticles. Am J Nucl Med Mol Imaging. 2013, 3: 232-
PubMedCentralPubMedGoogle Scholar
Tuerk C, Gold L: Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science. 1990, 249: 505-510.
PubMedGoogle Scholar
Ellington AD, Szostak JW: In vitro selection of RNA molecules that bind specific ligands. Nature. 1990, 346: 818-822.
PubMedGoogle Scholar
Huizenga DE, Szostak JW: A DNA aptamer that binds adenosine and ATP. Biochemistry. 1995, 34: 656-665.
PubMedGoogle Scholar
Radi A-E, O'Sullivan CK: Aptamer conformational switch as sensitive electrochemical biosensor for potassium ion recognition. Chem Commun. 2006, 32: 3432-3434.
Google Scholar
Liu J, Lu Y: Fast colorimetric sensing of adenosine and cocaine based on a general sensor design involving aptamers and nanoparticles. Angew Chem Int Ed Engl. 2006, 118: 96-100.
Google Scholar
Wei H, Li B, Li J, Wang E, Dong S: Simple and sensitive aptamer-based colorimetric sensing of protein using unmodified gold nanoparticle probes. Chem Commun. 2007, 36: 3735-3737.
Google Scholar
Huang C-C, Huang Y-F, Cao Z, Tan W, Chang H-T: Aptamer-modified gold nanoparticles for colorimetric determination of platelet-derived growth factors and their receptors. Anal Chem. 2005, 77: 5735-5741.
PubMedGoogle Scholar
Famulok M, Hartig JS, Mayer G: Functional aptamers and aptazymes in biotechnology, diagnostics, and therapy. Chem Rev. 2007, 107: 3715-3743.
PubMedGoogle Scholar
Stojanovic MN, De Prada P, Landry DW: Aptamer-based folding fluorescent sensor for cocaine. J Am Chem Soc. 2001, 123: 4928-4931.
PubMedGoogle Scholar
Liss M, Petersen B, Wolf H, Prohaska E: An aptamer-based quartz crystal protein biosensor. Anal Chem. 2002, 74: 4488-4495.
PubMedGoogle Scholar
McNamara JO, Andrechek ER, Wang Y, Viles KD, Rempel RE, Gilboa E, Sullenger BA, Giangrande PH: Cell type–specific delivery of siRNAs with aptamer-siRNA chimeras. Nat Biotechnol. 2006, 24: 1005-1015.
PubMedGoogle Scholar
Bagalkot V, Zhang L, Levy-Nissenbaum E, Jon S, Kantoff PW, Langer R, Farokhzad OC: Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano Lett. 2007, 7: 3065-3070.
PubMedGoogle Scholar
Wilson C, Szostak JW: Isolation of a fluorophore-specific DNA aptamer with weak redox activity. Chem Biol. 1998, 5: 609-617.
PubMedGoogle Scholar
Burmeister PE, Lewis SD, Silva RF, Preiss JR, Horwitz LR, Pendergrast PS, McCauley TG, Kurz JC, Epstein DM, Wilson C: Direct in vitro selection of a 2'-O-Methyl aptamer to VEGF. Chem Biol. 2005, 12: 25-33.
PubMedGoogle Scholar
Harding FA, Stickler MM, Razo J, DuBridge RB: The immunogenicity of humanized and fully human antibodies. Residual immunogenicity resides in the CDR regions. MAbs. 2010, 2: 256-265.
PubMedCentralPubMedGoogle Scholar
Shigdar S, Lin J, Yu Y, Pastuovic M, Wei M, Duan W: RNA aptamer against a cancer stem cell marker epithelial cell adhesion molecule. Cancer Sci. 2011, 102: 991-998.
PubMedGoogle Scholar
Ko HY, Lee JH, Kang H, Ryu SH, Song IC, Lee DS, Kim S: A nucleolin-targeted multimodal nanoparticle imaging probe for tracking cancer cells using an aptamer. J Nucl Med. 2010, 51: 98-105.
PubMedGoogle Scholar
Tang Z, Shangguan D, Wang K, Shi H, Sefah K, Mallikratchy P, Chen HW, Li Y, Tan W: Selection of aptamers for molecular recognition and characterization of cancer cells. Anal Chem. 2007, 79: 4900-4907.
PubMedGoogle Scholar
Iwagawa T, Ohuchi SP, Watanabe S, Nakamura Y: Selection of RNA aptamers against mouse embryonic stem cells. Biochimie. 2012, 94: 250-257.
PubMedGoogle Scholar
Meng L, Sefah K, Colon DL, Chen H, O’Donoghue M, Xiong X, Tan W: Using live cells to generate aptamers for cancer study. RNA Therapeutics. Volume 629. Edited by: Sioud M. 2010, Humana Press, 353-365. Methods in Molecular Biology
Google Scholar
Fang X, Tan W: Aptamers generated from cell-SELEX for molecular medicine: a chemical biology approach. Acc Chem Res. 2009, 43: 48-57.
Google Scholar
Sefah K, Shangguan D, Xiong X, O'Donoghue MB, Tan W: Development of DNA aptamers using Cell-SELEX. Nat Protoc. 2010, 5: 1169-1185.
PubMedGoogle Scholar
Meyer S, Maufort JP, Nie J, Stewart R, McIntosh BE, Conti LR, Ahmad KM, Soh HT, Thomson JA: Development of an efficient targeted Cell-SELEX procedure for DNA aptamer reagents. PLoS One. 2013, 8: e71798-
PubMedCentralPubMedGoogle Scholar
Shangguan D, Li Y, Tang Z, Cao ZC, Chen HW, Mallikaratchy P, Sefah K, Yang CJ, Tan W: Aptamers evolved from live cells as effective molecular probes for cancer study. Proc Natl Acad Sci. 2006, 103: 11838-11843.
PubMedCentralPubMedGoogle Scholar
Sefah K, Meng L, Lopez-Colon D, Jimenez E, Liu C, Tan W: DNA aptamers as molecular probes for colorectal cancer study. PLoS One. 2010, 5: e14269-
PubMedCentralPubMedGoogle Scholar
Wang AZ, Bagalkot V, Vasilliou CC, Gu F, Alexis F, Zhang L, Shaikh M, Yuet K, Cima MJ, Langer R: Superparamagnetic iron oxide nanoparticle–aptamer bioconjugates for combined prostate cancer imaging and therapy. ChemMedChem. 2008, 3: 1311-1315.
PubMedCentralPubMedGoogle Scholar
Estévez MC, Huang Y-F, Kang H, O’Donoghue MB, Bamrungsap S, Yan J, Chen X, Tan W: Nanoparticle–aptamer conjugates for cancer cell targeting and detection. Cancer Nanotechnology.Volume 624. Edited by: Grobmyer SR, Moudgil BM. 2010, Humana Press, 235-248. Methods in Molecular Biology
Google Scholar
Cerchia L, de Franciscis V: Targeting cancer cells with nucleic acid aptamers. Trends Biotechnol. 2010, 28: 517-525.
PubMedGoogle Scholar
Zueva E, Rubio LI, Ducongé F, Tavitian B: Metastasis-focused cell-based SELEX generates aptamers inhibiting cell migration and invasion. Int J Cancer. 2011, 128: 797-804.
PubMedGoogle Scholar
Coussens LM, Tinkle CL, Hanahan D, Werb Z: MMP-9 supplied by bone marrow–derived cells contributes to skin carcinogenesis. Cell. 2000, 103: 481-490.
PubMedCentralPubMedGoogle Scholar
Lee FY, Borzilleri R, Fairchild CR, Kim S-H, Long BH, Reventos-Suarez C, Vite GD, Rose WC, Kramer RA: BMS-247550 a novel epothilone analog with a mode of action similar to paclitaxel but possessing superior antitumor efficacy. Clin Cancer Res. 2001, 7: 1429-1437.
PubMedGoogle Scholar
PLAXCO KW, Tom Soh H: Switch-based biosensors: a new approach towards real-time, in vivo molecular detection. Trends Biotechnol. 2011, 29: 1-5.
PubMedCentralPubMedGoogle Scholar
Shi H, Tang Z, Kim Y, Nie H, Huang YF, He X, Deng K, Wang K, Tan W: In vivo fluorescence imaging of tumors using molecular aptamers generated by cell-SELEX. Cancer. 2010, 23: 24-
Google Scholar
Zhao W, Schafer S, Choi J, Yamanaka YJ, Lombardi ML, Bose S, Carlson AL, Phillips JA, Teo W, Droujinine IA: Cell-surface sensors for real-time probing of cellular environments. Nat Nanotechnol. 2011, 6: 524-531.
PubMedCentralPubMedGoogle Scholar
Ntziachristos V, Ripoll J, Wang LV, Weissleder R: Looking and listening to light: the evolution of whole-body photonic imaging. Nat Biotechnol. 2005, 23: 313-320.
PubMedGoogle Scholar
Kedrin D, Gligorijevic B, Wyckoff J, Verkhusha VV, Condeelis J, Segall JE, van Rheenen J: Intravital imaging of metastatic behavior through a mammary imaging window. Nat Methods. 2008, 5: 1019-
PubMedCentralPubMedGoogle Scholar
Alexander S, Koehl GE, Hirschberg M, Geissler EK, Friedl P: Dynamic imaging of cancer growth and invasion: a modified skin-fold chamber model. Histochem Cell Biol. 2008, 130: 1147-1154.
PubMedGoogle Scholar
Savla R, Taratula O, Garbuzenko O, Minko T: Tumor targeted quantum dot-mucin 1 aptamer-doxorubicin conjugate for imaging and treatment of cancer. J Control Release. 2011, 153: 16-22.
PubMedGoogle Scholar
Shi H, He X, Wang K, Wu X, Ye X, Guo Q, Tan W, Qing Z, Yang X, Zhou B: Activatable aptamer probe for contrast-enhanced in vivo cancer imaging based on cell membrane protein-triggered conformation alteration. Proc Natl Acad Sci. 2011, 108: 3900-3905.
PubMedCentralPubMedGoogle Scholar
Kang WJ, Chae JR, Cho YL, Lee JD, Kim S: Multiplex imaging of single tumor cells using quantum-dot-conjugated aptamers. Small. 2009, 5: 2519-2522.
PubMedGoogle Scholar
Chen X, Estévez M-C, Zhu Z, Huang Y-F, Chen Y, Wang L, Tan W: Using aptamer-conjugated fluorescence resonance energy transfer nanoparticles for multiplexed cancer cell monitoring. Anal Chem. 2009, 81: 7009-7014.
PubMedGoogle Scholar
Charlton J, Sennello J, Smith D: In vivo imaging of inflammation using an aptamer inhibitor of human neutrophil elastase. Chem Biol. 1997, 4: 809-
PubMedGoogle Scholar
Hicke BJ, Stephens AW, Gould T, Chang Y-F, Lynott CK, Heil J, Borkowski S, Hilger C-S, Cook G, Warren S: Tumor targeting by an aptamer. J Nucl Med. 2006, 47: 668-678.
PubMedGoogle Scholar
Pieve C, Perkins A, Missailidis S: Anti-MUC1 aptamers: radiolabelling with (99m) Tc and biodistribution in MCF-7 tumour-bearing mice. Nucl Med Biol. 2009, 36: 703-710.
PubMedGoogle Scholar
Rockey WM, Huang L, Kloepping KC, Baumhover NJ, Giangrande PH, Schultz MK: Synthesis and radiolabeling of chelator–RNA aptamer bioconjugates with copper-64 for targeted molecular imaging. Bioorg Med Chem. 2011, 19: 4080-4090.
PubMedCentralPubMedGoogle Scholar
Hainfeld J, Slatkin D, Focella T, Smilowitz H: Gold nanoparticles: a new X-ray contrast agent. 2014
Google Scholar
Kim D, Park S, Lee JH, Jeong YY, Jon S: Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo X-ray computed tomography imaging. J Am Chem Soc. 2007, 129: 7661-7665.
PubMedGoogle Scholar
Kim D, Jeong YY, Jon S: A drug-loaded aptamer- gold nanoparticle bioconjugate for combined CT imaging and therapy of prostate cancer. ACS Nano. 2010, 4: 3689-3696.
PubMedGoogle Scholar
Jalalian SH, Taghdisi SM, Shahidi Hamedani N, Kalat SAM, Lavaee P, ZandKarimi M, Ghows N, Jaafari MR, Naghibi S, Danesh NM: Epirubicin loaded super paramagnetic iron oxide nanoparticle-aptamer bioconjugate for combined colon cancer therapy and imaging in vivo. Eur J Pharm Sci. 2013, 50: 191-197.
PubMedGoogle Scholar
Chi-hong BC, Dellamaggiore KR, Ouellette CP, Sedano CD, Lizadjohry M, Chernis GA, Gonzales M, Baltasar FE, Fan AL, Myerowitz R: Aptamer-based endocytosis of a lysosomal enzyme. Proc Natl Acad Sci. 2008, 105: 15908-15913.
Google Scholar
Li N, Larson T, Nguyen HH, Sokolov KV, Ellington AD: Directed evolution of gold nanoparticle delivery to cells. Chem Commun. 2010, 46: 392-394.
Google Scholar
Meyer C, Eydeler K, Magbanua E, Zivkovic T, Piganeau N, Lorenzen I, Grötzinger J, Mayer G, Rose-John S, Hahn U: Interleukin-6 receptor specific RNA aptamers for cargo delivery into target cells. RNA Biol. 2012, 9: 67-80.
PubMedCentralPubMedGoogle Scholar
Xiao Z, Shangguan D, Cao Z, Fang X, Tan W: Cell-specific internalization study of an aptamer from whole cell selection. Chem-A Eur J. 2008, 14: 1769-1775.
Google Scholar
Nicholson R, Gee J, Harper M: EGFR and cancer prognosis. Eur J Cancer. 2001, 37: 9-15.
Google Scholar
Kruspe S, Meyer C, Hahn U: Chlorin e6 conjugated interleukin-6 receptor aptamers selectively kill target cells upon irradiation. Mol Ther Nucleic Acids. 2014, 3: e143-
PubMedCentralPubMedGoogle Scholar
Huang YF, Shangguan D, Liu H, Phillips JA, Zhang X, Chen Y, Tan W: Molecular assembly of an aptamer–drug conjugate for targeted drug delivery to tumor cells. ChemBioChem. 2009, 10: 862-868.
PubMedCentralPubMedGoogle Scholar
Caplan AI: Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J Cell Physiol. 2007, 213: 341-347.
PubMedGoogle Scholar
Griffith LG, Naughton G: Tissue engineering–current challenges and expanding opportunities. Science. 2002, 295: 1009-1014.
PubMedGoogle Scholar
Bianco P, Robey PG: Stem cells in tissue engineering. Nature. 2001, 414: 118-121.
PubMedGoogle Scholar
Phinney DG, Prockop DJ: Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair—current views. Stem Cells. 2007, 25: 2896-2902.
PubMedGoogle Scholar
Aggarwal S, Pittenger MF: Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood. 2005, 105: 1815-1822.
PubMedGoogle Scholar
Ringdén O, Uzunel M, Rasmusson I, Remberger M, Sundberg B, Lönnies H, Marschall H-U, Dlugosz A, Szakos A, Hassan Z: Mesenchymal stem cells for treatment of therapy-resistant graft-versus-host disease. Transplantation. 2006, 81: 1390-1397.
PubMedGoogle Scholar
Ryan JM, Barry FP, Murphy JM, Mahon BP: Mesenchymal stem cells avoid allogeneic rejection. J Inflamm. 2005, 2: 8-
Google Scholar
Zhu Y, Sun Z, Han Q, Liao L, Wang J, Bian C, Li J, Yan X, Liu Y, Shao C: Human mesenchymal stem cells inhibit cancer cell proliferation by secreting DKK-1. Leukemia. 2009, 23: 925-933.
PubMedGoogle Scholar
Ramasamy R, Lam EW, Soeiro I, Tisato V, Bonnet D, Dazzi F: Mesenchymal stem cells inhibit proliferation and apoptosis of tumor cells: impact on in vivo tumor growth. Leukemia. 2006, 21: 304-310.
PubMedGoogle Scholar
Guo KT, SchÄfer R, Paul A, Gerber A, Ziemer G, Wendel HP: A new technique for the isolation and surface immobilization of mesenchymal stem cells from whole bone marrow using high-specific DNA aptamers. Stem Cells. 2006, 24: 2220-2231.
PubMedGoogle Scholar
Schäfer R, Wiskirchen J, Guo K, Neumann B, Kehlbach R, Pintaske J, Voth V, Walker T, Scheule A, Greiner T: Aptamer-based isolation and subsequent imaging of mesenchymal stem cells in ischemic myocard by magnetic resonance imaging. RöFo-Fortschritte auf dem Gebiet der Röntgenstrahlen und der bildgebenden Verfahren. 2007, New York: © Georg Thieme Verlag KG Stuttgart, 1009-1015.
Google Scholar
Ponte AL, Marais E, Gallay N, Langonne A, Delorme B, Herault O, Charbord P, Domenech J: The in vitro migration capacity of human bone marrow mesenchymal stem cells: comparison of chemokine and growth factor chemotactic activities. Stem Cells. 2007, 25: 1737-1745.
PubMedGoogle Scholar
Ball SG, Shuttleworth CA, Kielty CM: Mesenchymal stem cells and neovascularization: role of platelet-derived growth factor receptors. J Cell Mol Med. 2007, 11: 1012-1030.
PubMedCentralPubMedGoogle Scholar
Vicens MC, Sen A, Vanderlaan A, Drake TJ, Tan W: Investigation of molecular beacon aptamer-based bioassay for platelet-derived growth factor detection. ChemBioChem. 2005, 6: 900-907.
PubMedGoogle Scholar
Fang X, Sen A, Vicens M, Tan W: Synthetic DNA aptamers to detect protein molecular variants in a high-throughput fluorescence quenching assay. ChemBioChem. 2003, 4: 829-834.
PubMedGoogle Scholar
Mellman I, Steinman RM: Dendritic cells-specialized and regulated antigen processing machines. Cell. 2001, 106: 255-258.
PubMedGoogle Scholar
Cella M, Sallusto F, Lanzavecchia A: Origin, maturation and antigen presenting function of dendritic cells. Curr Opin Immunol. 1997, 9: 10-16.
PubMedGoogle Scholar
Banchereau J, Steinman RM: Dendritic cells and the control of immunity. Nature. 1998, 392: 245-252.
PubMedGoogle Scholar
Fong L, Engleman EG: Dendritic cells in cancer immunotherapy. Annu Rev Immunol. 2000, 18: 245-273.
PubMedGoogle Scholar
Figdor CG, de Vries IJM, Lesterhuis WJ, Melief CJ: Dendritic cell immunotherapy: mapping the way. Nat Med. 2004, 10: 475-480.
PubMedGoogle Scholar
Lutz MB, Schuler G: Immature, semi-mature and fully mature dendritic cells: which signals induce tolerance or immunity?. Trends Immunol. 2002, 23: 445-449.
PubMedGoogle Scholar
Horan PK, Melnicoff MJ, Jensen BD, Slezak SE: Fluorescent cell labeling for in vivo and in vitro cell tracking. Methods Cell Biol. 1990, 33: 469-490.
PubMedGoogle Scholar
Edinger M, Cao Y-A, Verneris MR, Bachmann MH, Contag CH, Negrin RS: Revealing lymphoma growth and the efficacy of immune cell therapies using in vivo bioluminescence imaging. Blood. 2003, 101: 640-648.
PubMedGoogle Scholar
Berezovski MV, Lechmann M, Musheev MU, Mak TW, Krylov SN: Aptamer-facilitated biomarker discovery (AptaBiD). J Am Chem Soc. 2008, 130: 9137-9143.
PubMedGoogle Scholar
Hui Y, Shan L, Lin-fu Z, Jian-hua Z: Selection of DNA aptamers against DC-SIGN protein. Mol Cell Biochem. 2007, 306: 71-77.
PubMedGoogle Scholar
van Kooyk Y, Geijtenbeek TB: DC-SIGN: escape mechanism for pathogens. Nat Rev Immunol. 2003, 3: 697-709.
PubMedGoogle Scholar
Wengerter BC, Katakowski JA, Rosenberg JM, Park CG, Almo SC, Palliser D, Levy M: Aptamer-targeted antigen delivery. Mol Ther. 2014, 22 (7): 1375-1387.
PubMedCentralPubMedGoogle Scholar
McNamara JO, Kolonias D, Pastor F, Mittler RS, Chen L, Giangrande PH, Sullenger B, Gilboa E: Multivalent 4-1BB binding aptamers costimulate CD8+ T cells and inhibit tumor growth in mice. J Clin Invest. 2008, 118: 376-
PubMedCentralPubMedGoogle Scholar
Dollins CM, Nair S, Boczkowski D, Lee J, Layzer JM, Gilboa E, Sullenger BA: Assembling OX40 aptamers on a molecular scaffold to create a receptor-activating aptamer. Chem Biol. 2008, 15: 675-682.
PubMedCentralPubMedGoogle Scholar
Santulli-Marotto S, Nair SK, Rusconi C, Sullenger B, Gilboa E: Multivalent RNA aptamers that inhibit CTLA-4 and enhance tumor immunity. Cancer Res. 2003, 63: 7483-7489.
PubMedGoogle Scholar
Syed MA, Pervaiz S: Advances in aptamers. Oligonucleotides. 2010, 20: 215-224.
PubMedGoogle Scholar
Keefe AD, Pai S, Ellington A: Aptamers as therapeutics. Nat Rev Drug Discov. 2010, 9: 537-550.
PubMedGoogle Scholar
Pestourie C, Tavitian B, Duconge F: Aptamers against extracellular targets for in vivo applications. Biochimie. 2005, 87: 921-930.
PubMedGoogle Scholar
Younes C, Boisgard R, Tavitian B: Labelled oligonucleotides as radiopharmaceuticals: pitfalls, problems and perspectives. Curr Pharm Des. 2002, 8: 1451-1466.
PubMedGoogle Scholar
Nam SY, Ricles LM, Suggs LJ, Emelianov SY: In vivo ultrasound and photoacoustic monitoring of mesenchymal stem cells labeled with gold nanotracers. PLoS One. 2012, 7: e37267-
PubMedCentralPubMedGoogle Scholar
Wang H, Cao F, De A, Cao Y, Contag C, Gambhir SS, Wu JC, Chen X: Trafficking mesenchymal stem cell engraftment and differentiation in tumor-bearing mice by bioluminescence imaging. Stem Cells. 2009, 27: 1548-1558.
PubMedCentralPubMedGoogle Scholar
Wullner U, Neef I, Eller A, Kleines M, Tur MK, Barth S: Cell-specific induction of apoptosis by rationally designed bivalent aptamer-siRNA transcripts silencing eukaryotic elongation factor 2. Curr Cancer Drug Targets. 2008, 8: 554-565.
PubMedGoogle Scholar
Chu TC, Twu KY, Ellington AD, Levy M: Aptamer mediated siRNA delivery. Nucleic Acids Res. 2006, 34: e73-
PubMedCentralPubMedGoogle Scholar
Tucker CE, Chen L-S, Judkins MB, Farmer JA, Gill SC, Drolet DW: Detection and plasma pharmacokinetics of an anti-vascular endothelial growth factor oligonucleotide-aptamer (NX1838) in rhesus monkeys. J Chromatogr B Biomed Sci Appl. 1999, 732: 203-212.
PubMedGoogle Scholar
Keefe AD, Cload ST: SELEX with modified nucleotides. Curr Opin Chem Biol. 2008, 12: 448-456.
PubMedGoogle Scholar
Famulok M, Mayer G, Blind M: Nucleic acid aptamers from selection in vitro to applications in vivo. Acc Chem Res. 2000, 33: 591-599.
PubMedGoogle Scholar
Shangguan D, Cao ZC, Li Y, Tan W: Aptamers evolved from cultured cancer cells reveal molecular differences of cancer cells in patient samples. Clin Chem. 2007, 53: 1153-1155.
PubMedGoogle Scholar
Xiao Z, Farokhzad OC: Aptamer-functionalized nanoparticles for medical applications: challenges and opportunities. ACS Nano. 2012, 6: 3670-3676.
PubMedCentralPubMedGoogle Scholar
Schmidt KS, Borkowski S, Kurreck J, Stephens AW, Bald R, Hecht M, Friebe M, Dinkelborg L, Erdmann VA: Application of locked nucleic acids to improve aptamer in vivo stability and targeting function. Nucleic Acids Res. 2004, 32: 5757-5765.
PubMedCentralPubMedGoogle Scholar
Mi J, Liu Y, Rabbani ZN, Yang Z, Urban JH, Sullenger BA, Clary BM: In vivo selection of tumor-targeting RNA motifs. Nat Chem Biol. 2010, 6: 22-24.
PubMedCentralPubMedGoogle Scholar
Cheng C, Chen YH, Lennox KA, Behlke MA, Davidson BL: In vivo SELEX for Identification of Brain-penetrating Aptamers. Mol Ther Nucleic Acids. 2013, 2: e67-
PubMedCentralPubMedGoogle Scholar
Cerchia L, Ducongé F, Pestourie C, Boulay J, Aissouni Y, Gombert K, Tavitian B, de Franciscis V, Libri D: Neutralizing aptamers from whole-cell SELEX inhibit the RET receptor tyrosine kinase. PLoS Biol. 2005, 3: e123-
PubMedCentralPubMedGoogle Scholar
Yoo H, Jung H, Kim SA, Mok H: Multivalent comb-type aptamer–siRNA conjugates for efficient and selective intracellular delivery. Chem Commun. 2014, 50: 6765-6767.
Google Scholar
Li W-M, Bing T, Wei J-Y, Chen Z-Z, Shangguan D-H, Fang J: Cell-SELEX-based selection of aptamers that recognize distinct targets on metastatic colorectal cancer cells. Biomaterials. 2014, 35: 6998-7007.
PubMedGoogle Scholar
O'Sullivan CK: Aptasensors–the future of biosensing?. Anal Bioanal Chem. 2002, 372: 44-48.
PubMedGoogle Scholar
El-Sagheer AH, Brown T: New strategy for the synthesis of chemically modified RNA constructs exemplified by hairpin and hammerhead ribozymes. Proc Natl Acad Sci. 2010, 107: 15329-15334.
PubMedCentralPubMedGoogle Scholar
Brody EN, Gold L: Aptamers as therapeutic and diagnostic agents. Rev Mol Biotechnol. 2000, 74: 5-13.
Google Scholar
Vater A, Jarosch F, Buchner K, Klussmann S: Short bioactive Spiegelmers to migraine-associated calcitonin gene-related peptide rapidly identified by a novel approach: Tailored-SELEX. Nucleic Acids Res. 2003, 31: e130-
PubMedCentralPubMedGoogle Scholar
Porciani D, Signore G, Marchetti L, Mereghetti P, Nifosì R, Beltram F: Two interconvertible folds modulate the activity of a DNA aptamer against transferrin receptor. Mol Ther Nucleic Acids. 2014, 3: e144-
PubMedCentralPubMedGoogle Scholar
White RR, Sullenger BA, Rusconi CP: Developing aptamers into therapeutics. J Clin Investig. 2000, 106: 929-934.
PubMedCentralPubMedGoogle Scholar
Zhou J, Rossi JJ: Aptamer-targeted cell-specific RNA interference. Silence. 2010, 1: 4-
PubMedCentralPubMedGoogle Scholar
Bouchard P, Hutabarat R, Thompson K: Discovery and development of therapeutic aptamers. Annu Rev Pharmacol Toxicol. 2010, 50: 237-257.
PubMedGoogle Scholar
Zhou J, Rossi JJ: Cell-type-specific, aptamer-functionalized agents for targeted disease therapy. Mol Ther Nucleic Acids. 2014, 3: e169-
PubMedCentralPubMedGoogle Scholar
White RR, Shan S, Rusconi CP, Shetty G, Dewhirst MW, Kontos CD, Sullenger BA: Inhibition of rat corneal angiogenesis by a nuclease-resistant RNA aptamer specific for angiopoietin-2. Proc Natl Acad Sci. 2003, 100: 5028-5033.
PubMedCentralPubMedGoogle Scholar
Androutsellis-Theotokis A, Leker RR, Soldner F, Hoeppner DJ, Ravin R, Poser SW, Rueger MA, Bae S-K, Kittappa R, McKay RD: Notch signalling regulates stem cell numbers in vitro and in vivo. Nature. 2006, 442: 823-826.
PubMedGoogle Scholar
Heissig B, Hattori K, Dias S, Friedrich M, Ferris B, Hackett NR, Crystal RG, Besmer P, Lyden D, Moore MA: Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell. 2002, 109: 625-637.
PubMedCentralPubMedGoogle Scholar
Gnecchi M, Zhang Z, Ni A, Dzau VJ: Paracrine mechanisms in adult stem cell signaling and therapy. Circ Res. 2008, 103: 1204-1219.
PubMedCentralPubMedGoogle Scholar
Crisostomo PR, Wang Y, Markel TA, Wang M, Lahm T, Meldrum DR: Human mesenchymal stem cells stimulated by TNF-α, LPS, or hypoxia produce growth factors by an NFκB-but not JNK-dependent mechanism. Am J Physiol Regul Integr Comp Physiol. 2008, 294: C675-C682.
Google Scholar
Gabrilovich DI, Chen HL, Girgis KR, Cunningham HT, Meny GM, Nadaf S, Kavanaugh D, Carbone DP: Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat Med. 1996, 2: 1096-1103.
PubMedGoogle Scholar
Lee AS, Tang C, Rao MS, Weissman IL, Wu JC: Tumorigenicity as a clinical hurdle for pluripotent stem cell therapies. Nat Med. 2013, 19: 998-1004.
PubMedCentralPubMedGoogle Scholar
Phinney DG: Functional heterogeneity of mesenchymal stem cells: implications for cell therapy. J Cell Biochem. 2012, 113: 2806-2812.
PubMedGoogle Scholar

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright
Copyright on any open access article in Molecular and Cellular Therapies published bythe Institute is retained by the author(s). Authors can grant any third party the right to use
the article freely as long as its integrity is maintained and its original authors, citation details and publisher are identified. Please contact the Office of Molecular and Cellular
Therapies for more information specifically regarding permissions if there are questions.