
Deep Learning Models on CPUs:
A Methodology for Efficient Training

Quchen Fu1,*,†, Ramesh Chukka2, Keith Achorn2,
Thomas Atta-fosu2, Deepak R. Canchi2, Zhongwei Teng1,

Jules White1 and Douglas C. Schmidt1

1Dept. of Computer Science, Vanderbilt University Nashville, TN, USA
2Intel Corporation, Santa Clara, CA, USA
E-mail: quchen.fu@vanderbilt.edu; ramesh.n.chukka@intel.com;
keith.achorn@intel.com; thomas.atta-fosu@intel.com; deepak.r.canchi@intel.com;
zhongwei.teng@vanderbilt.edu; jules.white@vanderbilt.edu;
d.schmidt@vanderbilt.edu
†Corresponding Author

Received 10 October 2022; Accepted 31 January 2023;
Publication 25 March 2023

Abstract

GPUs have been favored for training deep learning models due to their highly
parallelized architecture. As a result, most studies on training optimization
focus on GPUs. There is often a trade-off, however, between cost and
efficiency when deciding how to choose the proper hardware for training.
In particular, CPU servers can be beneficial if training on CPUs was more
efficient, as they incur fewer hardware update costs and better utilize existing
infrastructure.

This paper makes three contributions to research on training deep learning
models using CPUs. First, it presents a method for optimizing the training
of deep learning models on Intel CPUs and a toolkit called ProfileDNN,

*Work performed during internship at Intel, data in this paper are intentionally reported as
relative to comply with Intel Policy.

Journal of Machine Learning Theory, Applications and Practice, Vol. 1, 83–106.
doi: 10.13052/jmltapissn.2022.003
This is an Open Access publication. © 2023 the Author(s). All rights reserved.

84 Q. Fu et al.

which we developed to improve performance profiling. Second, we describe a
generic training optimization method that guides our workflow and explores
several case studies where we identified performance issues and then opti-
mized the Intel® Extension for PyTorch, resulting in an overall 2x training
performance increase for the RetinaNet-ResNext50 model. Third, we show
how to leverage the visualization capabilities of ProfileDNN, which enabled
us to pinpoint bottlenecks and create a custom focal loss kernel that was two
times faster than the official reference PyTorch implementation.

Keywords: Training methodology, deep learning on CPU, performance
analysis.

1 Introduction

Deep learning (DL) models have been widely used in computer vision,
natural language processing, and speech-related tasks [1–4]. Popular DL
frameworks include PyTorch [5], TensorFlow [6], and OpenVINO [7], etc.
The hardware can range from general-purpose processors, such as CPUs and
GPUs, to customizable processors, such as FPGA and ASICs, that are often
called XPUs [8].

All these hardware variants make it hard to propose a universal method for
efficient training of DL models. Since GPUs have dominated deep learning
tasks, comparatively little attention has been paid to optimizing models
running on CPUs, especially for training [9]. Previous DL model research
conducted on CPUs focused largely on performance comparisons of CPUs
and GPUs [10–13] or only focused on CPU inference [14].

A key question to address when optimizing training performance on
CPUs is what metrics should guide the optimization process. Several metrics
and benchmarks have been proposed to measure DL workload and training
performance. For example, Multiply-Accumulate (MAC) has been used as
a proxy for FLOPs to measure computational complexity for Convolutional
Neural Network (CNN) models [15]. Time-to-Train (TTT) has been widely
adopted to measure the training performance of a DL model by measuring
the time models take to reach certain accuracy metrics. NetScore [16] was
proposed as a universal metric for DL models that balances information
density and accuracy.

Until recently, however, no widely accepted benchmark for DL models
existed that incorporated a wide range of domain tasks, frameworks, and
hardware. MLPerf [17] was proposed as a comprehensive DL benchmarking

Deep Learning Models on CPUs: A Methodology for Efficient Training 85

suite to cover a variety of tasks and hardware. Many major tech companies
have contributed to this effort by competing for better performance. Intel has
been actively participating in the MLPerf challenge to improve the training
performance of DL models across multiple domains.

To address portability issues related to DL models running on differ-
ent hardware platforms, Intel has open-sourced the oneAPI Deep Neural
Network Library (oneDNN) [18]. OneDNN is cross-platform performance
library of basic deep learning primitive operations, including a benchmarking
tool called benchDNN. Intel has also created optimized versions of popular
frameworks with oneDNN, including Intel® Optimizations for TensorFlow
and Intel® Extensions for PyTorch [19]. Few guidelines exist, however, for
profiling and optimizing DL model training on CPUs.

Several fundamental research challenges must be addressed when training
DL models on CPUs, including the following:

1. How to locate bottlenecks. Since frameworks with CPU-optimized
kernels (such as Intel® Extention for PyTorch) are relatively new,
generic model-level [20] profilers (such as the PyTorch Profiler [5])
are not oneDNN-aware. Moreover, low-level profilers like benchDNN
can only benchmark performance at the operational level. Identifying
primitive operations most critical for specific model/framework/hard-
ware combination is thus essential so that low-level (e.g., oneDNN level)
optimizations can accelerate performance significantly.

2. How to fix bottlenecks. While GPUs have well-established platforms
(such as CUDA [21]) for kernel implementations, Deep Neural Network
Libraries for CPUs are less well-known. It is therefore essential to
understand how to rectify performance bottlenecks (e.g., by locating
and implementing custom operation kernels for both forward and back-
ward propagation), as well as adopting proper low-precision training so
computing time can be reduced without sacrificing accuracy for CPUs.

3. How to set achievable goals. Projections for CPUs are often done
in a crude way by dividing CPU performance in FLOPs over FLOPs
required for model training. In a computation-bounded scenario, how-
ever, it is essential to create an experiment-based projection for deep
learning models so that the goal is realistically achievable, i.e., not only
theoretically achievable, but also considers hardware limits and kernel
optimizations.

To address these challenges, we designed a structured top-down method
that helped us prioritize different optimizing options for training DL models

86 Q. Fu et al.

(e.g., RetinaNet [22]) on CPUs. Incorporating this new approach, we also
developed a DL performance profiling toolkit called ProfileDNN that is
oneDNN-aware and supports profiling and projection at the model level,
thereby bridging the gap for oneDNN-specific model-level projection.

The remainder of this paper is organized as follows: Sections 2.1 and 2.2
summarize different profile tools and their contribution to locating hot spots
and discrepancies; Section 2.3 describes projection goal and procedure, as
well as ProfileDNN’s structure and workflow; Sections 2.4 through 2.8
discuss recommendations and approaches to enable efficient training without
sacrificing accuracy; Section 3 analyzes the training efficiency and conver-
gence under distributed situation; and Section 4 presents concluding remarks
and our future work. All experiments in this paper were performed on Intel
Xeon Cooper Lake processors.

2 Method Summary

This section summarizes the method component of our contribution for
optimizing training on CPUs. Our goal is to provide a structured approach
for users to optimize training DL models on CPUs. Our method adopts a
top-down approach similar to what [23] described, which aims to locate the
critical bottlenecks in a fast and feasible manner.

In our experience DL workflows can be categorized into three stages:
profiling, projection, and optimization. Figure 1 shows how each stage can
be decomposed into different tile groups. Users are advised to follow the
method groups from left to right, as each group benefits from the previous
group’s results. Our toolkit ProfileDNN can work both as a profile tool and a
projection tool. Framework-level profilers like Tensorflow (TF) profiler and
Torch Profiler are popular tools partly because they are not hardware depen-
dent (work on any hardware that runs Pytorch or Tensorflow), however, they
don’t have support for executing low-level primitive kernel operations, which
are vital for performance projection. Low-level profiling/projection tools can

Figure 1 DL workflow method decomposition.

Deep Learning Models on CPUs: A Methodology for Efficient Training 87

Table 1 Comparison of DL profiling tools
ProfileDNN BenchDNN TF Profiler DLProf ZenDNN

Developer Ours Intel Google Nvidia AMD

Devices Support OneDNN hardware CPU CPU / GPU / TPU GPU CPU

Result Format Chart/Log/Table Log/Table UI/Log UI/Log Log

Mode Observe/Execution Execution Observe Observe Observe

Kernel Level High/Low Low High Low Low

measure kernel execution time, therefore, are traditionally hardware-bound.
Deep Learning Profiler (DLProf) was a profiling tool developed by Nvidia
that map correlation between profile timing, kernel information and a Deep
Learning model; ZenDNN was the equivalent product launched by AMD that
supports CPU profiling; BenchDNN which runs on Intel CPU went one step
further by supporting primitive operation benchmarking, thus can potentially
be adapted into a projection tool. Our ProfileDNN, as shown in Table 1,
has support for both high-level profiling and low-level (kernel) projection
and thus can act as a bridge for framework to kernel operation translation,
therefore create execution-based DL model performance projection.

2.1 Profile and Tracing

During the profile stage, users should observe the breakdown of operation
kernel components of the DL model and their relative significance. Special
attention should be paid to discrepancies between their model and data versus
the reference implementation and original use case. For example, do all the
major kernel operations of reference exist in their model? Likewise, does
the kernel component percentage remain roughly the same? If the answer to
either question is “no” the code may perform worse due to poor oneDNN
kernel adoption.

ProfileDNN helps users better compare the distribution of the kernel com-
ponents by producing intuitive visualization. This tactic was also adopted by
vTune [24]. ProfileDNN supports all primitive kernels (conv, pool, matmul,
reorder, etc) from benchDNN.

Convolutional Neural Networks (CNNs) [25], Recurrent Neural Net-
works (RNNs) [26], and Transformers [27] are some of the most popular
Neural Network models today. ProfileDNN can break down the primitive
operations by type and directory, as shown in Figure 2(a)–(c). We found that
both CNN and RNN models spend more time doing back-propagation than
forward-propagation. Transformer models consist mostly of inner product

88 Q. Fu et al.

Figure 2 Comparison of primitive operations across models.

Figure 3 The vTune design.

and matrix multiplication, which correspond to the softmax operation that
is often a performance bottleneck for transformer-based models [28]. Fig-
ure 2(d) also plots the breakdown of the RetinaNet-ResNext50 model, which
is a complicated object detection model whose distribution is similar to the
CNN in Figure 2(a).

A primitives-level breakdown is often sufficient to locate model bot-
tlenecks since many DL training tasks are computation-bound. In the case
of a memory/cache bounded scenario, however, trace analysis is needed to
inspect the orders in which each operation runs. A trace is an ordered set
of span sequences, where each span has an operation name, a start and end
timestamp, as well as relations to other spans (child process, etc). If a trace is
highly fragmented there is significant context switching, so a custom merged
operator may help improve performance.

VTune is another powerful tool for profiling CPU performance based
on a top-down method [23]. vTune divides the CPU workflow pipeline into
frontend and backend, with the former bounded by latency and bandwidth,
and the latter bounded by core (computation) and memory (cache), as shown
in Figure 3. The first round of profiling should be a generic hot spot analysis
on training the model to determine costly operations.

The profiling round can be followed by micro-architecture exploration
that measures CPU utilization rate (spinning time), memory bandwidth and

Deep Learning Models on CPUs: A Methodology for Efficient Training 89

Figure 4 Open image vs COCO training time ratio breakdown.

cache (L1, L2, or L3) miss rate. After pinpointing the primitive operation with
the most computation-heavy footprint, algorithm- or implementation-level
optimizations can be applied. If memory is the bottleneck, memory access
and IO analysis can also be performed on individual operations.

2.2 Data Discrepancy

A commonly overlooked discrepancy is the difference between the reference
dataset and the custom dataset. The data distribution can not only affect the
performance of the same model, it can sometimes change the model itself.
For example, RetinaNet-ResNext50 is a classification model that changes
structure based on the number of classes from the dataset.

After we switched the dataset from COCO [29] to OpenImage [30], the
training time increased dramatically. We found that the dataset size increased
10 times, but the training time per epoch increased 20 times, which is not
proportional. Part of this increase can be attributed to a bigger fully-connected
(FC) layer in the backbone. In particular, we found that the major increase in
time is within the focal loss calculation caused by three times more classes,
as shown in the detailed breakdown in Figure 4.

Trace analysis also supported this conclusion by showing that one-third
of the backward calculation time was spent on focal loss. We addressed this
issue by implementing our custom focal loss kernel, as discussed in Section 7.

2.3 Projection and Toolkit Structure

Projection of DL models aims to determine the theoretical performance
ceiling of a specific model/framework/hardware combination. Intel has an
internal tool that can perform projection for DL models, though this tool
currently requires significant manual setting and tuning. BenchDNN can be
used to predict performance on specific hardware automatically, but only
on one operation at a time. We therefore designed ProfileDNN to combine

90 Q. Fu et al.

Figure 5 Toolkit structure and flow pipeline.

Table 2 Summary of benchDNN parameters
Name Example
Driver conv, relu, matmul, rnn, bnorm
Configuration u8s8u8, s8f32
Directory FWD I, BWD D, BWD W
Post Ops sum+eltwise relu
Algorithm DIRECT
Problem batchsize mb1, mb32
Problem input id4ih32iw32
Problem output id16ih16iw16
Problem stride sd2sh4sw4
Problem kernel kd2kh3kw3
Problem padding pd1ph1pw1
Problem channel ic16oc32

the advantages of both existing tools since it can perform predictions for the
whole DL model with little manual effort.

As is shown in Figure 5, ProfileDNN takes in an arbitrary log file pro-
duced by running deep learning models on a platform that supports oneDNN
with DNNL VERBOSE set to 1. The stats.py file then collects and cleans the raw
log file into CSV format, produces a template parameter file, calculates and
plots the component distribution of primitive operations. The benchDNN.sh
file runs each primitive operation multiple times and takes the average. The
efficiency.py then takes a weighted sum of all operations’ time by the number
of calls and produces an efficiency ratio number.

To ensure our toolkit can accurately reproduce the running behavior
of the kernels from the original model, we ensure both the computation
resources and the problem descriptions are the same. We use numactl to
control the number of CPU cores and memory binding and the mode is set
to p (performance) in benchDNN to optimize performance. These parameters
are carefully controlled and summarized in Table 2.

Deep Learning Models on CPUs: A Methodology for Efficient Training 91

2.4 Dataloader and Memory Layout

By examining the DL training process from the same vTune top-down per-
spective shown in Figure 3, the dataloader can be seen as a frontend bounded
by bandwidth and latency. There are three sources of bottlenecks for the
dataloader: I/O, decoding, and preprocessing. We found similar performance
for data in NVMe or loaded to RAM and the I/O overhead is negligible.
We observed better decoding performance by adopting Pillow-SIMD and
accimage as the backend in torchvision.

A PyTorch dataloader parameter controls the number of worker pro-
cesses, which are usually set to prevent blocking the main process when
training on GPUs. For training on CPUs, however, this number should not
be set to minimize memory overhead. Since CPU RAM memory is usually
larger than GPU memory (but has a smaller bandwidth) training on CPUs has
the advantage of allowing larger batch size and training larger models [10].

Here we define n as batchsize, c as channel, h as height, and w as
width. The recommended memory layout in Intel® Extension for PyTorch
is nhwc (channel last) for more efficient training, though the default layout
in benchDNN is nchw. We set the default behavior of ProfileDNN to adopt
nchw based on known best-practices. If the log input specifies the memory
layout, ProfileDNN automatically overrides the default.

2.5 Library Optimization

Substituting slow operation implementations with a more efficient library can
improve performance significantly, as we discovered by replacing the official
PyTorch implementation with the Intel® Extension for PyTorch counterpart.
ProfileDNN helped identify a discrepancy between the number of backward
convolution calls between the official PyTorch vs. the Intel® Extension for
PyTorch library. Using a detailed analysis of the computation graph and our
ProfileDNN-based visualization, we found calls emanated from the frozen
layers in the pre-trained model (ResNext backbone).

Our analysis helped increase the performance of RetinaNet-ResNext50
model training with 2 fixed layers by 16%. We also found that the
primitive operation frozenbachnorm2d was missing in Figure 2(d) and
torchvision.ops.misc.FrozenBatchNorm2d was interpreted as mul and
add ops, which meant it was not a single oneDNN kernel operation.

Our analysis indicated that bandwidth-limited operations made the
torchvision.ops.misc.FrozenBatchNorm2d operation inefficient. It
therefore cannot be fused with other operations to reduce memory

92 Q. Fu et al.

accesses. Training performance increased by 29.8% after we replaced the
torchvision.ops.misc.FrozenBatchNorm2d operation with IPEX.nn.

FrozenBatchNorm2d.

2.6 Low-precision Training

Low-precision training has proven an efficient way for high-performance
computing and BF16 (Brain Floating Point) is widely supported by various
DL hardware. BF16 is unique since it has the same range as float32 but uses
fewer bits to represent the fraction (7 bits). This BF16 datatype characteristic
can be beneficial when computing speed is important, but can also lead to
accuracy loss when compared with float32 in calculating the loss. As shown
in Figure 6, computation time is almost half when done in BF16 compared to
float32 (Improvements are intentionally plotted relative so as not to release
the actual data for compliance with Intel data policy).

There is a significant discrepancy between the forward/backward training
time ratio compared with that of bare-bone kernel time. This discrepancy
indicates highly inefficient non-kernel code in the forward pass. We found
that the loss function does not scale well and comprises a significant portion
of computation time.

After locating the focal loss as having significant overhead, we imple-
mented our version of the focal loss kernel, further discussed in Section 2.8.
However, the loss result is different from the original implementation. We
pinpointed the accuracy loss as happening during low-precision casting to
BF16 by torch.cpu.amp.autocast. Unless convergence can be guaran-
teed, therefore, casting data into BF16 should be avoided for loss calculation,
especially when reduction operations are involved.

2.7 Layer Fusion and Optimizer Fusion

In inference mode, certain layers can be fused for a forward pass to save cache
copying operation since an intermediate is not needed. In training mode,
however, the layers containing trainable weights need to save the intermediate
for backpropagation. When oneDNN runs in inference mode, it enables
batchnorm+relu and conv+relu respectively, but not frozenbatchnorm
(FBN)+relu. OneDNN already supports eltwise (linear, relu) post-
ops for conv and chaining of post-ops. We therefore treat FBN as a per-
channel linear operation to enable conv+FBN+relu. This fusion potentially
increases performance 30% and is work-in-progress (WIP).

Deep Learning Models on CPUs: A Methodology for Efficient Training 93

Modern-day deep learning frameworks invariably support automatic dif-
ferentiation and modularity of deep learning building blocks, which facilitate
the creation of deep learning models by lowering the entry barrier. However,
it is common knowledge in software development that there exists a trade-
off between modularity and performance. As pointed out by Jiang et al.
2021 [31], eager execution which executes forward propagation, gradient
calculation, and parameter updating in serialized stages may harm the model
performance, while optimizer fusion aims to improve locality and parallelism
by reordering the three procedures. Intel® Extension for PyTorch currently
supports fusion of SGD [32] and the Lamb [33] optimizer, partly by fusing
operations, thus separate the grad, parameters and intermediate into small
groups for better caching mechanism. We tested a fused/unfused Lamb opti-
mizer with RetinaNet and found a 5.5X reduction in parameter updating time
when the optimizer is fused.

2.8 Custom Operation Kernel

Custom operation kernels are essential to optimize performance by elimi-
nating computation overhead, e.g., unnecessary copying and intermediates.
These kernel implementations must be mathematically equivalent to the
reference code. They can also show significant performance gains under all
or most circumstances, as discussed below.

2.8.1 Theoretical deduction
Instead of relying on the PyTorch implementation (Appendix 5) of forward
pass for focal loss and adopting the default generated backward pass, we
implemented a custom focal loss kernel for both forward and backward pass
(backward kernel implementation is optional, as implicit autograd can be
generated). Focal loss can be represent as in Equation (1) and we adopt γ = 2
and α = 0.25.

The forward pass can be simplified further by assuming x and y are
real in Equation (2). Lastly, since y is a binary matrix, all the terms that
contains y(y-1) equals to 0 and can be removed as shown in Equation (3).
The backward equation is shown in Appendix 6.

FL(p) =

{
−α(1− p)γ log(p), y = 1

−(1− α)pγ log(1− p), otherwise
(1)

94 Q. Fu et al.

FL = (a(2y − 1)− y + 1)

(
−exy + ex + y

ex + 1

)γ
(log(ex + 1)− xy) (2)

FLsp =

(
−exy + ex + y

ex + 1

)γ
((α(2y − 1)− y + 1) log(ex + 1)− αxy)

(3)

2.8.2 Implementation and assessment
The operators in ATEN of PyTorch can be roughly categorized into two types:
in-place operation and standard operation, with the former suffixed by (as
in add . Since in-place operations modify the Tensor directly, the overhead of
copying or creating new spaces in the cache is avoided. The implementation
shown in Appendix 7 heavily adopts in-place operation as much as possible,
which enhances efficiency.

After confirming that our kernel implementation is mathematical equiv-
alent to the reference implementation, we tested our kernel against the
reference code under both float32 and BF16 settings. As shown in Figure 6,
the custom forward kernel is 2.6 times faster than the default implementation
under the BF16 setting.

Although the PyTorch framework can generate implicit autograd for our
custom kernel, its performance is not ideal. The custom backward kernel is
1.3 times faster than the reference implementation and 1.45 times faster than
the generated implicit autograd kernel. We also discovered that the custom
backward kernel can boost forward kernel performance and we suspect that
the explicit backward kernel can prevent the forward kernel from saving
unnecessary intermediates. The combined improvement from custom focal
loss kernel is two times faster. Our code has been integrated into Intel®

Extension for PyTorch and will be available in that library shortly.

Figure 6 Comparison of custom focal loss time vs default.

Deep Learning Models on CPUs: A Methodology for Efficient Training 95

3 Distributed Training

Compared to inference (which can be scaled-out amongst independent
nodes), training DL models often require much greater computing power
working synchronously. Meeting this need can be accomplished by scaling-
up nodes with additional CPU resources or by scaling-out amongst multiple
nodes. When training a system at scale – whether multiple nodes, multiple
sockets, or even a single socket – it is necessary to distribute the workload
across multiple workers.

Coordination among distributed workers requires communication
between them. Distributing workloads on CPUs can be performed via multi-
ple protocols and middleware, such as MPI (Message Passing Interface) [34]
and Gloo [35]. We use MPI terminology in subsequent sections.

3.1 Distributed Training Performance

To maximize training performance, a training workload should target one
thread per CPU core of each system node. For example, an 8-socket system
with 28 cores per socket should target 224 total threads. The total threads may
be apportioned across several workers identified by their rank, e.g., 8 ranks
of 28 threads, 16 ranks of 14 threads, 32 ranks of 8 threads, etc. The selection
of ranks and threads should not cause any rank to span multiple sockets.

In practice, better performance may be achieved by utilizing more ranks
with fewer threads each, rather than fewer ranks with more threads each at the
same global batch size. Table 3 shows how the throughput goes up diagonally
from bottom-left to top-right. However, the number of available ranks is lim-
ited by the available system memory, model size, and batch size. The system
memory is divided amongst the ranks, so each rank must have sufficient
memory to support the model and host functions to avoid workload failure.

While the top-end CPUs can already perform on par with their GPU
counterpart (Intel 4th Gen Xeon processors could train ResNet-50 model
in less than 90 minutes [36]), the real benefit lies in that CPU training

Table 3 Scalability (normalized throughput)
Number of Workers

Threads/Worker 1 2 4 8 16
7 1.00 2.00 3.82 7.04 11.87
14 1.86 3.7 6.8 11.59 –
28 3.27 6.51 11.20 – –
56 5.11 10.18 – – –

96 Q. Fu et al.

democratize the availability of training DL models to people who don’t
have access to GPUs, or companies with existing CPU clusters and on a
tight budget. Since the inefficiency of CPU training is largely due to lim-
ited bandwidth, better software optimization (Intel® Extension for PyTorch,
etc) and low-level kernel support (oneDNN, etc) can alleviate the issue by
breaking and group operations into proper chunks for better caching. The
improvement can be quite significant, as we found a 2X performance increase
with Intel® Extension for PyTorch compared to the default PyTorch. AI
accelerator is another potential platform for training, according to the latest
MLPerf benchmark, the Gaudi2 processor has 2X the throughput of the A100
on ResNet-50 and BERT [37].

3.2 Training Convergence

As a training system is scaled-out to more nodes, sockets, or ranks, two
factors are known to degrade the model’s convergence time: weak scaling
efficiency and convergence point. Weak scaling efficiency is a ratio of the
performance of a system to N systems doing N times as much work and tends
to lag behind the linear rate at which resources are added. This phenomenon
and its causes are well-documented [38] across hardware types and is not
explored further in this paper.

A model’s convergence point is the second factor that impacts conver-
gence time as a training system scales. In particular, the global batch size
increases as a distributed system scales out, even though the local batch size
per worker remains constant. For instance, if a 2-socket system launches a
combined 8 ranks with a global batch size of 64 (BS = 8 per rank), when
scaled out to 8-sockets, the global batch size becomes 256 even though each
rank has the same local batch size.

As the number of epochs required to converge at a model’s target accuracy
increases the global batch size of a training workload also increases, as shown
in Figure 7. This increase in the epochs to reach a convergence point can
detract substantially from the increased resources. When planning a system
scale-out, it is therefore critical to account for the resulting convergence point
and mitigate it by reducing the local batch size if possible [39].

4 Concluding Remarks

This paper explores various aspects of optimizing the training of deep learn-
ing (DL) models on CPUs, in addition to a method guide. We present a

Deep Learning Models on CPUs: A Methodology for Efficient Training 97

Figure 7 Convergence ratio vs global batch size (normalized).

DL profile/projection toolkit called ProfileDNN that helped us locate several
issues for training RetinaNet-ResNext50, which when fixed increased perfor-
mance by a factor of two. We also created a custom Focal Loss kernel that
is 1.5 times faster than the PyTorch reference implementation when running
on CPUs.

The following is a summary of the lessons learned from our study of
training deep learning models using CPUs:

• Efficient DL frameworks that are optimised for CPUs (such as the Intel®

extension for PyTorch) can reduce training time dramatically with little
cost.

• Model profiling should be done both on the reference code and custom
implementations, especially when the data set is changed. Discrepan-
cies between different implementations and corresponding low-level op
distributions can help pinpoint the bottlenecks.

• Implementing both forward pass and backward pass explicitly for
custom kernels yields the best training performance.

• Local batch size is highly correlated with convergence point and should
be reduced properly when planning a system scale out.

Ammar et al. [40] found that compared to hardware architecture, software
libraries have a more significant impact on DL model training performance,
therefore more research should focus on hardware-software co-design. Deep-
Mind [41] recently discovered a novel algorithm with reinforcement learning
for doing matrix multiplication by jointly profiling and finetuning hardware
and software together. The algorithm, albeit hardware-dependent, increased
performance dramatically and could not have been discovered by traditional

98 Q. Fu et al.

algorithm analysis. The same idea can be applied to discover more hardware-
specific efficient kernel implementation. It can be misleading to compare
hardware on DL model training solely using Time-to-Train (ToT), as pointed
out by Sparsh, et al. [42], and choosing which system for DL training depends
on other factors like energy efficiency, throughput, and latency. Our future
work will focus on testing our method and ProfileDNN toolkit on other
popular models and conducting a more in-depth study on optimizing training
DL models with distributed CPU clusters. We will also work on improving
MLperf to include more comprehensive metrics for DL model training.

Appendix

5 Reference Focal Loss Code [43]

import torch

import torch.nn.functional as F

import time

def sigmoid_focal_loss(

inputs: torch.Tensor ,

targets: torch.Tensor ,

alpha: float = 0.25,

gamma: float = 2,

reduction: str = "none",

):

inputs = inputs.to(dtype=torch.float32)

targets = targets.to(dtype=torch.float32)

p = torch.sigmoid(inputs)

ce_loss = F.binary_cross_entropy_with_logits(

inputs , targets , reduction="none"

)

p_t = p * targets + (1 - p) * (1 - targets)

loss = ce_loss * ((1 - p_t) ** gamma)

if alpha >= 0:

alpha_t = alpha * targets + (1 - alpha) * (1 -

targets)

loss = alpha_t * loss

if reduction == "mean":

loss = loss.mean()

elif reduction == "sum":

loss = loss.sum()

return loss

Deep Learning Models on CPUs: A Methodology for Efficient Training 99

6 Focal Loss Derivative

Figure 8 Backward kernel equation.

Figure 9 Simplified backward kernel.

7 Custom Focal Loss Kernel Code

at:: Tensor _focal_loss_forward(const at:: Tensor& input ,

const at:: Tensor& target , const float alpha , const

float gamma , const int64_t reduction) {

at:: Tensor loss;

loss =(((alpha*(-input).mul_(target)).add_ (((2* alpha -1)*

target +(1- alpha)).mul_ (((input.exp_() + 1).log_())))).

mul_ (((target -1).mul_(input).add_(-target)).pow_(gamma

))).div_((input + 1).pow_(gamma));

return apply_loss_reduction(loss , reduction);

}

at:: Tensor _focal_loss_backward(const at:: Tensor& grad ,

const at:: Tensor& input , const at:: Tensor& target ,

const float alpha , const float gamma , const int64_t

reduction) {

at:: Tensor grad_input;

grad_input =-((input.exp() + 1).pow(-gamma -1)).mul((

target.add((1- target).mul(input.exp()))).pow(gamma - 1)

).mul(((-alpha*gamma*input).mul(target).mul(input.exp()

)).add(gamma*(target+alpha -1).mul(input.exp()).mul(((

input.exp()+1).log()))).add(alpha*target).add((alpha -1)

*(1- target).mul((input.exp()).pow (2)))).mul(grad);

100 Q. Fu et al.

if (reduction == at:: Reduction ::Mean) {

return grad_input / input.numel ();

}

return grad_input;

}

References

[1] Peter Mattson, Vijay Janapa Reddi, Christine Cheng, Cody Coleman,
Greg Diamos, David Kanter, Paulius Micikevicius, David Patterson,
Guenther Schmuelling, Hanlin Tang, et al. Mlperf: An industry stan-
dard benchmark suite for machine learning performance. IEEE Micro,
40(2):8–16, 2020.

[2] Quchen Fu, Zhongwei Teng, Jules White, and Douglas C. Schmidt.
A transformer-based approach for translating natural language to bash
commands. In 2021 20th IEEE International Conference on Machine
Learning and Applications (ICMLA), pages 1245–1248, 2021.

[3] Quchen Fu, Zhongwei Teng, Jules White, Maria E. Powell, and Dou-
glas C. Schmidt. Fastaudio: A learnable audio front-end for spoof
speech detection. In ICASSP 2022 – 2022 IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP), pages
3693–3697, 2022.

[4] Jee weon Jung, Hemlata Tak, Hye jin Shim, Hee-Soo Heo, Bong-Jin
Lee, Soo-Whan Chung, Ha jin Yu, Nicholas W. D. Evans, and Tomi H.
Kinnunen. Sasv 2022: The first spoofing-aware speaker verification
challenge. Interspeech 2022, 2022.

[5] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-
bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,
Luca Antiga, et al. Pytorch: An imperative style, high-performance deep
learning library. Advances in neural information processing systems, 32,
2019.

[6] Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy
Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irv-
ing, Michael Isard, et al. {TensorFlow}: A system for {Large-Scale}
machine learning. In 12th USENIX symposium on operating systems
design and implementation (OSDI 16), pages 265–283, 2016.

[7] Yury Gorbachev, Mikhail Fedorov, Iliya Slavutin, Artyom Tugarev,
Marat Fatekhov, and Yaroslav Tarkan. Openvino deep learning
workbench: Comprehensive analysis and tuning of neural networks

Deep Learning Models on CPUs: A Methodology for Efficient Training 101

inference. In Proceedings of the IEEE/CVF International Conference
on Computer Vision Workshops, pages 0–0, 2019.

[8] James R Reinders. Sycl, dpc++, xpus, oneapi. In International Workshop
on OpenCL, pages 1–1, 2021.

[9] Dhiraj Kalamkar, Evangelos Georganas, Sudarshan Srinivasan, Jianping
Chen, Mikhail Shiryaev, and Alexander Heinecke. Optimizing deep
learning recommender systems training on cpu cluster architectures.
In SC20: International Conference for High Performance Computing,
Networking, Storage and Analysis, pages 1–15. IEEE, 2020.

[10] Yu Emma Wang, Gu-Yeon Wei, and David Brooks. Benchmark-
ing tpu, gpu, and cpu platforms for deep learning. arXiv preprint
arXiv:1907.10701, 2019.

[11] Ebubekir Buber and DIRI Banu. Performance analysis and cpu vs gpu
comparison for deep learning. In 2018 6th International Conference
on Control Engineering & Information Technology (CEIT), pages 1–6.
IEEE, 2018.

[12] Shaohuai Shi, Qiang Wang, Pengfei Xu, and Xiaowen Chu. Bench-
marking state-of-the-art deep learning software tools. In 2016 7th
International Conference on Cloud Computing and Big Data (CCBD),
pages 99–104. IEEE, 2016.

[13] Wei Dai and Daniel Berleant. Benchmarking contemporary deep learn-
ing hardware and frameworks: A survey of qualitative metrics. In 2019
IEEE First International Conference on Cognitive Machine Intelligence
(CogMI), pages 148–155. IEEE, 2019.

[14] Yanli Qian. Profiling and characterization of deep learning model
inference on CPU. PhD thesis, 2020.

[15] Jiho Chang, Yoonsung Choi, Taegyoung Lee, and Junhee Cho. Reducing
mac operation in convolutional neural network with sign prediction.
In 2018 International Conference on Information and Communication
Technology Convergence (ICTC), pages 177–182. IEEE, 2018.

[16] Alexander Wong. Netscore: towards universal metrics for large-scale
performance analysis of deep neural networks for practical on-device
edge usage. In International Conference on Image Analysis and Recog-
nition, pages 15–26. Springer, 2019.

[17] Peter Mattson, Christine Cheng, Cody Coleman, Greg Diamos, Paulius
Micikevicius, David Patterson, Hanlin Tang, Gu-Yeon Wei, Peter Bailis,
Victor Bittorf, David Brooks, Dehao Chen, Debojyoti Dutta, Udit
Gupta, Kim Hazelwood, Andrew Hock, Xinyuan Huang, Atsushi Ike,
Bill Jia, Daniel Kang, David Kanter, Naveen Kumar, Jeffery Liao,

102 Q. Fu et al.

Guokai Ma, Deepak Narayanan, Tayo Oguntebi, Gennady Pekhimenko,
Lillian Pentecost, Vijay Janapa Reddi, Taylor Robie, Tom St. John,
Tsuguchika Tabaru, Carole-Jean Wu, Lingjie Xu, Masafumi Yamazaki,
Cliff Young, and Matei Zaharia. Mlperf training benchmark, 2019.

[18] Oneapi deep neural network library (onednn). https://github.com/oneap
i-src/oneDNN.

[19] Intel extension for pytorch. https://github.com/intel/intel-extension-for
-pytorch.

[20] Luis A Torres, Carlos J Barrios, and Yves Denneulin. Computational
resource consumption in convolutional neural network training–a focus
on memory. Supercomputing Frontiers and Innovations, 8(1):45–61,
2021.

[21] NVIDIA, Péter Vingelmann, and Frank H.P. Fitzek. Cuda, release:
10.2.89, 2020.

[22] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr
Dollár. Focal loss for dense object detection. In Proceedings of the IEEE
international conference on computer vision, pages 2980–2988, 2017.

[23] Ahmad Yasin. A top-down method for performance analysis and coun-
ters architecture. In 2014 IEEE International Symposium on Perfor-
mance Analysis of Systems and Software (ISPASS), pages 35–44. IEEE,
2014.

[24] James Reinders. VTune performance analyzer essentials, volume 9. Intel
Press Santa Clara, 2005.

[25] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet clas-
sification with deep convolutional neural networks. Advances in neural
information processing systems, 25, 2012.

[26] Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. Speech
recognition with deep recurrent neural networks. In 2013 IEEE inter-
national conference on acoustics, speech and signal processing, pages
6645–6649. IEEE, 2013.

[27] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention
is all you need. Advances in neural information processing systems, 30,
2017.

[28] Jiachen Lu, Jinghan Yao, Junge Zhang, Xiatian Zhu, Hang Xu, Weiguo
Gao, Chunjing Xu, Tao Xiang, and Li Zhang. Soft: Softmax-free
transformer with linear complexity. Advances in Neural Information
Processing Systems, 34, 2021.

https://github.com/oneapi-src/oneDNN
https://github.com/oneapi-src/oneDNN
https://github.com/intel/intel-extension-for-pytorch
https://github.com/intel/intel-extension-for-pytorch

Deep Learning Models on CPUs: A Methodology for Efficient Training 103

[29] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Per-
ona, Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick. Microsoft
coco: Common objects in context. In European conference on computer
vision, pages 740–755. Springer, 2014.

[30] Alina Kuznetsova, Hassan Rom, Neil Alldrin, Jasper Uijlings, Ivan
Krasin, Jordi Pont-Tuset, Shahab Kamali, Stefan Popov, Matteo Mal-
loci, Alexander Kolesnikov, et al. The open images dataset v4. Interna-
tional Journal of Computer Vision, 128(7):1956–1981, 2020.

[31] Zixuan Jiang, Jiaqi Gu, Mingjie Liu, Keren Zhu, and David Z Pan.
Optimizer fusion: Efficient training with better locality and parallelism.
arXiv preprint arXiv:2104.00237, 2021.

[32] Herbert Robbins and Sutton Monro. A stochastic approximation
method. The annals of mathematical statistics, pages 400–407, 1951.

[33] Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar,
Srinadh Bhojanapalli, Xiaodan Song, James Demmel, Kurt Keutzer, and
Cho-Jui Hsieh. Large batch optimization for deep learning: Training bert
in 76 minutes. arXiv preprint arXiv:1904.00962, 2019.

[34] William Gropp, William D Gropp, Ewing Lusk, Anthony Skjellum,
and Argonne Distinguished Fellow Emeritus Ewing Lusk. Using MPI:
portable parallel programming with the message-passing interface,
volume 1. MIT press, 1999.

[35] Gloo. https://github.com/facebookincubator/gloo.
[36] Intel delivers leading ai performance results on mlperf v2.1 industry

benchmark for dl training, 2022.
[37] Ml commons v2.1 result, 2022.
[38] Srinivas Sridharan, Karthikeyan Vaidyanathan, Dhiraj Kalamkar,

Dipankar Das, Mikhail E Smorkalov, Mikhail Shiryaev, Dheevatsa
Mudigere, Naveen Mellempudi, Sasikanth Avancha, Bharat Kaul, et al.
On scale-out deep learning training for cloud and hpc. arXiv preprint
arXiv:1801.08030, 2018.

[39] Mlcommons rcp. https://github.com/mlcommons/logging/tree/master
/mlperf logging/rcp checker/training 2.0.0.

[40] Ammar Ahmad Awan, Hari Subramoni, and Dhabaleswar K Panda. An
in-depth performance characterization of cpu-and gpu-based dnn train-
ing on modern architectures. In Proceedings of the Machine Learning
on HPC Environments, pages 1–8. 2017.

[41] Alhussein Fawzi, Matej Balog, Aja Huang, Thomas Hubert, Bernardino
Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov,
Francisco J R Ruiz, Julian Schrittwieser, Grzegorz Swirszcz, et al.

https://github.com/facebookincubator/gloo
https://github.com/mlcommons/logging/tree/master/mlperf_logging/rcp_checker/training_2.0.0
https://github.com/mlcommons/logging/tree/master/mlperf_logging/rcp_checker/training_2.0.0

104 Q. Fu et al.

Discovering faster matrix multiplication algorithms with reinforcement
learning. Nature, 610(7930):47–53, 2022.

[42] Sparsh Mittal, Poonam Rajput, and Sreenivas Subramoney. A survey
of deep learning on cpus: opportunities and co-optimizations. IEEE
Transactions on Neural Networks and Learning Systems, 2021.

[43] Sébastien Marcel and Yann Rodriguez. Torchvision the machine-vision
package of torch. In Proceedings of the 18th ACM international confer-
ence on Multimedia, pages 1485–1488, 2010.

[44] https://github.com/intel/intel-extension-for-pytorch/commit/d09f3409
65bbd2421a00317b466bbad1bf3fcad0.

[45] https://github.com/intel/intel-extension-for-pytorch/commit/5f1f32ed
2754e5df767ff21e1894ea49f189c030.

Biographies

Quchen Fu Fu is a Ph.D. student at Vanderbilt University major in Computer
Science, his research interest is NLP and Deep Learning. He got his Mas-
ter’s degree in CMU and he was TA for multiple courses including Cloud
Computing and Cybersecurity. He interned at multiple companies including
Tencent, Intel, and Microsoft. He is now a research assistant in Magnum
research group under Dr. Jules White.

https://github.com/intel/intel-extension-for-pytorch/commit/d09f340965bbd2421a00317b466bbad1bf3fcad0
https://github.com/intel/intel-extension-for-pytorch/commit/d09f340965bbd2421a00317b466bbad1bf3fcad0
https://github.com/intel/intel-extension-for-pytorch/commit/5f1f32ed2754e5df767ff21e1894ea49f189c030
https://github.com/intel/intel-extension-for-pytorch/commit/5f1f32ed2754e5df767ff21e1894ea49f189c030

Deep Learning Models on CPUs: A Methodology for Efficient Training 105

Zhongwei Teng is pursuing a Ph.D. in Computer Science in Vanderbilt Uni-
versity. His research interests include speech verification, NLP and machine
learning.

Jules White is Associate Dean of Strategic Learning Programs in the School
of Engineering and Associate Professor of Computer Science in the Dept.
of Computer Science at Vanderbilt University. He is a National Science
Foundation CAREER Award recipient. His research has won multiple Best
Paper Awards. He has also published over 150 papers. Dr. White’s research
focuses on cyber-security and mobile/cloud computing in domains ranging
from healthcare to manufacturing. His research has been licensed and transi-
tioned to industry, where it won an Innovation Award at CES 2013, attended
by over 150,000 people, was a finalist for the Technical Achievement at
Award at SXSW Interactive, and was a top 3 for mobile in the Accelerator
Awards at SXSW 2013. He has raised over $12 million in venture backing
for his startup companies. His research is conducted through the Mobile
Application computinG, optimizatoN, and secUrity Methods (MAGNUM)
Group at Vanderbilt University, which he directs.

http://www.magnum.io/people/jules.html

106 Q. Fu et al.

Douglas C. Schmidt is the Cornelius Vanderbilt Professor of Computer
Science, Associate Chair of Computer Science, and a Senior Researcher at
the Institute for Software Integrated Systems, all at Vanderbilt University.
His research covers a range of software-related topics, including patterns,
optimization techniques, and empirical analyses of frameworks and model-
driven engineering tools that facilitate the development of mission-critical
middleware for distributed real-time embedded (DRE) systems and intel-
ligent mobile cloud computing applications. Dr. Schmidt received B.A.
and M.A. degrees in Sociology from the College of William and Mary in
Williamsburg, Virginia, and an M.S. and a Ph.D. in Computer Science from
the University of California, Irvine (UCI) in 1984, 1986, 1990, and 1994,
respectively.

	Introduction
	Method Summary
	Profile and Tracing
	Data Discrepancy
	Projection and Toolkit Structure
	Dataloader and Memory Layout
	Library Optimization
	Low-precision Training
	Layer Fusion and Optimizer Fusion
	Custom Operation Kernel
	Theoretical deduction
	Implementation and assessment

	Distributed Training
	Distributed Training Performance
	Training Convergence

	Concluding Remarks
	Reference Focal Loss Code marcel2010torchvision
	Focal Loss Derivative
	Custom Focal Loss Kernel Code

