Flowing through the CRISPR-CAScade: Will genome editing boost cell therapies?

  • Uri Ben-David Stem Cell Unit, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
Keywords: Genome editing, Cell therapy, Stem cells

Abstract

Recent years have seen great advancements in genome editing technologies, allowing for efficient and specific targeting of DNA sequences into the genome. In parallel, advancements in stem cell research, and especially the ability to induce pluripotency in somatic cells, have brought stem cell-derived therapies closer to the clinic. In this commentary, I envision how groundbreaking genome editing technologies will influence stem cell biology research, paving the way to regenerative medicine with genetically engineered cells.

Downloads

Download data is not yet available.

References

Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD: Genome editing with engineered zinc finger nucleases. Nat Rev Genet. 2010, 11: 636-646. 10.1038/nrg2842.

CrossRefPubMedGoogle Scholar

Mali P, Cheng L: Concise review: Human cell engineering: cellular reprogramming and genome editing. Stem Cells. 2012, 30: 75-81. 10.1002/stem.735.

CrossRefPubMedGoogle Scholar

Porteus MH, Baltimore D: Chimeric nucleases stimulate gene targeting in human cells. Science. 2003, 300: 763-10.1126/science.1078395.

CrossRefPubMedGoogle Scholar

Miller JC, Tan S, Qiao G, Barlow KA, Wang J, Xia DF: A TALE nuclease architecture for efficient genome editing. Nat Biotechnol. 2011, 29: 143-148. 10.1038/nbt.1755.

CrossRefPubMedGoogle Scholar

Hockemeyer D, Wang H, Kiani S, Lai CS, Gao Q, Cassady JP: Genetic engineering of human pluripotent cells using TALE nucleases. Nat Biotechnol. 2011, 29: 731-734. 10.1038/nbt.1927.

PubMedCentralCrossRefPubMedGoogle Scholar

Hockemeyer D, Soldner F, Beard C, Gao Q, Mitalipova M, DeKelver RC: Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases. Nat Biotechnol. 2009, 27: 851-857. 10.1038/nbt.1562.

PubMedCentralCrossRefPubMedGoogle Scholar

Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE: RNA-guided human genome engineering via Cas9. Science. 2013, 339: 823-826. 10.1126/science.1232033.

PubMedCentralCrossRefPubMedGoogle Scholar

Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N: Multiplex genome engineering using CRISPR/Cas systems. Science. 2013, 339: 819-823. 10.1126/science.1231143.

PubMedCentralCrossRefPubMedGoogle Scholar

Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F: One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell. 2013, 153: 910-918. 10.1016/j.cell.2013.04.025.

PubMedCentralCrossRefPubMedGoogle Scholar

Cho SW, Kim S, Kim JM, Kim JS: Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol. 2013, 31: 230-232. 10.1038/nbt.2507.

CrossRefPubMedGoogle Scholar

Wiedenheft B, Sternberg SH, Doudna JA: RNA-guided genetic silencing systems in bacteria and archaea. Nature. 2012, 482: 331-338. 10.1038/nature10886.

CrossRefPubMedGoogle Scholar

Westra ER, Swarts DC, Staals RH, Jore MM, Brouns SJ, van der Oost J: The CRISPRs, they are a-changin': how prokaryotes generate adaptive immunity. Annu Rev genet. 2012, 46: 311-339. 10.1146/annurev-genet-110711-155447.

CrossRefPubMedGoogle Scholar

Hou Z, Zhang Y, Propson NE, Howden SE, Chu LF, Sontheimer EJ: Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis. Proc Natl Acad Sci U S A. 2013, doi:10.1073/pnas.1313587110

Google Scholar

Ding Q, Regan SN, Xia Y, Oostrom LA, Cowan CA, Musunuru K: Enhanced efficiency of human pluripotent stem cell genome editing through replacing TALENs with CRISPRs. Cell Stem Cell. 2013, 12: 393-394. 10.1016/j.stem.2013.03.006.

PubMedCentralCrossRefPubMedGoogle Scholar

Fu Y, Foden JA, Khayter C, Maeder ML, Reyon D, Joung JK: High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol. 2013, doi:10.1038/nbt.2623

Google Scholar

Mali P, Aach J, Stranges PB, Esvelt KM, Moosburner M, Kosuri S: CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol. 2013, doi:10.1038/nbt.2675

Google Scholar

Published
2013-11-06
Section
Commentary