Targeting the Wnt/β-catenin pathway in endometriosis: a potentially effective approach for treatment and prevention

  • Sachiko Matsuzaki 1CHU Clermont-Ferrand, CHU Estaing, Chirurgie Gynécologique, 1, Place Lucie et Raymond Aubrac, 63003 Clermont-Ferrand, France 2Clermont Université, Université d’Auvergne, ISIT UMR6284, Clermont-Ferrand, France
  • Revaz Botchorishvili 1CHU Clermont-Ferrand, CHU Estaing, Chirurgie Gynécologique, 1, Place Lucie et Raymond Aubrac, 63003 Clermont-Ferrand, France 2Clermont Université, Université d’Auvergne, ISIT UMR6284, Clermont-Ferrand, France
  • Jean Pouly 1CHU Clermont-Ferrand, CHU Estaing, Chirurgie Gynécologique, 1, Place Lucie et Raymond Aubrac, 63003 Clermont-Ferrand, France 2Clermont Université, Université d’Auvergne, ISIT UMR6284, Clermont-Ferrand, France
  • Michael Canis 1CHU Clermont-Ferrand, CHU Estaing, Chirurgie Gynécologique, 1, Place Lucie et Raymond Aubrac, 63003 Clermont-Ferrand, France 2Clermont Université, Université d’Auvergne, ISIT UMR6284, Clermont-Ferrand, France
Keywords: Endometrosis, Endometrium, Wnt/β-catenin pathway

Abstract

Endometriosis is a chronic, estrogen-dependent disease associated with infertility and pelvic pain. Endometriosis is defined by the presence of extra-uterine endometrial tissue. It affects approximately 10% of reproductive-aged women. However, the underlying etiology, pathogenesis and pathophysiology remain to be fully elucidated. Knowledge of these factors is indispensable for the development of targeted therapies for prevention and treatment of endometriosis. Several studies, including those from our laboratory, have suggested that aberrant activation of the Wnt/β-catenin pathway may be involved in the pathophysiology of endometriosis. This is a review of the literature focused on the aberrant activation of the Wnt/β-catenin pathway in patients with endometriosis, and on how targeting the Wnt/targeting pathway may be a potentially effective approach for treating and/or preventing endometriosis.

Downloads

Download data is not yet available.

References

Giudice LC, Kao LC: Endometriosis. Lancet. 2004, 364: 1789-1799. 10.1016/S0140-6736(04)17403-5.

CrossRefPubMedGoogle Scholar

Matsuzaki S, Darcha C, Maleysson E, Canis M, Mage G: Impaired down-regulation of E-cadherin and beta-catenin protein expression in endometrial epithelial cells in the mid-secretory endometrium of infertile patients with endometriosis. J Clin Endocrinol Metab. 2010, 95: 3437-3445. 10.1210/jc.2009-2713.

CrossRefPubMedGoogle Scholar

Matsuzaki S, Darcha C: Epithelial to mesenchymal transition-like and mesenchymal to epithelial transition-like processes might be involved in the pathogenesis of pelvic endometriosis. Hum Reprod. 2012, 27: 712-721. 10.1093/humrep/der442.

CrossRefPubMedGoogle Scholar

Matsuzaki S, Darcha C: In vitro effects of a small-molecule antagonist of the Tcf/β-catenin complex on endometrial and endometriotic cells of patients with endometriosis. PLoS One. 2013, 8: e61690-10.1371/journal.pone.0061690.

PubMedCentralCrossRefPubMedGoogle Scholar

Matsuzaki S, Darcha C: Involvement of the Wnt/β-catenin signaling pathway in the cellular and molecular mechanisms of fibrosis in endometriosis. PLoS One. 2013, 8: e76808-10.1371/journal.pone.0076808.

PubMedCentralCrossRefPubMedGoogle Scholar

Pabona JM, Simmen FA, Nikiforov MA, Zhuang D, Shankar K, Velarde MC, Zelenko Z, Giudice LC, Simmen RC: Krüppel-like factor 9 and progesterone receptor coregulation of decidualizing endometrial stromal cells: implications for the pathogenesis of endometriosis. J Clin Endocrinol Metab. 2012, 97: E376-E392. 10.1210/jc.2011-2562.

PubMedCentralCrossRefPubMedGoogle Scholar

Aghajanova L, Horcajadas JA, Weeks JL, Esteban FJ, Nezhat CN, Conti M, Giudice LC: The protein kinase A pathway-regulated transcriptome of endometrial stromal fibroblasts reveals compromised differentiation and persistent proliferative potential in endometriosis. Endocrinology. 2010, 151: 1341-1355. 10.1210/en.2009-0923.

PubMedCentralCrossRefPubMedGoogle Scholar

Cheng CW, Smith SK, Charnock-Jones DS: Transcript profile and localization of Wnt signaling-related molecules in human endometrium. Fertil Steril. 2008, 90: 201-204. 10.1016/j.fertnstert.2007.05.077.

CrossRefPubMedGoogle Scholar

Wu Y, Kajdacsy-Balla A, Strawn E, Basir Z, Halverson G, Jailwala P, Wang Y, Wang X, Ghosh S, Guo SW: Transcriptional characterizations of differences between eutopic and ectopic endometrium. Endocrinology. 2006, 147: 232-246. 10.1210/en.2005-0426.

CrossRefPubMedGoogle Scholar

Klaus A, Birchmeier W: Wnt signalling and its impact on development and cancer. Nat Rev Cancer. 2008, 8: 387-398. 10.1038/nrc2389.

CrossRefPubMedGoogle Scholar

Clevers H: Wnt/beta-catenin signaling in development and disease. Cell. 2006, 127: 469-480. 10.1016/j.cell.2006.10.018.

CrossRefPubMedGoogle Scholar

Grigoryan T, Wend P, Klaus A, Birchmeier W: Deciphering the function of canonical Wnt signals in development and disease: Conditional loss- and gain-of-function mutations of beta-catenin in mice. Genes Dev. 2008, 22: 2308-2341. 10.1101/gad.1686208.

PubMedCentralCrossRefPubMedGoogle Scholar

Wend P, Holland JD, Ziebold U, Birchmeier W: Wnt signaling in stem and cancer stem cells. Semin Cell Dev Biol. 2010, 21: 855-863. 10.1016/j.semcdb.2010.09.004.

CrossRefPubMedGoogle Scholar

Ramos-DeSimone N, Hahn-Dantona E, Sipley J, Nagase H, French DL, Quigley JP: Activation of matrix metalloproteinase-9 (MMP-9) via a converging plasmin/stromelysin-1 cascade enhances tumor cell invasion. J Biol Chem. 1999, 274: 13066-13076. 10.1074/jbc.274.19.13066.

CrossRefPubMedGoogle Scholar

Yu Q, Stamenkovic I: Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-β and promotes tumor invasion and angiogenesis. Genes Dev. 2000, 14: 163-176.

PubMedCentralPubMedGoogle Scholar

Sternlicht MD, Werb Z: How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol. 2001, 17: 463-516. 10.1146/annurev.cellbio.17.1.463.

PubMedCentralCrossRefPubMedGoogle Scholar

Björklund M, Koivunen E: Gelatinase-mediated migration and invasion of cancer cells. Biochim Biophys Acta. 2005, 1755: 37-69.

PubMedGoogle Scholar

Dufour A, Sampson NS, Zucker S, Cao J: Role of the hemopexin domain of matrix metalloproteinases in cell migration. J Cell Physiol. 2008, 217: 643-651. 10.1002/jcp.21535.

PubMedCentralCrossRefPubMedGoogle Scholar

Dufour A, Zucker S, Sampson NS, Kuscu C, Cao J: Role of matrix metalloproteinase-9 dimers in cell migration: design of inhibitory peptides. J Biol Chem. 2010, 285: 35944-35956. 10.1074/jbc.M109.091769.

PubMedCentralCrossRefPubMedGoogle Scholar

Collette T, Bellehumeur C, Kats R, Maheux R, Mailloux J, Villeneuve M, Akoum A: Evidence for an increased release of proteolytic activity by the eutopic endometrial tissue in women with endometriosis and for involvement of matrix metalloproteinase-9. Hum Reprod. 2004, 19: 1257-1264. 10.1093/humrep/deh290.

CrossRefPubMedGoogle Scholar

Hull ML, Escareno CR, Godsland JM, Doig JR, Johnson CM, Phillips SC, Smith SK, Tavaré S, Print CG, Charnock-Jones DS: Endometrial-peritoneal interactions during endometriotic lesion establishment. Am J Pathol. 2008, 173: 700-715. 10.2353/ajpath.2008.071128.

PubMedCentralCrossRefPubMedGoogle Scholar

Valentijn AJ, Palial K, Al-Lamee H, Tempest N, Drury J, Von Zglinicki T, Saretzki G, Murray P, Gargett CE, Hapangama DK: SSEA-1 isolates human endometrial basal glandular epithelial cells: phenotypic and functional characterization and implications in the pathogenesis of endometriosis. Hum Reprod. 2013, 28: 2695-2708. 10.1093/humrep/det285.

CrossRefPubMedGoogle Scholar

Gargett CE: Uterine stem cells: what is the evidence?. Hum Reprod Update. 2007, 13: 87-101. 10.1093/humupd/dml045.

CrossRefPubMedGoogle Scholar

Sasson IE, Taylor HS: Stem cells and the pathogenesis of endometriosis. Ann N Y Acad Sci. 2008, 1127: 106-115. 10.1196/annals.1434.014.

PubMedCentralCrossRefPubMedGoogle Scholar

Du H, Taylor HS: Stem cells and female reproduction. Reprod Sci. 2009, 16: 126-139. 10.1177/1933719108329956.

PubMedCentralCrossRefPubMedGoogle Scholar

Maruyama T, Masuda H, Ono M, Kajitani T, Yoshimura Y: Human uterine stem/progenitor cells: their possible role in uterine physiology and pathology. Reproduction. 2010, 140: 11-22. 10.1530/REP-09-0438.

CrossRefPubMedGoogle Scholar

Gargett CE, Masuda H: Adult stem cells in the endometrium. Mol Hum Reprod. 2010, 16: 818-834. 10.1093/molehr/gaq061.

CrossRefPubMedGoogle Scholar

Hendriksen J, Jansen M, Brown CM, van der Velde H, van Ham M, Galjart N, Offerhaus GJ, Fagotto F, Fornerod M: Plasma membrane recruitment of dephosphorylated beta-catenin upon activation of the Wnt pathway. J Cell Sci. 2008, 121: 1793-1802. 10.1242/jcs.025536.

CrossRefPubMedGoogle Scholar

Velarde MC, Aghajanova L, Nezhat CR, Giudice LC: Increased mitogen-activated protein kinase kinase/extracellularly regulated kinase activity in human endometrial stromal fibroblasts of women with endometriosis reduces 3′,5′-cyclic adenosine 5′-monophosphate inhibition of cyclin D1. Endocrinology. 2009, 150: 4701-4712. 10.1210/en.2009-0389.

PubMedCentralCrossRefPubMedGoogle Scholar

Wang Y, Hanifi-Moghaddam P, Hanekamp EE, Kloosterboer HJ, Franken P, Veldscholte J, van Doorn HC, Ewing PC, Kim JJ, Grootegoed JA, Burger CW, Fodde R, Blok LJ: Progesterone inhibition of Wnt/beta-catenin signaling in normal endometrium and endometrial cancer. Clin Cancer Res. 2009, 15: 5784-5793. 10.1158/1078-0432.CCR-09-0814.

CrossRefPubMedGoogle Scholar

Jeong JW, Lee HS, Franco HL, Broaddus RR, Taketo MM, Tsai SY, Lydon JP, DeMayo FJ: beta-catenin mediates glandular formation and dysregulation of beta-catenin induces hyperplasia formation in the murine uterus. Oncogene. 2009, 28: 31-40. 10.1038/onc.2008.363.

PubMedCentralCrossRefPubMedGoogle Scholar

Burney RO, Talbi S, Hamilton AE, Vo KC, Nyegaard M, Nezhat CR, Lessey BA, Giudice LC: Gene expression analysis of endometrium reveals progesterone resistance and candidate susceptibility genes in women with endometriosis. Endocrinology. 2007, 148: 3814-3826. 10.1210/en.2006-1692.

CrossRefPubMedGoogle Scholar

Lessey BA, Palomino WA, Apparao KB, Young SL, Lininger RA: Estrogen receptor-alpha (ER-alpha) and defects in uterine receptivity in women. Reprod Biol Endocrinol. 2006, 4 (Suppl 1): S9-10.1186/1477-7827-4-S1-S9.

PubMedCentralCrossRefPubMedGoogle Scholar

Moon RT, Kohn AD, De Ferrari GV, Kaykas A: WNT and beta-catenin signalling: diseases and therapies. Nat Rev Genet. 2004, 5: 691-701. 10.1038/nrg1427. Review

CrossRefPubMedGoogle Scholar

Gaetje R, Kotzian S, Herrmann G, Baumann R, Starzinski-Powitz A: Invasiveness of endometriotic cells in vitro. Lancet. 1995, 346: 1463-1464. 10.1016/S0140-6736(95)92474-4.

CrossRefPubMedGoogle Scholar

Zeitvogel A, Baumann R, Starzinski-Powitz A: Identification of an invasive, N-cadherin-expressing epithelial cell type in endometriosis using a new cell culture model. Am J Pathol. 2001, 159: 1839-1852. 10.1016/S0002-9440(10)63030-1.

PubMedCentralCrossRefPubMedGoogle Scholar

Han SJ, Hawkins SM, Begum K, Jung SY, Kovanci E, Qin J, Lydon JP, DeMayo FJ, O’Malley BW: A new isoform of steroid receptor coactivator-1 is crucial for pathogenic progression of endometriosis. Nat Med. 2012, 8: 1102-1111. 10.1038/nm.2826.

CrossRefGoogle Scholar

Harada T, Kaponis A, Iwabe T, Taniguchi F, Makrydimas G, Sofikitis N, Paschopoulos M, Paraskevaidis E, Terakawa N: Hum Reprod Update. 2004, 10: 29-38. 10.1093/humupd/dmh007. Review

CrossRefPubMedGoogle Scholar

Signorile PG, Baldi F, Bussani R, D’Armiento M, De Falco M, Boccellino M, Quagliuolo L, Baldi A: New evidence of the presence of endometriosis in the human fetus. Reprod Biomed Online. 2010, 21: 14142-14147. 10.1016/j.rbmo.2010.04.002.

CrossRefGoogle Scholar

Signorile PG, Baldi F, Bussani R, Viceconte R, Bulzomi P, D’Armiento M, D’Avino A, Baldi A: Embryologic origin of endometriosis: Analysis of 101 human female foetuses. J Cell Physiol. 2012, 227: 1653-1656. 10.1002/jcp.22888.

CrossRefPubMedGoogle Scholar

Van Amerongen R, Nusse R: Towards an integrated view of Wnt signaling in development. Development. 2009, 136: 3205-3214. 10.1242/dev.033910.

CrossRefPubMedGoogle Scholar

Kouzmenko AP, Takeyama K, Ito S, Furutani T, Sawatsubashi S, Maki A, Suzuki E, Kawasaki Y, Akiyama T, Tabata T, Kato S: Wnt/beta-catenin and estrogen signaling converge in vivo. J Biol Chem. 2004, 279: 40255-40258. 10.1074/jbc.C400331200.

CrossRefPubMedGoogle Scholar

Matsuzaki S, Canis M, Darcha C, Dechelotte P, Pouly JL, Bruhat MA: Fibrogenesis in peritoneal endometriosis. A semi-quantitative analysis of type-I collagen. Gynecol Obstet Invest. 1999, 47: 197-199. 10.1159/000010094.

CrossRefPubMedGoogle Scholar

Nisolle M, Donnez J: Peritoneal endometriosis, ovarian endometriosis, and adenomyotic nodules of the rectovaginal septum are three different entities. Fertil Steril. 1997, 68: 585-596. 10.1016/S0015-0282(97)00191-X.

CrossRefPubMedGoogle Scholar

Koninckx PR, Ussia A, Adamyan L, Wattiez A, Donnez J: Deep endometriosis: definition, diagnosis, and treatment. Fertil Steril. 2012, 98: 564-571. 10.1016/j.fertnstert.2012.07.1061.

CrossRefPubMedGoogle Scholar

Chilosi M, Poletti V, Zamò A, Lestani M, Montagna L, Piccoli P, Pedron S, Bertaso M, Scarpa A, Murer B, Cancellieri A, Maestro R, Semenzato G, Doglioni C: Aberrant Wnt/β-catenin pathway activation in idiopathic pulmonary fibrosis. Am J Pathol. 2003, 162: 1495-1502. 10.1016/S0002-9440(10)64282-4.

PubMedCentralCrossRefPubMedGoogle Scholar

Surendran K, Schiavi S, Hruska KA: Wnt-dependent β-catenin signaling is activated after unilateral ureteral obstruction, and recombinant secreted frizzled-related protein 4 alters the progression of renal fibrosis. J Am Soc Nephrol. 2005, 16: 2373-2384. 10.1681/ASN.2004110949.

CrossRefPubMedGoogle Scholar

Königshoff M, Balsara N, Pfaff EM, Kramer M, Chrobak I, Seeger W, Eickelberg O: Functional Wnt signaling is increased in idiopathic pulmonary fibrosis. PLoS One. 2008, 3: e2142-10.1371/journal.pone.0002142.

PubMedCentralCrossRefPubMedGoogle Scholar

Henderson WR, Chi EY, Ye X, Nguyen C, Tien YT, Zhou B, Borok Z, Knight DA, Kahn M: Inhibition of Wnt/beta-catenin/CREB binding protein (CBP) signaling reverses pulmonary fibrosis. Proc Natl Acad Sci U S A. 2010, 107: 14309-14314. 10.1073/pnas.1001520107.

PubMedCentralCrossRefPubMedGoogle Scholar

Akhmetshina A, Palumbo K, Dees C, Bergmann C, Venalis P, Zerr P, Horn A, Kireva T, Beyer C, Zwerina J, Schneider H, Sadowski A, Riener MO, MacDougald OA, Distler O, Schett G, Distler JH: Activation of canonical Wnt signalling is required for TGF-β-mediated fibrosis. Nat Commun. 2012, 3: 735-10.1038/ncomms1734.

PubMedCentralCrossRefPubMedGoogle Scholar

Leask A, Abraham DJ: TGF-beta signaling and the fibrotic response. FASEB J. 2004, 18: 816-827. 10.1096/fj.03-1273rev.

CrossRefPubMedGoogle Scholar

Berkley KJ, Rapkin AJ, Papka RE: The pains of endometriosis. Science. 2005, 308: 1587-1589. 10.1126/science.1111445. Review

CrossRefPubMedGoogle Scholar

Stratton P, Berkley KJ: Chronic pelvic pain and endometriosis: translational evidence of the relationship and implications. Hum Reprod Update. 2011, 17: 327-346. 10.1093/humupd/dmq050.

PubMedCentralCrossRefPubMedGoogle Scholar

Berkley KJ, Dmitrieva N, Curtis KS, Papka RE: Innervation of ectopic endometrium in a rat model of endometriosis. Proc Natl Acad Sci U S A. 2004, 101: 11094-11098. 10.1073/pnas.0403663101.

PubMedCentralCrossRefPubMedGoogle Scholar

McAllister SL, Dmitrieva N, Berkley KJ: Sprouted innervation into uterine transplants contributes to the development of hyperalgesia in a rat model of endometriosis. PLoS One. 2012, 7: e31758-10.1371/journal.pone.0031758.

PubMedCentralCrossRefPubMedGoogle Scholar

Shi Y, Yuan S, Li B, Wang J, Carlton SM, Chung K, Chung JM, Tang SJ: Regulation of Wnt signaling by nociceptive input in animal models. Mol Pain. 2012, 8: 47-10.1186/1744-8069-8-47.

PubMedCentralCrossRefPubMedGoogle Scholar

Zhang YK, Huang ZJ, Liu S, Liu YP, Song AA, Song XJ: WNT signaling underlies the pathogenesis of neuropathic pain in rodents. J Clin Invest. 2013, 123: 2268-2286. 10.1172/JCI65364.

PubMedCentralCrossRefPubMedGoogle Scholar

Ewan KB, Dale TC: The potential for targeting oncogenic WNT/beta-catenin signaling in therapy. Curr Drug Targets. 2008, 9: 532-547. 10.2174/138945008784911787.

CrossRefPubMedGoogle Scholar

Published
2014-11-19
Section
Review