Targeting the Wnt/β-catenin pathway in endometriosis: a potentially effective approach for treatment and prevention
Abstract
Endometriosis is a chronic, estrogen-dependent disease associated with infertility and pelvic pain. Endometriosis is defined by the presence of extra-uterine endometrial tissue. It affects approximately 10% of reproductive-aged women. However, the underlying etiology, pathogenesis and pathophysiology remain to be fully elucidated. Knowledge of these factors is indispensable for the development of targeted therapies for prevention and treatment of endometriosis. Several studies, including those from our laboratory, have suggested that aberrant activation of the Wnt/β-catenin pathway may be involved in the pathophysiology of endometriosis. This is a review of the literature focused on the aberrant activation of the Wnt/β-catenin pathway in patients with endometriosis, and on how targeting the Wnt/targeting pathway may be a potentially effective approach for treating and/or preventing endometriosis.
Downloads
References
Giudice LC, Kao LC: Endometriosis. Lancet. 2004, 364: 1789-1799. 10.1016/S0140-6736(04)17403-5.
CrossRefPubMedGoogle Scholar
Matsuzaki S, Darcha C, Maleysson E, Canis M, Mage G: Impaired down-regulation of E-cadherin and beta-catenin protein expression in endometrial epithelial cells in the mid-secretory endometrium of infertile patients with endometriosis. J Clin Endocrinol Metab. 2010, 95: 3437-3445. 10.1210/jc.2009-2713.
CrossRefPubMedGoogle Scholar
Matsuzaki S, Darcha C: Epithelial to mesenchymal transition-like and mesenchymal to epithelial transition-like processes might be involved in the pathogenesis of pelvic endometriosis. Hum Reprod. 2012, 27: 712-721. 10.1093/humrep/der442.
CrossRefPubMedGoogle Scholar
Matsuzaki S, Darcha C: In vitro effects of a small-molecule antagonist of the Tcf/β-catenin complex on endometrial and endometriotic cells of patients with endometriosis. PLoS One. 2013, 8: e61690-10.1371/journal.pone.0061690.
PubMedCentralCrossRefPubMedGoogle Scholar
Matsuzaki S, Darcha C: Involvement of the Wnt/β-catenin signaling pathway in the cellular and molecular mechanisms of fibrosis in endometriosis. PLoS One. 2013, 8: e76808-10.1371/journal.pone.0076808.
PubMedCentralCrossRefPubMedGoogle Scholar
Pabona JM, Simmen FA, Nikiforov MA, Zhuang D, Shankar K, Velarde MC, Zelenko Z, Giudice LC, Simmen RC: Krüppel-like factor 9 and progesterone receptor coregulation of decidualizing endometrial stromal cells: implications for the pathogenesis of endometriosis. J Clin Endocrinol Metab. 2012, 97: E376-E392. 10.1210/jc.2011-2562.
PubMedCentralCrossRefPubMedGoogle Scholar
Aghajanova L, Horcajadas JA, Weeks JL, Esteban FJ, Nezhat CN, Conti M, Giudice LC: The protein kinase A pathway-regulated transcriptome of endometrial stromal fibroblasts reveals compromised differentiation and persistent proliferative potential in endometriosis. Endocrinology. 2010, 151: 1341-1355. 10.1210/en.2009-0923.
PubMedCentralCrossRefPubMedGoogle Scholar
Cheng CW, Smith SK, Charnock-Jones DS: Transcript profile and localization of Wnt signaling-related molecules in human endometrium. Fertil Steril. 2008, 90: 201-204. 10.1016/j.fertnstert.2007.05.077.
CrossRefPubMedGoogle Scholar
Wu Y, Kajdacsy-Balla A, Strawn E, Basir Z, Halverson G, Jailwala P, Wang Y, Wang X, Ghosh S, Guo SW: Transcriptional characterizations of differences between eutopic and ectopic endometrium. Endocrinology. 2006, 147: 232-246. 10.1210/en.2005-0426.
CrossRefPubMedGoogle Scholar
Klaus A, Birchmeier W: Wnt signalling and its impact on development and cancer. Nat Rev Cancer. 2008, 8: 387-398. 10.1038/nrc2389.
CrossRefPubMedGoogle Scholar
Clevers H: Wnt/beta-catenin signaling in development and disease. Cell. 2006, 127: 469-480. 10.1016/j.cell.2006.10.018.
CrossRefPubMedGoogle Scholar
Grigoryan T, Wend P, Klaus A, Birchmeier W: Deciphering the function of canonical Wnt signals in development and disease: Conditional loss- and gain-of-function mutations of beta-catenin in mice. Genes Dev. 2008, 22: 2308-2341. 10.1101/gad.1686208.
PubMedCentralCrossRefPubMedGoogle Scholar
Wend P, Holland JD, Ziebold U, Birchmeier W: Wnt signaling in stem and cancer stem cells. Semin Cell Dev Biol. 2010, 21: 855-863. 10.1016/j.semcdb.2010.09.004.
CrossRefPubMedGoogle Scholar
Ramos-DeSimone N, Hahn-Dantona E, Sipley J, Nagase H, French DL, Quigley JP: Activation of matrix metalloproteinase-9 (MMP-9) via a converging plasmin/stromelysin-1 cascade enhances tumor cell invasion. J Biol Chem. 1999, 274: 13066-13076. 10.1074/jbc.274.19.13066.
CrossRefPubMedGoogle Scholar
Yu Q, Stamenkovic I: Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-β and promotes tumor invasion and angiogenesis. Genes Dev. 2000, 14: 163-176.
PubMedCentralPubMedGoogle Scholar
Sternlicht MD, Werb Z: How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol. 2001, 17: 463-516. 10.1146/annurev.cellbio.17.1.463.
PubMedCentralCrossRefPubMedGoogle Scholar
Björklund M, Koivunen E: Gelatinase-mediated migration and invasion of cancer cells. Biochim Biophys Acta. 2005, 1755: 37-69.
PubMedGoogle Scholar
Dufour A, Sampson NS, Zucker S, Cao J: Role of the hemopexin domain of matrix metalloproteinases in cell migration. J Cell Physiol. 2008, 217: 643-651. 10.1002/jcp.21535.
PubMedCentralCrossRefPubMedGoogle Scholar
Dufour A, Zucker S, Sampson NS, Kuscu C, Cao J: Role of matrix metalloproteinase-9 dimers in cell migration: design of inhibitory peptides. J Biol Chem. 2010, 285: 35944-35956. 10.1074/jbc.M109.091769.
PubMedCentralCrossRefPubMedGoogle Scholar
Collette T, Bellehumeur C, Kats R, Maheux R, Mailloux J, Villeneuve M, Akoum A: Evidence for an increased release of proteolytic activity by the eutopic endometrial tissue in women with endometriosis and for involvement of matrix metalloproteinase-9. Hum Reprod. 2004, 19: 1257-1264. 10.1093/humrep/deh290.
CrossRefPubMedGoogle Scholar
Hull ML, Escareno CR, Godsland JM, Doig JR, Johnson CM, Phillips SC, Smith SK, Tavaré S, Print CG, Charnock-Jones DS: Endometrial-peritoneal interactions during endometriotic lesion establishment. Am J Pathol. 2008, 173: 700-715. 10.2353/ajpath.2008.071128.
PubMedCentralCrossRefPubMedGoogle Scholar
Valentijn AJ, Palial K, Al-Lamee H, Tempest N, Drury J, Von Zglinicki T, Saretzki G, Murray P, Gargett CE, Hapangama DK: SSEA-1 isolates human endometrial basal glandular epithelial cells: phenotypic and functional characterization and implications in the pathogenesis of endometriosis. Hum Reprod. 2013, 28: 2695-2708. 10.1093/humrep/det285.
CrossRefPubMedGoogle Scholar
Gargett CE: Uterine stem cells: what is the evidence?. Hum Reprod Update. 2007, 13: 87-101. 10.1093/humupd/dml045.
CrossRefPubMedGoogle Scholar
Sasson IE, Taylor HS: Stem cells and the pathogenesis of endometriosis. Ann N Y Acad Sci. 2008, 1127: 106-115. 10.1196/annals.1434.014.
PubMedCentralCrossRefPubMedGoogle Scholar
Du H, Taylor HS: Stem cells and female reproduction. Reprod Sci. 2009, 16: 126-139. 10.1177/1933719108329956.
PubMedCentralCrossRefPubMedGoogle Scholar
Maruyama T, Masuda H, Ono M, Kajitani T, Yoshimura Y: Human uterine stem/progenitor cells: their possible role in uterine physiology and pathology. Reproduction. 2010, 140: 11-22. 10.1530/REP-09-0438.
CrossRefPubMedGoogle Scholar
Gargett CE, Masuda H: Adult stem cells in the endometrium. Mol Hum Reprod. 2010, 16: 818-834. 10.1093/molehr/gaq061.
CrossRefPubMedGoogle Scholar
Hendriksen J, Jansen M, Brown CM, van der Velde H, van Ham M, Galjart N, Offerhaus GJ, Fagotto F, Fornerod M: Plasma membrane recruitment of dephosphorylated beta-catenin upon activation of the Wnt pathway. J Cell Sci. 2008, 121: 1793-1802. 10.1242/jcs.025536.
CrossRefPubMedGoogle Scholar
Velarde MC, Aghajanova L, Nezhat CR, Giudice LC: Increased mitogen-activated protein kinase kinase/extracellularly regulated kinase activity in human endometrial stromal fibroblasts of women with endometriosis reduces 3′,5′-cyclic adenosine 5′-monophosphate inhibition of cyclin D1. Endocrinology. 2009, 150: 4701-4712. 10.1210/en.2009-0389.
PubMedCentralCrossRefPubMedGoogle Scholar
Wang Y, Hanifi-Moghaddam P, Hanekamp EE, Kloosterboer HJ, Franken P, Veldscholte J, van Doorn HC, Ewing PC, Kim JJ, Grootegoed JA, Burger CW, Fodde R, Blok LJ: Progesterone inhibition of Wnt/beta-catenin signaling in normal endometrium and endometrial cancer. Clin Cancer Res. 2009, 15: 5784-5793. 10.1158/1078-0432.CCR-09-0814.
CrossRefPubMedGoogle Scholar
Jeong JW, Lee HS, Franco HL, Broaddus RR, Taketo MM, Tsai SY, Lydon JP, DeMayo FJ: beta-catenin mediates glandular formation and dysregulation of beta-catenin induces hyperplasia formation in the murine uterus. Oncogene. 2009, 28: 31-40. 10.1038/onc.2008.363.
PubMedCentralCrossRefPubMedGoogle Scholar
Burney RO, Talbi S, Hamilton AE, Vo KC, Nyegaard M, Nezhat CR, Lessey BA, Giudice LC: Gene expression analysis of endometrium reveals progesterone resistance and candidate susceptibility genes in women with endometriosis. Endocrinology. 2007, 148: 3814-3826. 10.1210/en.2006-1692.
CrossRefPubMedGoogle Scholar
Lessey BA, Palomino WA, Apparao KB, Young SL, Lininger RA: Estrogen receptor-alpha (ER-alpha) and defects in uterine receptivity in women. Reprod Biol Endocrinol. 2006, 4 (Suppl 1): S9-10.1186/1477-7827-4-S1-S9.
PubMedCentralCrossRefPubMedGoogle Scholar
Moon RT, Kohn AD, De Ferrari GV, Kaykas A: WNT and beta-catenin signalling: diseases and therapies. Nat Rev Genet. 2004, 5: 691-701. 10.1038/nrg1427. Review
CrossRefPubMedGoogle Scholar
Gaetje R, Kotzian S, Herrmann G, Baumann R, Starzinski-Powitz A: Invasiveness of endometriotic cells in vitro. Lancet. 1995, 346: 1463-1464. 10.1016/S0140-6736(95)92474-4.
CrossRefPubMedGoogle Scholar
Zeitvogel A, Baumann R, Starzinski-Powitz A: Identification of an invasive, N-cadherin-expressing epithelial cell type in endometriosis using a new cell culture model. Am J Pathol. 2001, 159: 1839-1852. 10.1016/S0002-9440(10)63030-1.
PubMedCentralCrossRefPubMedGoogle Scholar
Han SJ, Hawkins SM, Begum K, Jung SY, Kovanci E, Qin J, Lydon JP, DeMayo FJ, O’Malley BW: A new isoform of steroid receptor coactivator-1 is crucial for pathogenic progression of endometriosis. Nat Med. 2012, 8: 1102-1111. 10.1038/nm.2826.
CrossRefGoogle Scholar
Harada T, Kaponis A, Iwabe T, Taniguchi F, Makrydimas G, Sofikitis N, Paschopoulos M, Paraskevaidis E, Terakawa N: Hum Reprod Update. 2004, 10: 29-38. 10.1093/humupd/dmh007. Review
CrossRefPubMedGoogle Scholar
Signorile PG, Baldi F, Bussani R, D’Armiento M, De Falco M, Boccellino M, Quagliuolo L, Baldi A: New evidence of the presence of endometriosis in the human fetus. Reprod Biomed Online. 2010, 21: 14142-14147. 10.1016/j.rbmo.2010.04.002.
CrossRefGoogle Scholar
Signorile PG, Baldi F, Bussani R, Viceconte R, Bulzomi P, D’Armiento M, D’Avino A, Baldi A: Embryologic origin of endometriosis: Analysis of 101 human female foetuses. J Cell Physiol. 2012, 227: 1653-1656. 10.1002/jcp.22888.
CrossRefPubMedGoogle Scholar
Van Amerongen R, Nusse R: Towards an integrated view of Wnt signaling in development. Development. 2009, 136: 3205-3214. 10.1242/dev.033910.
CrossRefPubMedGoogle Scholar
Kouzmenko AP, Takeyama K, Ito S, Furutani T, Sawatsubashi S, Maki A, Suzuki E, Kawasaki Y, Akiyama T, Tabata T, Kato S: Wnt/beta-catenin and estrogen signaling converge in vivo. J Biol Chem. 2004, 279: 40255-40258. 10.1074/jbc.C400331200.
CrossRefPubMedGoogle Scholar
Matsuzaki S, Canis M, Darcha C, Dechelotte P, Pouly JL, Bruhat MA: Fibrogenesis in peritoneal endometriosis. A semi-quantitative analysis of type-I collagen. Gynecol Obstet Invest. 1999, 47: 197-199. 10.1159/000010094.
CrossRefPubMedGoogle Scholar
Nisolle M, Donnez J: Peritoneal endometriosis, ovarian endometriosis, and adenomyotic nodules of the rectovaginal septum are three different entities. Fertil Steril. 1997, 68: 585-596. 10.1016/S0015-0282(97)00191-X.
CrossRefPubMedGoogle Scholar
Koninckx PR, Ussia A, Adamyan L, Wattiez A, Donnez J: Deep endometriosis: definition, diagnosis, and treatment. Fertil Steril. 2012, 98: 564-571. 10.1016/j.fertnstert.2012.07.1061.
CrossRefPubMedGoogle Scholar
Chilosi M, Poletti V, Zamò A, Lestani M, Montagna L, Piccoli P, Pedron S, Bertaso M, Scarpa A, Murer B, Cancellieri A, Maestro R, Semenzato G, Doglioni C: Aberrant Wnt/β-catenin pathway activation in idiopathic pulmonary fibrosis. Am J Pathol. 2003, 162: 1495-1502. 10.1016/S0002-9440(10)64282-4.
PubMedCentralCrossRefPubMedGoogle Scholar
Surendran K, Schiavi S, Hruska KA: Wnt-dependent β-catenin signaling is activated after unilateral ureteral obstruction, and recombinant secreted frizzled-related protein 4 alters the progression of renal fibrosis. J Am Soc Nephrol. 2005, 16: 2373-2384. 10.1681/ASN.2004110949.
CrossRefPubMedGoogle Scholar
Königshoff M, Balsara N, Pfaff EM, Kramer M, Chrobak I, Seeger W, Eickelberg O: Functional Wnt signaling is increased in idiopathic pulmonary fibrosis. PLoS One. 2008, 3: e2142-10.1371/journal.pone.0002142.
PubMedCentralCrossRefPubMedGoogle Scholar
Henderson WR, Chi EY, Ye X, Nguyen C, Tien YT, Zhou B, Borok Z, Knight DA, Kahn M: Inhibition of Wnt/beta-catenin/CREB binding protein (CBP) signaling reverses pulmonary fibrosis. Proc Natl Acad Sci U S A. 2010, 107: 14309-14314. 10.1073/pnas.1001520107.
PubMedCentralCrossRefPubMedGoogle Scholar
Akhmetshina A, Palumbo K, Dees C, Bergmann C, Venalis P, Zerr P, Horn A, Kireva T, Beyer C, Zwerina J, Schneider H, Sadowski A, Riener MO, MacDougald OA, Distler O, Schett G, Distler JH: Activation of canonical Wnt signalling is required for TGF-β-mediated fibrosis. Nat Commun. 2012, 3: 735-10.1038/ncomms1734.
PubMedCentralCrossRefPubMedGoogle Scholar
Leask A, Abraham DJ: TGF-beta signaling and the fibrotic response. FASEB J. 2004, 18: 816-827. 10.1096/fj.03-1273rev.
CrossRefPubMedGoogle Scholar
Berkley KJ, Rapkin AJ, Papka RE: The pains of endometriosis. Science. 2005, 308: 1587-1589. 10.1126/science.1111445. Review
CrossRefPubMedGoogle Scholar
Stratton P, Berkley KJ: Chronic pelvic pain and endometriosis: translational evidence of the relationship and implications. Hum Reprod Update. 2011, 17: 327-346. 10.1093/humupd/dmq050.
PubMedCentralCrossRefPubMedGoogle Scholar
Berkley KJ, Dmitrieva N, Curtis KS, Papka RE: Innervation of ectopic endometrium in a rat model of endometriosis. Proc Natl Acad Sci U S A. 2004, 101: 11094-11098. 10.1073/pnas.0403663101.
PubMedCentralCrossRefPubMedGoogle Scholar
McAllister SL, Dmitrieva N, Berkley KJ: Sprouted innervation into uterine transplants contributes to the development of hyperalgesia in a rat model of endometriosis. PLoS One. 2012, 7: e31758-10.1371/journal.pone.0031758.
PubMedCentralCrossRefPubMedGoogle Scholar
Shi Y, Yuan S, Li B, Wang J, Carlton SM, Chung K, Chung JM, Tang SJ: Regulation of Wnt signaling by nociceptive input in animal models. Mol Pain. 2012, 8: 47-10.1186/1744-8069-8-47.
PubMedCentralCrossRefPubMedGoogle Scholar
Zhang YK, Huang ZJ, Liu S, Liu YP, Song AA, Song XJ: WNT signaling underlies the pathogenesis of neuropathic pain in rodents. J Clin Invest. 2013, 123: 2268-2286. 10.1172/JCI65364.
PubMedCentralCrossRefPubMedGoogle Scholar
Ewan KB, Dale TC: The potential for targeting oncogenic WNT/beta-catenin signaling in therapy. Curr Drug Targets. 2008, 9: 532-547. 10.2174/138945008784911787.
CrossRefPubMedGoogle Scholar

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright
Copyright on any open access article in Molecular and Cellular Therapies published bythe Institute is retained by the author(s). Authors can grant any third party the right to use
the article freely as long as its integrity is maintained and its original authors, citation details and publisher are identified. Please contact the Office of Molecular and Cellular
Therapies for more information specifically regarding permissions if there are questions.