Current status of miRNA-targeting therapeutics and preclinical studies against gastroenterological carcinoma

  • Chikako Shibato Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
  • Motoyuki Otsuka Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan Japan Science and Technology Agency, PRESTO, Kawaguchi, Saitama 332-0012, Japan
  • Takahiro Kishikawa Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
  • Takeshi Yoshikawa Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
  • Akemi Takata Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
  • Kazuhiko Koike Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
Keywords: Locked Nucleic acids, Miravirsen, MicroRNA, Therapautics

Abstract

Expanding knowledge about the crucial roles of microRNAs (miRNAs) in human diseases has led to the idea that miRNAs may be novel, promising therapeutic targets against various pathological conditions. The recent success of a human clinical trial using anti-miR-122 oligonucleotides against chronic hepatitis C virus has paved the way for this approach. In this review, we summarize briefly the current status of clinical trials of miRNA-targeting therapy and several representative preclinical trials against hepato-gastrointestinal carcinoma. In addition, we describe the currently available technologies for modification and delivery of oligonucleotides, which are essential in providing efficient, specific and safe approaches to targeting miRNAs.

Downloads

Download data is not yet available.

References

References

Yates LA, Norbury CJ, Gilbert RJ: The long and short of microRNA. Cell. 2013, 153 (3): 516-519. 10.1016/j.cell.2013.04.003.

CrossRefPubMedGoogle Scholar

Lee JT: Epigenetic regulation by long noncoding RNAs. Science. 2012, 338 (6113): 1435-1439. 10.1126/science.1231776.

CrossRefPubMedGoogle Scholar

Dethoff EA, Chugh J, Mustoe AM, Al-Hashimi HM: Functional complexity and regulation through RNA dynamics. Nature. 2012, 482 (7385): 322-330. 10.1038/nature10885.

PubMedCentralCrossRefPubMedGoogle Scholar

Castanotto D, Rossi JJ: The promises and pitfalls of RNA-interference-based therapeutics. Nature. 2009, 457 (7228): 426-433. 10.1038/nature07758.

PubMedCentralCrossRefPubMedGoogle Scholar

Lee RC, Feinbaum RL, Ambros V: The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993, 75 (5): 843-854. 10.1016/0092-8674(93)90529-Y.

CrossRefPubMedGoogle Scholar

Carrington J, Ambros V: Role of microRNAs in plant and animal development. Science. 2003, 301 (5631): 336-338. 10.1126/science.1085242.

CrossRefPubMedGoogle Scholar

Cho WC: MicroRNAs: potential biomarkers for cancer diagnosis, prognosis and targets for therapy. Int J Biochem Cell Biol. 2010, 42 (8): 1273-1281. 10.1016/j.biocel.2009.12.014.

CrossRefPubMedGoogle Scholar

Denli AM, Tops BB, Plasterk RH, Ketting RF, Hannon GJ: Processing of primary microRNAs by the Microprocessor complex. Nature. 2004, 432 (7014): 231-235. 10.1038/nature03049.

CrossRefPubMedGoogle Scholar

Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Rådmark O, Kim S: The nuclear RNase III Drosha initiates microRNA processing. Nature. 2003, 425 (6956): 415-419. 10.1038/nature01957.

CrossRefPubMedGoogle Scholar

Han J, Lee Y, Yeom KH, Kim YK, Jin H, Kim VN: The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev. 2004, 18 (24): 3016-3027. 10.1101/gad.1262504.

PubMedCentralCrossRefPubMedGoogle Scholar

Takata A, Otsuka M, Yoshikawa T, Kishikawa T, Ohno M, Koike K: MicroRNAs and liver function. Minerva gastroenterologica e dietologica. 2013, 59 (2): 187-203.

PubMedGoogle Scholar

Lund E, Güttinger S, Calado A, Dahlberg JE, Kutay U: Nuclear export of microRNA precursors. Science. 2004, 303 (5654): 95-98. 10.1126/science.1090599.

CrossRefPubMedGoogle Scholar

Ambros V: The functions of animal microRNAs. Nature. 2004, 431 (7006): 350-355. 10.1038/nature02871.

CrossRefPubMedGoogle Scholar

Gregory RI, Chendrimada TP, Cooch N, Shiekhattar R: Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell. 2005, 123 (4): 631-640. 10.1016/j.cell.2005.10.022.

CrossRefPubMedGoogle Scholar

Bartel DP: MicroRNAs: target recognition and regulatory functions. Cell. 2009, 136 (2): 215-233. 10.1016/j.cell.2009.01.002.

PubMedCentralCrossRefPubMedGoogle Scholar

Guo H, Ingolia NT, Weissman JS, Bartel DP: Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature. 2010, 466 (7308): 835-840. 10.1038/nature09267.

PubMedCentralCrossRefPubMedGoogle Scholar

Liu J, Valencia-Sanchez MA, Hannon GJ, Parker R: MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies. Nat Cell Biol. 2005, 7: 719-723. 10.1038/ncb1274. England

PubMedCentralCrossRefPubMedGoogle Scholar

Wu L, Fan J, Belasco JG: MicroRNAs direct rapid deadenylation of mRNA. Proc Natl Acad Sci U S A. 2006, 103 (11): 4034-4039. 10.1073/pnas.0510928103.

PubMedCentralCrossRefPubMedGoogle Scholar

Mathonnet G, Fabian MR, Svitkin YV, Parsyan A, Huck L, Murata T, Biffo S, Merrick WC, Darzynkiewicz E, Pillai RS: MicroRNA inhibition of translation initiation in vitro by targeting the cap-binding complex eIF4F. Science. 2007, 317 (5845): 1764-1767. 10.1126/science.1146067.

CrossRefPubMedGoogle Scholar

Croce CM: Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet. 2009, 10 (10): 704-714. 10.1038/nrg2634.

PubMedCentralCrossRefPubMedGoogle Scholar

Pappas TC, Bader AG, Andruss BF, Brown D, Ford LP: Applying small RNA molecules to the directed treatment of human diseases: realizing the potential. Expert Opin Ther Targets. 2008, 12 (1): 115-127. 10.1517/14728222.12.1.115.

CrossRefPubMedGoogle Scholar

Nana-Sinkam SP, Croce CM: Clinical applications for microRNAs in cancer. Clin Pharmacol Ther. 2013, 93 (1): 98-104. 10.1038/clpt.2012.192.

CrossRefPubMedGoogle Scholar

Wang XW, Heegaard NH, Orum H: MicroRNAs in liver disease. Gastroenterology. 2012, 142 (7): 1431-1443. 10.1053/j.gastro.2012.04.007.

CrossRefPubMedGoogle Scholar

Song JH, Meltzer SJ: MicroRNAs in pathogenesis, diagnosis, and treatment of gastroesophageal cancers. Gastroenterology. 2012, 143 (1): e32-e47.

CrossRefGoogle Scholar

Wu WK, Lee CW, Cho CH, Fan D, Wu K, Yu J, Sung JJ: MicroRNA dysregulation in gastric cancer: a new player enters the game. Oncogene. 2010, 29 (43): 5761-5771. 10.1038/onc.2010.352.

CrossRefPubMedGoogle Scholar

Garzon R, Calin GA, Croce CM: MicroRNAs in cancer. Annu Rev Med. 2009, 60: 167-179. 10.1146/annurev.med.59.053006.104707.

CrossRefPubMedGoogle Scholar

Mott JL: MicroRNAs involved in tumor suppressor and oncogene pathways: implications for hepatobiliary neoplasia. Hepatology. 2009, 50 (2): 630-637. 10.1002/hep.23010.

PubMedCentralCrossRefPubMedGoogle Scholar

Visone R, Petrocca F, Croce CM: Micro-RNAs in gastrointestinal and liver disease. Gastroenterology. 2008, 135 (6): 1866-1869. 10.1053/j.gastro.2008.10.074.

CrossRefPubMedGoogle Scholar

Janssen HL, Reesink HW, Lawitz EJ, Zeuzem S, Rodriguez-Torres M, Patel K, van der Meer AJ, Patick AK, Chen A, Zhou Y: Treatment of HCV infection by targeting MicroRNA. N Engl J Med. 2013, 368: 1685-1694. 10.1056/NEJMoa1209026.

CrossRefPubMedGoogle Scholar

Gebert LF, Rebhan MA, Crivelli SE, Denzler R, Stoffel M, Hall J: Miravirsen (SPC3649) can inhibit the biogenesis of miR-122. Nucleic Acids Res. 2013, in press

Google Scholar

Elmén J, Lindow M, Silahtaroglu A, Bak M, Christensen M, Lind-Thomsen A, Hedtjärn M, Hansen JB, Hansen HF, Straarup EM: Antagonism of microRNA-122 in mice by systemically administered LNA-antimiR leads to up-regulation of a large set of predicted target mRNAs in the liver. Nucleic Acids Res. 2008, 36 (4): 1153-1162.

PubMedCentralCrossRefPubMedGoogle Scholar

Zeisel MB, Pfeffer S, Baumert TF: miR-122 acts as a tumor suppressor in hepatocarcinogenesis in vivo. J Hepatol. 2013, 58 (4): 821-823. 10.1016/j.jhep.2012.10.010.

CrossRefPubMedGoogle Scholar

Lanford RE, Hildebrandt-Eriksen ES, Petri A, Persson R, Lindow M, Munk ME, Kauppinen S, Ørum H: Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science. 2010, 327 (5962): 198-201. 10.1126/science.1178178.

PubMedCentralCrossRefPubMedGoogle Scholar

Elmén J, Lindow M, Schütz S, Lawrence M, Petri A, Obad S, Lindholm M, Hedtjärn M, Hansen HF, Berger U: LNA-mediated microRNA silencing in non-human primates. Nature. 2008, 452 (7189): 896-899. 10.1038/nature06783.

CrossRefPubMedGoogle Scholar

Jopling CL, Yi M, Lancaster AM, Lemon SM, Sarnow P: Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science. 2005, 309 (5740): 1577-1581. 10.1126/science.1113329.

CrossRefPubMedGoogle Scholar

Li M, Zhao H, Zhang X, Wood LD, Anders RA, Choti MA, Pawlik TM, Daniel HD, Kannangai R, Offerhaus GJ: Inactivating mutations of the chromatin remodeling gene ARID2 in hepatocellular carcinoma. Nat Genet. 2011, 43 (9): 828-829. 10.1038/ng.903.

PubMedCentralCrossRefPubMedGoogle Scholar

Coulouarn C, Factor VM, Andersen JB, Durkin ME, Thorgeirsson SS: Loss of miR-122 expression in liver cancer correlates with suppression of the hepatic phenotype and gain of metastatic properties. Oncogene. 2009, 28 (40): 3526-3536. 10.1038/onc.2009.211.

PubMedCentralCrossRefPubMedGoogle Scholar

Bai S, Nasser MW, Wang B, Hsu SH, Datta J, Kutay H, Yadav A, Nuovo G, Kumar P, Ghoshal K: MicroRNA-122 inhibits tumorigenic properties of hepatocellular carcinoma cells and sensitizes these cells to sorafenib. J Biol Chem. 2009, 284 (46): 32015-32027. 10.1074/jbc.M109.016774.

PubMedCentralCrossRefPubMedGoogle Scholar

Kojima K, Takata A, Vadnais C, Otsuka M, Yoshikawa T, Akanuma M, Kondo Y, Kang YJ, Kishikawa T, Kato N: MicroRNA122 is a key regulator of α-fetoprotein expression and influences the aggressiveness of hepatocellular carcinoma. Nat Commun. 2011, 2: 338-

CrossRefPubMedGoogle Scholar

Hsu SH, Wang B, Kota J, Yu J, Costinean S, Kutay H, Yu L, Bai S, La Perle K, Chivukula RR: Essential metabolic, anti-inflammatory, and anti-tumorigenic functions of miR-122 in liver. J Clin Invest. 2012, 122 (8): 2871-2883. 10.1172/JCI63539.

PubMedCentralCrossRefPubMedGoogle Scholar

Tsai WC, Hsu SD, Hsu CS, Lai TC, Chen SJ, Shen R, Huang Y, Chen HC, Lee CH, Tsai TF: MicroRNA-122 plays a critical role in liver homeostasis and hepatocarcinogenesis. J Clin Invest. 2012, 122 (8): 2884-2897. 10.1172/JCI63455.

PubMedCentralCrossRefPubMedGoogle Scholar

He L, He X, Lim LP, de Stanchina E, Xuan Z, Liang Y, Xue W, Zender L, Magnus J, Ridzon D: A microRNA component of the p53 tumour suppressor network. Nature. 2007, 447 (7148): 1130-1134. 10.1038/nature05939.

CrossRefPubMedGoogle Scholar

Liu C, Kelnar K, Liu B, Chen X, Calhoun-Davis T, Li H, Patrawala L, Yan H, Jeter C, Honorio S: The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat Med. 2011, 17 (2): 211-215. 10.1038/nm.2284.

PubMedCentralCrossRefPubMedGoogle Scholar

Roy S, Levi E, Majumdar AP, Sarkar FH: Expression of miR-34 is lost in colon cancer which can be re-expressed by a novel agent CDF. J Hematol Oncol. 2012, 5: 58-10.1186/1756-8722-5-58.

PubMedCentralCrossRefPubMedGoogle Scholar

Wong MY, Yu Y, Walsh WR, Yang JL: microRNA-34 family and treatment of cancers with mutant or wild-type p53 (Review). Int J Oncol. 2011, 38 (5): 1189-1195.

PubMedGoogle Scholar

Kim NH, Kim HS, Kim NG, Lee I, Choi HS, Li XY, Kang SE, Cha SY, Ryu JK, Na JM: p53 and microRNA-34 are suppressors of canonical Wnt signaling. Sci Signal. 2011, 4 (197): ra71-

PubMedCentralPubMedGoogle Scholar

Hu QL, Jiang QY, Jin X, Shen J, Wang K, Li YB, Xu FJ, Tang GP, Li ZH: Cationic microRNA-delivering nanovectors with bifunctional peptides for efficient treatment of PANC-1 xenograft model. Biomaterials. 2013, 34 (9): 2265-2276. 10.1016/j.biomaterials.2012.12.016.

CrossRefPubMedGoogle Scholar

Callegari E, Elamin BK, Giannone F, Milazzo M, Altavilla G, Fornari F, Giacomelli L, D'Abundo L, Ferracin M, Bassi C: Liver tumorigenicity promoted by microRNA-221 in a mouse transgenic model. Hepatology. 2012, 56 (3): 1025-1033. 10.1002/hep.25747.

CrossRefPubMedGoogle Scholar

Fang Y, Xue JL, Shen Q, Chen J, Tian L: MicroRNA-7 inhibits tumor growth and metastasis by targeting the phosphoinositide 3-kinase/Akt pathway in hepatocellular carcinoma. Hepatology. 2012, 55 (6): 1852-1862. 10.1002/hep.25576.

CrossRefPubMedGoogle Scholar

Zhang S, Shan C, Kong G, Du Y, Ye L, Zhang X: MicroRNA-520e suppresses growth of hepatoma cells by targeting the NF-κB-inducing kinase (NIK). Oncogene. 2012, 31 (31): 3607-3620. 10.1038/onc.2011.523.

CrossRefPubMedGoogle Scholar

He XX, Chang Y, Meng FY, Wang MY, Xie QH, Tang F, Li PY, Song YH, Lin JS: MicroRNA-375 targets AEG-1 in hepatocellular carcinoma and suppresses liver cancer cell growth in vitro and in vivo. Oncogene. 2012, 31 (28): 3357-3369. 10.1038/onc.2011.500.

CrossRefPubMedGoogle Scholar

Li Q, Zou C, Han Z, Xiao H, Wei H, Wang W, Zhang L, Zhang X, Tang Q, Zhang C: MicroRNA-25 functions as a potential tumor suppressor in colon cancer by targeting Smad7. Cancer Lett. 2013, 335 (1): 168-174. 10.1016/j.canlet.2013.02.029.

CrossRefPubMedGoogle Scholar

Zhao WG, Yu SN, Lu ZH, Ma YH, Gu YM, Chen J: The miR-217 microRNA functions as a potential tumor suppressor in pancreatic ductal adenocarcinoma by targeting KRAS. Carcinogenesis. 2010, 31 (10): 1726-1733. 10.1093/carcin/bgq160.

CrossRefPubMedGoogle Scholar

Galardi S, Mercatelli N, Giorda E, Massalini S, Frajese GV, Ciafrè SA, Farace MG: miR-221 and miR-222 expression affects the proliferation potential of human prostate carcinoma cell lines by targeting p27Kip1. J Biol Chem. 2007, 282 (32): 23716-23724. 10.1074/jbc.M701805200.

CrossRefPubMedGoogle Scholar

Fornari F, Gramantieri L, Ferracin M, Veronese A, Sabbioni S, Calin GA, Grazi GL, Giovannini C, Croce CM, Bolondi L: MiR-221 controls CDKN1C/p57 and CDKN1B/p27 expression in human hepatocellular carcinoma. Oncogene. 2008, 27 (43): 5651-5661. 10.1038/onc.2008.178.

CrossRefPubMedGoogle Scholar

Gramantieri L, Fornari F, Ferracin M, Veronese A, Sabbioni S, Calin GA, Grazi GL, Croce CM, Bolondi L, Negrini M: MicroRNA-221 targets Bmf in hepatocellular carcinoma and correlates with tumor multifocality. Clin Cancer Res. 2009, 15 (16): 5073-5081. 10.1158/1078-0432.CCR-09-0092.

PubMedCentralCrossRefPubMedGoogle Scholar

Garofalo M, Di Leva G, Romano G, Nuovo G, Suh SS, Ngankeu A, Taccioli C, Pichiorri F, Alder H, Secchiero P: miR-221&222 regulate TRAIL resistance and enhance tumorigenicity through PTEN and TIMP3 downregulation. Cancer Cell. 2009, 16 (6): 498-509. 10.1016/j.ccr.2009.10.014.

PubMedCentralCrossRefPubMedGoogle Scholar

Pineau P, Volinia S, McJunkin K, Marchio A, Battiston C, Terris B, Mazzaferro V, Lowe SW, Croce CM, Dejean A: miR-221 overexpression contributes to liver tumorigenesis. Proc Natl Acad Sci U S A. 2010, 107 (1): 264-269. 10.1073/pnas.0907904107.

PubMedCentralCrossRefPubMedGoogle Scholar

Szafranska AE, Davison TS, John J, Cannon T, Sipos B, Maghnouj A, Labourier E, Hahn SA: MicroRNA expression alterations are linked to tumorigenesis and non-neoplastic processes in pancreatic ductal adenocarcinoma. Oncogene. 2007, 26 (30): 4442-4452. 10.1038/sj.onc.1210228.

CrossRefPubMedGoogle Scholar

Yu J, Li A, Hong SM, Hruban RH, Goggins M: MicroRNA alterations of pancreatic intraepithelial neoplasias. Clin Cancer Res. 2012, 18 (4): 981-992. 10.1158/1078-0432.CCR-11-2347.

PubMedCentralCrossRefPubMedGoogle Scholar

Válóczi A, Hornyik C, Varga N, Burgyán J, Kauppinen S, Havelda Z: Sensitive and specific detection of microRNAs by northern blot analysis using LNA-modified oligonucleotide probes. Nucleic Acids Res. 2004, 32 (22): e175-10.1093/nar/gnh171.

PubMedCentralCrossRefPubMedGoogle Scholar

Xie J, Ameres SL, Friedline R, Hung JH, Zhang Y, Xie Q, Zhong L, Su Q, He R, Li M: Long-term, efficient inhibition of microRNA function in mice using rAAV vectors. Nat Methods. 2012, 9 (4): 403-409. 10.1038/nmeth.1903.

PubMedCentralCrossRefPubMedGoogle Scholar

Chistiakov DA, Sobenin IA, Orekhov AN: Strategies to deliver microRNAs as potential therapeutics in the treatment of cardiovascular pathology. Drug Deliv. 2012, 19 (8): 392-405. 10.3109/10717544.2012.738436.

CrossRefPubMedGoogle Scholar

Ebert MS, Neilson JR, Sharp PA: MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Methods. 2007, 4 (9): 721-726. 10.1038/nmeth1079.

CrossRefPubMedGoogle Scholar

Valastyan S, Reinhardt F, Benaich N, Calogrias D, Szász AM, Wang ZC, Brock JE, Richardson AL, Weinberg RA: A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis. Cell. 2009, 137 (6): 1032-1046. 10.1016/j.cell.2009.03.047.

PubMedCentralCrossRefPubMedGoogle Scholar

Sumazin P, Yang X, Chiu HS, Chung WJ, Iyer A, Llobet-Navas D, Rajbhandari P, Bansal M, Guarnieri P, Silva J: An extensive microRNA-mediated network of RNA-RNA interactions regulates established oncogenic pathways in glioblastoma. Cell. 2011, 147 (2): 370-381. 10.1016/j.cell.2011.09.041.

PubMedCentralCrossRefPubMedGoogle Scholar

Ebert MS, Sharp PA: Emerging roles for natural microRNA sponges. Curr Biol. 2010, 20 (19): R858-861. 10.1016/j.cub.2010.08.052.

PubMedCentralCrossRefPubMedGoogle Scholar

Kota J, Chivukula RR, O'Donnell KA, Wentzel EA, Montgomery CL, Hwang HW, Chang TC, Vivekanandan P, Torbenson M, Clark KR: Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell. 2009, 137 (6): 1005-1017. 10.1016/j.cell.2009.04.021.

PubMedCentralCrossRefPubMedGoogle Scholar

Ibrahim AF, Weirauch U, Thomas M, Grünweller A, Hartmann RK, Aigner A: MicroRNA replacement therapy for miR-145 and miR-33a is efficacious in a model of colon carcinoma. Cancer Res. 2011, 71 (15): 5214-5224. 10.1158/0008-5472.CAN-10-4645.

CrossRefPubMedGoogle Scholar

Dai L, Wang W, Zhang S, Jiang Q, Wang R, Cheng L, Yang Y, Wei YQ, Deng HX: Vector-based miR-15a/16-1 plasmid inhibits colon cancer growth in vivo. Cell Biol Int. 2012, 36 (8): 765-770. 10.1042/CBI20110404.

CrossRefPubMedGoogle Scholar

Krützfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M, Stoffel M: Silencing of microRNAs in vivo with 'antagomirs'. Nature. 2005, 438 (7068): 685-689. 10.1038/nature04303.

CrossRefPubMedGoogle Scholar

Thum T, Gross C, Fiedler J, Fischer T, Kissler S, Bussen M, Galuppo P, Just S, Rottbauer W, Frantz S: MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature. 2008, 456 (7224): 980-984. 10.1038/nature07511.

CrossRefPubMedGoogle Scholar

Ivanovska I, Cleary MA: Combinatorial microRNAs: working together to make a difference. Cell Cycle. 2008, 7 (20): 3137-3142. 10.4161/cc.7.20.6923.

CrossRefPubMedGoogle Scholar

Published
2019-01-03
Section
Review