Current status of miRNA-targeting therapeutics and preclinical studies against gastroenterological carcinoma
Abstract
Expanding knowledge about the crucial roles of microRNAs (miRNAs) in human diseases has led to the idea that miRNAs may be novel, promising therapeutic targets against various pathological conditions. The recent success of a human clinical trial using anti-miR-122 oligonucleotides against chronic hepatitis C virus has paved the way for this approach. In this review, we summarize briefly the current status of clinical trials of miRNA-targeting therapy and several representative preclinical trials against hepato-gastrointestinal carcinoma. In addition, we describe the currently available technologies for modification and delivery of oligonucleotides, which are essential in providing efficient, specific and safe approaches to targeting miRNAs.
Downloads
References
References
Yates LA, Norbury CJ, Gilbert RJ: The long and short of microRNA. Cell. 2013, 153 (3): 516-519. 10.1016/j.cell.2013.04.003.
CrossRefPubMedGoogle Scholar
Lee JT: Epigenetic regulation by long noncoding RNAs. Science. 2012, 338 (6113): 1435-1439. 10.1126/science.1231776.
CrossRefPubMedGoogle Scholar
Dethoff EA, Chugh J, Mustoe AM, Al-Hashimi HM: Functional complexity and regulation through RNA dynamics. Nature. 2012, 482 (7385): 322-330. 10.1038/nature10885.
PubMedCentralCrossRefPubMedGoogle Scholar
Castanotto D, Rossi JJ: The promises and pitfalls of RNA-interference-based therapeutics. Nature. 2009, 457 (7228): 426-433. 10.1038/nature07758.
PubMedCentralCrossRefPubMedGoogle Scholar
Lee RC, Feinbaum RL, Ambros V: The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993, 75 (5): 843-854. 10.1016/0092-8674(93)90529-Y.
CrossRefPubMedGoogle Scholar
Carrington J, Ambros V: Role of microRNAs in plant and animal development. Science. 2003, 301 (5631): 336-338. 10.1126/science.1085242.
CrossRefPubMedGoogle Scholar
Cho WC: MicroRNAs: potential biomarkers for cancer diagnosis, prognosis and targets for therapy. Int J Biochem Cell Biol. 2010, 42 (8): 1273-1281. 10.1016/j.biocel.2009.12.014.
CrossRefPubMedGoogle Scholar
Denli AM, Tops BB, Plasterk RH, Ketting RF, Hannon GJ: Processing of primary microRNAs by the Microprocessor complex. Nature. 2004, 432 (7014): 231-235. 10.1038/nature03049.
CrossRefPubMedGoogle Scholar
Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Rådmark O, Kim S: The nuclear RNase III Drosha initiates microRNA processing. Nature. 2003, 425 (6956): 415-419. 10.1038/nature01957.
CrossRefPubMedGoogle Scholar
Han J, Lee Y, Yeom KH, Kim YK, Jin H, Kim VN: The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev. 2004, 18 (24): 3016-3027. 10.1101/gad.1262504.
PubMedCentralCrossRefPubMedGoogle Scholar
Takata A, Otsuka M, Yoshikawa T, Kishikawa T, Ohno M, Koike K: MicroRNAs and liver function. Minerva gastroenterologica e dietologica. 2013, 59 (2): 187-203.
PubMedGoogle Scholar
Lund E, Güttinger S, Calado A, Dahlberg JE, Kutay U: Nuclear export of microRNA precursors. Science. 2004, 303 (5654): 95-98. 10.1126/science.1090599.
CrossRefPubMedGoogle Scholar
Ambros V: The functions of animal microRNAs. Nature. 2004, 431 (7006): 350-355. 10.1038/nature02871.
CrossRefPubMedGoogle Scholar
Gregory RI, Chendrimada TP, Cooch N, Shiekhattar R: Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell. 2005, 123 (4): 631-640. 10.1016/j.cell.2005.10.022.
CrossRefPubMedGoogle Scholar
Bartel DP: MicroRNAs: target recognition and regulatory functions. Cell. 2009, 136 (2): 215-233. 10.1016/j.cell.2009.01.002.
PubMedCentralCrossRefPubMedGoogle Scholar
Guo H, Ingolia NT, Weissman JS, Bartel DP: Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature. 2010, 466 (7308): 835-840. 10.1038/nature09267.
PubMedCentralCrossRefPubMedGoogle Scholar
Liu J, Valencia-Sanchez MA, Hannon GJ, Parker R: MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies. Nat Cell Biol. 2005, 7: 719-723. 10.1038/ncb1274. England
PubMedCentralCrossRefPubMedGoogle Scholar
Wu L, Fan J, Belasco JG: MicroRNAs direct rapid deadenylation of mRNA. Proc Natl Acad Sci U S A. 2006, 103 (11): 4034-4039. 10.1073/pnas.0510928103.
PubMedCentralCrossRefPubMedGoogle Scholar
Mathonnet G, Fabian MR, Svitkin YV, Parsyan A, Huck L, Murata T, Biffo S, Merrick WC, Darzynkiewicz E, Pillai RS: MicroRNA inhibition of translation initiation in vitro by targeting the cap-binding complex eIF4F. Science. 2007, 317 (5845): 1764-1767. 10.1126/science.1146067.
CrossRefPubMedGoogle Scholar
Croce CM: Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet. 2009, 10 (10): 704-714. 10.1038/nrg2634.
PubMedCentralCrossRefPubMedGoogle Scholar
Pappas TC, Bader AG, Andruss BF, Brown D, Ford LP: Applying small RNA molecules to the directed treatment of human diseases: realizing the potential. Expert Opin Ther Targets. 2008, 12 (1): 115-127. 10.1517/14728222.12.1.115.
CrossRefPubMedGoogle Scholar
Nana-Sinkam SP, Croce CM: Clinical applications for microRNAs in cancer. Clin Pharmacol Ther. 2013, 93 (1): 98-104. 10.1038/clpt.2012.192.
CrossRefPubMedGoogle Scholar
Wang XW, Heegaard NH, Orum H: MicroRNAs in liver disease. Gastroenterology. 2012, 142 (7): 1431-1443. 10.1053/j.gastro.2012.04.007.
CrossRefPubMedGoogle Scholar
Song JH, Meltzer SJ: MicroRNAs in pathogenesis, diagnosis, and treatment of gastroesophageal cancers. Gastroenterology. 2012, 143 (1): e32-e47.
CrossRefGoogle Scholar
Wu WK, Lee CW, Cho CH, Fan D, Wu K, Yu J, Sung JJ: MicroRNA dysregulation in gastric cancer: a new player enters the game. Oncogene. 2010, 29 (43): 5761-5771. 10.1038/onc.2010.352.
CrossRefPubMedGoogle Scholar
Garzon R, Calin GA, Croce CM: MicroRNAs in cancer. Annu Rev Med. 2009, 60: 167-179. 10.1146/annurev.med.59.053006.104707.
CrossRefPubMedGoogle Scholar
Mott JL: MicroRNAs involved in tumor suppressor and oncogene pathways: implications for hepatobiliary neoplasia. Hepatology. 2009, 50 (2): 630-637. 10.1002/hep.23010.
PubMedCentralCrossRefPubMedGoogle Scholar
Visone R, Petrocca F, Croce CM: Micro-RNAs in gastrointestinal and liver disease. Gastroenterology. 2008, 135 (6): 1866-1869. 10.1053/j.gastro.2008.10.074.
CrossRefPubMedGoogle Scholar
Janssen HL, Reesink HW, Lawitz EJ, Zeuzem S, Rodriguez-Torres M, Patel K, van der Meer AJ, Patick AK, Chen A, Zhou Y: Treatment of HCV infection by targeting MicroRNA. N Engl J Med. 2013, 368: 1685-1694. 10.1056/NEJMoa1209026.
CrossRefPubMedGoogle Scholar
Gebert LF, Rebhan MA, Crivelli SE, Denzler R, Stoffel M, Hall J: Miravirsen (SPC3649) can inhibit the biogenesis of miR-122. Nucleic Acids Res. 2013, in press
Google Scholar
Elmén J, Lindow M, Silahtaroglu A, Bak M, Christensen M, Lind-Thomsen A, Hedtjärn M, Hansen JB, Hansen HF, Straarup EM: Antagonism of microRNA-122 in mice by systemically administered LNA-antimiR leads to up-regulation of a large set of predicted target mRNAs in the liver. Nucleic Acids Res. 2008, 36 (4): 1153-1162.
PubMedCentralCrossRefPubMedGoogle Scholar
Zeisel MB, Pfeffer S, Baumert TF: miR-122 acts as a tumor suppressor in hepatocarcinogenesis in vivo. J Hepatol. 2013, 58 (4): 821-823. 10.1016/j.jhep.2012.10.010.
CrossRefPubMedGoogle Scholar
Lanford RE, Hildebrandt-Eriksen ES, Petri A, Persson R, Lindow M, Munk ME, Kauppinen S, Ørum H: Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science. 2010, 327 (5962): 198-201. 10.1126/science.1178178.
PubMedCentralCrossRefPubMedGoogle Scholar
Elmén J, Lindow M, Schütz S, Lawrence M, Petri A, Obad S, Lindholm M, Hedtjärn M, Hansen HF, Berger U: LNA-mediated microRNA silencing in non-human primates. Nature. 2008, 452 (7189): 896-899. 10.1038/nature06783.
CrossRefPubMedGoogle Scholar
Jopling CL, Yi M, Lancaster AM, Lemon SM, Sarnow P: Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science. 2005, 309 (5740): 1577-1581. 10.1126/science.1113329.
CrossRefPubMedGoogle Scholar
Li M, Zhao H, Zhang X, Wood LD, Anders RA, Choti MA, Pawlik TM, Daniel HD, Kannangai R, Offerhaus GJ: Inactivating mutations of the chromatin remodeling gene ARID2 in hepatocellular carcinoma. Nat Genet. 2011, 43 (9): 828-829. 10.1038/ng.903.
PubMedCentralCrossRefPubMedGoogle Scholar
Coulouarn C, Factor VM, Andersen JB, Durkin ME, Thorgeirsson SS: Loss of miR-122 expression in liver cancer correlates with suppression of the hepatic phenotype and gain of metastatic properties. Oncogene. 2009, 28 (40): 3526-3536. 10.1038/onc.2009.211.
PubMedCentralCrossRefPubMedGoogle Scholar
Bai S, Nasser MW, Wang B, Hsu SH, Datta J, Kutay H, Yadav A, Nuovo G, Kumar P, Ghoshal K: MicroRNA-122 inhibits tumorigenic properties of hepatocellular carcinoma cells and sensitizes these cells to sorafenib. J Biol Chem. 2009, 284 (46): 32015-32027. 10.1074/jbc.M109.016774.
PubMedCentralCrossRefPubMedGoogle Scholar
Kojima K, Takata A, Vadnais C, Otsuka M, Yoshikawa T, Akanuma M, Kondo Y, Kang YJ, Kishikawa T, Kato N: MicroRNA122 is a key regulator of α-fetoprotein expression and influences the aggressiveness of hepatocellular carcinoma. Nat Commun. 2011, 2: 338-
CrossRefPubMedGoogle Scholar
Hsu SH, Wang B, Kota J, Yu J, Costinean S, Kutay H, Yu L, Bai S, La Perle K, Chivukula RR: Essential metabolic, anti-inflammatory, and anti-tumorigenic functions of miR-122 in liver. J Clin Invest. 2012, 122 (8): 2871-2883. 10.1172/JCI63539.
PubMedCentralCrossRefPubMedGoogle Scholar
Tsai WC, Hsu SD, Hsu CS, Lai TC, Chen SJ, Shen R, Huang Y, Chen HC, Lee CH, Tsai TF: MicroRNA-122 plays a critical role in liver homeostasis and hepatocarcinogenesis. J Clin Invest. 2012, 122 (8): 2884-2897. 10.1172/JCI63455.
PubMedCentralCrossRefPubMedGoogle Scholar
He L, He X, Lim LP, de Stanchina E, Xuan Z, Liang Y, Xue W, Zender L, Magnus J, Ridzon D: A microRNA component of the p53 tumour suppressor network. Nature. 2007, 447 (7148): 1130-1134. 10.1038/nature05939.
CrossRefPubMedGoogle Scholar
Liu C, Kelnar K, Liu B, Chen X, Calhoun-Davis T, Li H, Patrawala L, Yan H, Jeter C, Honorio S: The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat Med. 2011, 17 (2): 211-215. 10.1038/nm.2284.
PubMedCentralCrossRefPubMedGoogle Scholar
Roy S, Levi E, Majumdar AP, Sarkar FH: Expression of miR-34 is lost in colon cancer which can be re-expressed by a novel agent CDF. J Hematol Oncol. 2012, 5: 58-10.1186/1756-8722-5-58.
PubMedCentralCrossRefPubMedGoogle Scholar
Wong MY, Yu Y, Walsh WR, Yang JL: microRNA-34 family and treatment of cancers with mutant or wild-type p53 (Review). Int J Oncol. 2011, 38 (5): 1189-1195.
PubMedGoogle Scholar
Kim NH, Kim HS, Kim NG, Lee I, Choi HS, Li XY, Kang SE, Cha SY, Ryu JK, Na JM: p53 and microRNA-34 are suppressors of canonical Wnt signaling. Sci Signal. 2011, 4 (197): ra71-
PubMedCentralPubMedGoogle Scholar
Hu QL, Jiang QY, Jin X, Shen J, Wang K, Li YB, Xu FJ, Tang GP, Li ZH: Cationic microRNA-delivering nanovectors with bifunctional peptides for efficient treatment of PANC-1 xenograft model. Biomaterials. 2013, 34 (9): 2265-2276. 10.1016/j.biomaterials.2012.12.016.
CrossRefPubMedGoogle Scholar
Callegari E, Elamin BK, Giannone F, Milazzo M, Altavilla G, Fornari F, Giacomelli L, D'Abundo L, Ferracin M, Bassi C: Liver tumorigenicity promoted by microRNA-221 in a mouse transgenic model. Hepatology. 2012, 56 (3): 1025-1033. 10.1002/hep.25747.
CrossRefPubMedGoogle Scholar
Fang Y, Xue JL, Shen Q, Chen J, Tian L: MicroRNA-7 inhibits tumor growth and metastasis by targeting the phosphoinositide 3-kinase/Akt pathway in hepatocellular carcinoma. Hepatology. 2012, 55 (6): 1852-1862. 10.1002/hep.25576.
CrossRefPubMedGoogle Scholar
Zhang S, Shan C, Kong G, Du Y, Ye L, Zhang X: MicroRNA-520e suppresses growth of hepatoma cells by targeting the NF-κB-inducing kinase (NIK). Oncogene. 2012, 31 (31): 3607-3620. 10.1038/onc.2011.523.
CrossRefPubMedGoogle Scholar
He XX, Chang Y, Meng FY, Wang MY, Xie QH, Tang F, Li PY, Song YH, Lin JS: MicroRNA-375 targets AEG-1 in hepatocellular carcinoma and suppresses liver cancer cell growth in vitro and in vivo. Oncogene. 2012, 31 (28): 3357-3369. 10.1038/onc.2011.500.
CrossRefPubMedGoogle Scholar
Li Q, Zou C, Han Z, Xiao H, Wei H, Wang W, Zhang L, Zhang X, Tang Q, Zhang C: MicroRNA-25 functions as a potential tumor suppressor in colon cancer by targeting Smad7. Cancer Lett. 2013, 335 (1): 168-174. 10.1016/j.canlet.2013.02.029.
CrossRefPubMedGoogle Scholar
Zhao WG, Yu SN, Lu ZH, Ma YH, Gu YM, Chen J: The miR-217 microRNA functions as a potential tumor suppressor in pancreatic ductal adenocarcinoma by targeting KRAS. Carcinogenesis. 2010, 31 (10): 1726-1733. 10.1093/carcin/bgq160.
CrossRefPubMedGoogle Scholar
Galardi S, Mercatelli N, Giorda E, Massalini S, Frajese GV, Ciafrè SA, Farace MG: miR-221 and miR-222 expression affects the proliferation potential of human prostate carcinoma cell lines by targeting p27Kip1. J Biol Chem. 2007, 282 (32): 23716-23724. 10.1074/jbc.M701805200.
CrossRefPubMedGoogle Scholar
Fornari F, Gramantieri L, Ferracin M, Veronese A, Sabbioni S, Calin GA, Grazi GL, Giovannini C, Croce CM, Bolondi L: MiR-221 controls CDKN1C/p57 and CDKN1B/p27 expression in human hepatocellular carcinoma. Oncogene. 2008, 27 (43): 5651-5661. 10.1038/onc.2008.178.
CrossRefPubMedGoogle Scholar
Gramantieri L, Fornari F, Ferracin M, Veronese A, Sabbioni S, Calin GA, Grazi GL, Croce CM, Bolondi L, Negrini M: MicroRNA-221 targets Bmf in hepatocellular carcinoma and correlates with tumor multifocality. Clin Cancer Res. 2009, 15 (16): 5073-5081. 10.1158/1078-0432.CCR-09-0092.
PubMedCentralCrossRefPubMedGoogle Scholar
Garofalo M, Di Leva G, Romano G, Nuovo G, Suh SS, Ngankeu A, Taccioli C, Pichiorri F, Alder H, Secchiero P: miR-221&222 regulate TRAIL resistance and enhance tumorigenicity through PTEN and TIMP3 downregulation. Cancer Cell. 2009, 16 (6): 498-509. 10.1016/j.ccr.2009.10.014.
PubMedCentralCrossRefPubMedGoogle Scholar
Pineau P, Volinia S, McJunkin K, Marchio A, Battiston C, Terris B, Mazzaferro V, Lowe SW, Croce CM, Dejean A: miR-221 overexpression contributes to liver tumorigenesis. Proc Natl Acad Sci U S A. 2010, 107 (1): 264-269. 10.1073/pnas.0907904107.
PubMedCentralCrossRefPubMedGoogle Scholar
Szafranska AE, Davison TS, John J, Cannon T, Sipos B, Maghnouj A, Labourier E, Hahn SA: MicroRNA expression alterations are linked to tumorigenesis and non-neoplastic processes in pancreatic ductal adenocarcinoma. Oncogene. 2007, 26 (30): 4442-4452. 10.1038/sj.onc.1210228.
CrossRefPubMedGoogle Scholar
Yu J, Li A, Hong SM, Hruban RH, Goggins M: MicroRNA alterations of pancreatic intraepithelial neoplasias. Clin Cancer Res. 2012, 18 (4): 981-992. 10.1158/1078-0432.CCR-11-2347.
PubMedCentralCrossRefPubMedGoogle Scholar
Válóczi A, Hornyik C, Varga N, Burgyán J, Kauppinen S, Havelda Z: Sensitive and specific detection of microRNAs by northern blot analysis using LNA-modified oligonucleotide probes. Nucleic Acids Res. 2004, 32 (22): e175-10.1093/nar/gnh171.
PubMedCentralCrossRefPubMedGoogle Scholar
Xie J, Ameres SL, Friedline R, Hung JH, Zhang Y, Xie Q, Zhong L, Su Q, He R, Li M: Long-term, efficient inhibition of microRNA function in mice using rAAV vectors. Nat Methods. 2012, 9 (4): 403-409. 10.1038/nmeth.1903.
PubMedCentralCrossRefPubMedGoogle Scholar
Chistiakov DA, Sobenin IA, Orekhov AN: Strategies to deliver microRNAs as potential therapeutics in the treatment of cardiovascular pathology. Drug Deliv. 2012, 19 (8): 392-405. 10.3109/10717544.2012.738436.
CrossRefPubMedGoogle Scholar
Ebert MS, Neilson JR, Sharp PA: MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Methods. 2007, 4 (9): 721-726. 10.1038/nmeth1079.
CrossRefPubMedGoogle Scholar
Valastyan S, Reinhardt F, Benaich N, Calogrias D, Szász AM, Wang ZC, Brock JE, Richardson AL, Weinberg RA: A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis. Cell. 2009, 137 (6): 1032-1046. 10.1016/j.cell.2009.03.047.
PubMedCentralCrossRefPubMedGoogle Scholar
Sumazin P, Yang X, Chiu HS, Chung WJ, Iyer A, Llobet-Navas D, Rajbhandari P, Bansal M, Guarnieri P, Silva J: An extensive microRNA-mediated network of RNA-RNA interactions regulates established oncogenic pathways in glioblastoma. Cell. 2011, 147 (2): 370-381. 10.1016/j.cell.2011.09.041.
PubMedCentralCrossRefPubMedGoogle Scholar
Ebert MS, Sharp PA: Emerging roles for natural microRNA sponges. Curr Biol. 2010, 20 (19): R858-861. 10.1016/j.cub.2010.08.052.
PubMedCentralCrossRefPubMedGoogle Scholar
Kota J, Chivukula RR, O'Donnell KA, Wentzel EA, Montgomery CL, Hwang HW, Chang TC, Vivekanandan P, Torbenson M, Clark KR: Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell. 2009, 137 (6): 1005-1017. 10.1016/j.cell.2009.04.021.
PubMedCentralCrossRefPubMedGoogle Scholar
Ibrahim AF, Weirauch U, Thomas M, Grünweller A, Hartmann RK, Aigner A: MicroRNA replacement therapy for miR-145 and miR-33a is efficacious in a model of colon carcinoma. Cancer Res. 2011, 71 (15): 5214-5224. 10.1158/0008-5472.CAN-10-4645.
CrossRefPubMedGoogle Scholar
Dai L, Wang W, Zhang S, Jiang Q, Wang R, Cheng L, Yang Y, Wei YQ, Deng HX: Vector-based miR-15a/16-1 plasmid inhibits colon cancer growth in vivo. Cell Biol Int. 2012, 36 (8): 765-770. 10.1042/CBI20110404.
CrossRefPubMedGoogle Scholar
Krützfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M, Stoffel M: Silencing of microRNAs in vivo with 'antagomirs'. Nature. 2005, 438 (7068): 685-689. 10.1038/nature04303.
CrossRefPubMedGoogle Scholar
Thum T, Gross C, Fiedler J, Fischer T, Kissler S, Bussen M, Galuppo P, Just S, Rottbauer W, Frantz S: MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature. 2008, 456 (7224): 980-984. 10.1038/nature07511.
CrossRefPubMedGoogle Scholar
Ivanovska I, Cleary MA: Combinatorial microRNAs: working together to make a difference. Cell Cycle. 2008, 7 (20): 3137-3142. 10.4161/cc.7.20.6923.
CrossRefPubMedGoogle Scholar

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright
Copyright on any open access article in Molecular and Cellular Therapies published bythe Institute is retained by the author(s). Authors can grant any third party the right to use
the article freely as long as its integrity is maintained and its original authors, citation details and publisher are identified. Please contact the Office of Molecular and Cellular
Therapies for more information specifically regarding permissions if there are questions.