Polymer Composites in Present Scenario
Keywords:
Composites, Nanocomposites, FabricationAbstract
Present scenario of growing development demands more sophisticated and engineered materials to facilitate the
lifestyle and to meet the challenges in the establishment of colonies in space. The advancements in composite
technology meet the growing demands. Composites are the engineered material for future. There are many
scopes in composites with various emerging nanotechnology and smart materials. This paper is a brief review of
the composite's concept and their types. The differentiation between the electronically conducting polymers and
conducting polymer composites are also discussed along with their contemporary applications.
Downloads
References
Agarwal, U. S., Nisal, A., & Joseph, R. (2007). PET-SWNT nanocomposites through ultrasound assisted
dissolution-evaporation. European Polymer Journal, 43(6), 2279-2285.
Andrews, R., Jacques, D., Qian, D., & Rantell, T. (2002). Multiwall carbon nanotubes: synthesis and
application. Accounts of Chemical Research, 35(12), 1008-1017.
Journal of Graphic Era University
Vol. 6, Issue 2, 246-262, 2018
ISSN: 0975-1416 (Print), 2456-4281 (Online)
Ansari, R. (2006). Polypyrrole conducting electroactive polymers: synthesis and stability studies. Journal of
Chemistry, 3(4), 186-201.
Antunes, R. A., De Oliveira, M. C., Ett, G., & Ett, V. (2011). Carbon materials in composite bipolar plates for
polymer electrolyte membrane fuel cells: A review of the main challenges to improve electrical performance.
Journal of Power Sources, 196(6), 2945-2961.
Averitt, R. D., Padilla, W. J., Chen, H. T., O'Hara, J. F., Taylor, A. J., Highstrete, C., . & Gossard, A. C. (2007,
September). Terahertz metamaterial devices. In Terahertz Physics, Devices, and Systems II (Vol. 6772, p.
. International Society for Optics and Photonics.
Baillie, C. (Ed.). (2005). Green composites: polymer composites and the environment. CRC Press.
Beall, G. W., & Powell, C. E. (2011). Fundamentals of polymer-clay nanocomposites. Cambridge University
Press.
Bertsch, A., Lorenz, H., & Renaud, P. (1998, January). Combining microstereolithography and thick resist UV
lithography for 3D microfabrication. In Micro Electro Mechanical Systems, 1998. MEMS 98. Proceedings., The
Eleventh Annual International Workshop on (pp. 18-23). IEEE.
Bhatnagar, N. B. A. I. I. O. T., Ramakrishnan, N., Naik, N. K., & Komanduri, R. B. A. O. S. U. (1995). On the
machining of fiber reinforced plastic (FRP) composite laminates. International Journal of Machine Tools and
Manufacture, 35(5), 701-716.
Bregar, V. B. (2004). Advantages of ferromagnetic nanoparticle composites in microwave absorbers. IEEE
Transactions on Magnetics, 40(3), 1679-1684.
Carotenuto, G., Her, Y. S., & Matijević, E. (1996). Preparation and characterization of nanocomposite thin films
for optical devices. Industrial & Engineering Chemistry Research, 35(9), 2929-2932.
Cho, J. W., & Paul, D. R. (2001). Nylon 6 nanocomposites by melt compounding. Polymer, 42(3), 1083-1094.
Chujo, Y., & Saegusa, T. (1992). Organic polymer hybrids with silica gel formed by means of the sol-gel
method. In Macromolecules: Synthesis, Order and Advanced Properties(pp. 11-29). Springer, Berlin,
Heidelberg.
Chujo, Y., & Tamaki, R. (2001). New preparation methods for organic–inorganic polymer hybrids. MRS
Bulletin, 26(5), 389-392.
Dang, Z. M., Lin, Y. H., & Nan, C. W. (2003). Novel ferroelectric polymer composites with high dielectric
constants. Advanced Materials, 15(19), 1625-1629.
Dang, Z. M., Yuan, J. K., Zha, J. W., Zhou, T., Li, S. T., & Hu, G. H. (2012). Fundamentals, processes and
applications of high-permittivity polymer–matrix composites. Progress in Materials Science, 57(4), 660-723.
Deraguin, B. V., & Landau, L. (1941). Theory of the stability of strongly charged lyophobic sols and of the
adhesion of strongly charged particles in solution of electrolytes. Acta Physicochim: USSR, 14, 633-662.
Ellyard, D. (2000). Putting it together–the science and technology of composite materials. Australian Academy
of Science, Cooperative Research Centre for Advanced Composite Structures Ltd.
Endo, M., Koyama, T., & Hishiyama, Y. (1976). Structural improvement of carbon fibers prepared from
benzene. Japanese Journal of Applied Physics, 15(11), 2073.6
Freund, M. S., & Deore, B. A. (2007). Self-doped conducting polymers. John Wiley & Sons.
Fudala, Á., Pálinkó, I., & Kiricsi, I. (1999). Preparation and characterization of hybrid organic− inorganic
composite materials using the amphoteric property of amino acids: amino acid intercalated layered double
hydroxide and montmorillonite. Inorganic Chemistry, 38(21), 4653-4658.
Journal of Graphic Era University
Vol. 6, Issue 2, 246-262, 2018
ISSN: 0975-1416 (Print), 2456-4281 (Online)
Fukuda, T., Fujiwara, T., Fujita, H., & Goda, H. (2005). Properties of Organic Nano Hybrid Composites-Site
Selective Molecular Hibrid Method. Seikei-Kakou, 17(2), 109-114.
Gibson, R. F. (2011). Principles of composite material mechanics. CRC press.
Goda, H., & Frank, C. W. (2001). Fluorescence studies of the hybrid composite of segmented-polyurethane and
silica. Chemistry of Materials, 13(9), 2783-2787.
Gul, V. E. (Ed.). (1996). Structure and properties of conducting polymer composites (Vol. 8). VSP.
Guo, Z., Park, S., Hahn, H. T., Wei, S., Moldovan, M., Karki, A. B., & Young, D. P. (2007). Magnetic and
electromagnetic evaluation of the magnetic nanoparticle filled polyurethane nanocomposites. Journal of Applied
Physics, 101(9), 09M511.
Guo, Z., Wei, S., Shedd, B., Scaffaro, R., Pereira, T., & Hahn, H. T. (2007). Particle surface engineering effect
on the mechanical, optical and photoluminescent properties of ZnO/vinyl-ester resin nanocomposites. Journal of
Materials Chemistry, 17(8), 806-813.
Hashimoto, M., Takadama, H., Mizuno, M., & Kokubo, T. (2006). Enhancement of mechanical strength of
TiO2/high-density polyethylene composites for bone repair with silane-coupling treatment. Materials Research
Bulletin, 41(3), 515-524.
Hollaway, L. C. (Ed.). (1994). Handbook of polymer composites for engineers. Elsevier.
Homan, W. J., & Jorissen, A. J. (2004). Wood modification developments. Heron, 49(4), 360-369.
Hon, D. S. (2017). Chemical modification of lignocellulosic materials. Routledge.
Huang, J. C. (2002). Carbon black filled conducting polymers and polymer blends. Advances in Polymer
Technology: Journal of the Polymer Processing Institute, 21(4), 299-313.
Inzelt, G. (2008). Historical Background (Or: There Is Nothing New Under the Sun). Conducting Polymers: A
New Era in Electrochemistry, 265-269.
Jakopin, S. (1979). Compounding of additives. In Proceedings of 37th Annual SPE Technical Conference
(ANTEC 1979 Conference) (pp. 987-991).
Jankong, S., & Srikulkit, K. (2008). Preparation of polypropylene/hydrophobic silica nanocomposites. Journal
of Metals, Materials and Minerials, 18(2), 143-146.
Kalaitzidou, K., Fukushima, H., & Drzal, L. T. (2007). A new compounding method for exfoliated graphite–
polypropylene nanocomposites with enhanced flexural properties and lower percolation threshold. Composites
Science and Technology, 67(10), 2045-2051.
Katepalli, H., Bikshapathi, M., Sharma, C. S., Verma, N., & Sharma, A. (2011). Synthesis of hierarchical fabrics
by electrospinning of PAN nanofibers on activated carbon microfibers for environmental remediation
applications. Chemical Engineering Journal, 171(3), 1194-1200.
Kumar, S. (2007). Chemical modification of wood. Wood and Fiber Science, 26(2), 270-280.
Lechtman, H. N., & Hobbs, L. W. (1987). Roman concrete and the Roman architectural revolution. Ceramics
and Civilization, 3, 81-128.
Li, Y. Q., Fu, S. Y., Yang, Y., & Mai, Y. W. (2008). Facile synthesis of highly transparent polymer
nanocomposites by introduction of core–shell structured nanoparticles. Chemistry of Materials, 20(8), 2637-
Lin, J. J., Cheng, I. J., Wang, R., & Lee, R. J. (2001). Tailoring basal spacings of montmorillonite by poly
(oxyalkylene) diamine intercalation. Macromolecules, 34(26), 8832-8834.
Journal of Graphic Era University
Vol. 6, Issue 2, 246-262, 2018
ISSN: 0975-1416 (Print), 2456-4281 (Online)
Liu, L., Das, A., & Megaridis, C. M. (2014). Terahertz shielding of carbon nanomaterials and their composites–
a review and applications. Carbon, 69, 1-16.
Liu, Y., Chu, Y., & Yang, L. (2006). Adjusting the inner-structure of polypyrrole nanoparticles through
microemulsion polymerization. Materials Chemistry and Physics, 98(2-3), 304-308.
Lopresto, V., Leone, C., & De Iorio, I. (2011). Mechanical characterisation of basalt fibre reinforced plastic.
Composites Part B: Engineering, 42(4), 717-723.
Ma, P. C., Siddiqui, N. A., Marom, G., & Kim, J. K. (2010). Dispersion and functionalization of carbon
nanotubes for polymer-based nanocomposites: a review. Composites Part A: Applied Science and
Manufacturing, 41(10), 1345-1367.
Manas-Zloczower, I., Nir, A., & Tadmor, Z. (1982). Dispersive mixing in internal mixers—a theoretical model
based on agglomerate rupture. Rubber Chemistry and Technology, 55(5), 1250-1285.
Mayer, A. B. (1998). Formation of noble metal nanoparticles within a polymeric matrix: Nanoparticle features
and overall morphologies. Materials Science and Engineering: C, 6(2-3), 155-166.
Nakao, Y. (1993). Preparation and characterisation of noble metal solid sols in poly (methyl methacrylate).
Journal of the Chemical Society, Chemical Communications, (10), 826-828.
Novak, B. M. (1993). Hybrid nanocomposite materials—between inorganic glasses and organic polymers.
Advanced Materials, 5(6), 422-433.
Ogata, N., Jimenez, G., Kawai, H., & Ogihara, T. (1997). Structure and thermal/mechanical properties of poly
(l‐lactide)‐clay blend. Journal of Polymer Science Part B: Polymer Physics, 35(2), 389-396.
Palmgren, H. (1975). Processing conditions in the batch-operated internal mixer. Rubber Chemistry and
Technology, 48(3), 462-494.
Petrovic, Z. S., Kricheldorf, H. R., Nuyken, O., & Swift, G. (2005). Handbook of Polymer Synthesis. Marcel
Dekker, Inc, New York.
Pino, P., & Moretti, G. (1987). The impact of the discovery of the polymerization of the α-olefins on the
development of the stereospecific polymerization of vinyl monomers. Polymer, 28(5), 683-692.
Preghenella, M., Pegoretti, A., & Migliaresi, C. (2005). Thermo-mechanical characterization of fumed silica-
epoxy nanocomposites. Polymer, 46(26), 12065-12072.
Ratna, D., Manoj, N. R., Varley, R., Singh Raman, R. K., & Simon, G. P. (2003). Clay‐reinforced epoxy
nanocomposites. Polymer International, 52(9), 1403-1407.
Ray, S. S., & Okamoto, M. (2003). Polymer/layered silicate nanocomposites: a review from preparation to
processing. Progress in Polymer Science, 28(11), 1539-1641.
Reynaud, E., Jouen, T., Gauthier, C., Vigier, G., & Varlet, J. (2001). Nanofillers in polymeric matrix: a study on
silica reinforced PA6. Polymer, 42(21), 8759-8768.
Shenoy, S. L., Kaya, I., Erkey, C., & Weiss, R. A. (2001). Synthesis of conductive elastomeric foams by an in
situ polymerization of pyrrole using supercritical carbon dioxide and ethanol cosolvents. Synthetic Metals,
(3), 509-514.
Shiga, S., & Furuta, M. (1985). Processability of EPR in an internal mixter (II)―Morphological changes of
carbon black agglomerates during mixing. Rubber Chemistry and Technology, 58(1), 1-22.
Shioyama, H. (1997). Polymerization of isoprene and styrene in the interlayer spacing of graphite. Carbon,
(35), 1664-1665.
Journal of Graphic Era University
Vol. 6, Issue 2, 246-262, 2018
ISSN: 0975-1416 (Print), 2456-4281 (Online)
Shioyama, H., Tatsumi, K., Iwashita, N., Fujita, K., & Sawada, Y. (1998). On the interaction between the
potassium—GIC and unsaturated hydrocarbons. Synthetic Metals, 96(3), 229-233.
Shirakawa, H., Louis, E. J., MacDiarmid, A. G., Chiang, C. K., & Heeger, A. J. (1977). Synthesis of electrically
conducting organic polymers: halogen derivatives of polyacetylene,(CH) x. Journal of the Chemical Society,
Chemical Communications, (16), 578-580.
Sun, D., Miyatake, N., & Sue, H. J. (2007). Transparent PMMA/ZnO nanocomposite films based on colloidal
ZnO quantum dots. Nanotechnology, 18(21), 215606.
Takadama, H., Hashimoto, M., Takigawa, Y., Mizuno, M., & Kokubo, T. (2004). Effect of melt flow rate of
polyethylene on bioactivity and mechanical properties of polyethylene/titania composites. In Key Engineering
Materials (Vol. 254, pp. 569-572). Trans Tech Publications.
Tanahashi, M. (2010). Development of fabrication methods of filler/polymer nanocomposites: With focus on
simple melt-compounding-based approach without surface modification of nanofillers. Materials, 3(3), 1593-
Tanahashi, M. (2010). Development of fabrication methods of filler/polymer nanocomposites: With focus on
simple melt-compounding-based approach without surface modification of nanofillers. Materials, 3(3), 1593-
Tanahashi, M., Hirose, M., Watanabe, Y., Lee, J. C., & Takeda, K. (2007). Silica/perfluoropolymer
nanocomposites fabricated by direct melt-compounding: A novel method without surface modification on nano-
silica. Journal of Nanoscience and Nanotechnology, 7(7), 2433-2442.
Tanahashi, M., Watanabe, Y., & Fujisawa, T. (2009). Fabrication and crystallization temperature of
silica/polypropylene nanocomposites by simple method without any hydrophobic treatment of nano-silica
surfaces. Journal of the Society of Materials Science, Japan, 58(5), 408-415.
Uppal, N., & Shiakolas, P. S. (2008). Modeling of temperature-dependent diffusion and polymerization kinetics
and their effects on two-photon polymerization dynamics. Journal of Micro/Nanolithography, MEMS, and
MOEMS, 7(4), 043002.
Usuki, A., Kawasumi, M., Kojima, Y., Okada, A., Kurauchi, T., & Kamigaito, O. (1993). Swelling behavior of
montmorillonite cation exchanged for ω-amino acids by∊-caprolactam. Journal of Materials Research, 8(5),
-1178.
Vaia, R. A., & Giannelis, E. P. (1997). Lattice model of polymer melt intercalation in organically-modified
layered silicates. Macromolecules, 30(25), 7990-7999.
Vaia, R. A., & Giannelis, E. P. (1997). Polymer melt intercalation in organically-modified layered silicates:
model predictions and experiment. Macromolecules, 30(25), 8000-8009.
Vaia, R. A., Ishii, H., & Giannelis, E. P. (1993). Synthesis and properties of two-dimensional nanostructures by
direct intercalation of polymer melts in layered silicates. Chemistry of Materials, 5(12), 1694-1696.
Vassilopoulos, A. P., Georgopoulos, E. F., & Keller, T. (2008). Comparison of genetic programming with
conventional methods for fatigue life modeling of FRP composite materials. International Journal of Fatigue,
(9), 1634-1645.
Villmow, T., Pegel, S., John, A., Rentenberger, R., & Pötschke, P. (2011). Liquid sensing: smart polymer/CNT
composites. Materials Today, 14(7-8), 340-345.
Watanabe, Y., Tanahashi, M., & Takeda, K. (2006). Dispersion of silica particles with hydrophilic surfaces into
polymer. Kobunshi Ronbunshu, 63(11), 737-744.
Journal of Graphic Era University
Vol. 6, Issue 2, 246-262, 2018
ISSN: 0975-1416 (Print), 2456-4281 (Online)
Yang, F., & Nelson, G. L. (2006). Polymer/silica nanocomposites prepared via extrusion. Polymers for
Advanced Technologies, 17(4), 320-326.
Zhang, L., Aboagye, A., Kelkar, A., Lai, C., & Fong, H. (2014). A review: carbon nanofibers from electrospun
polyacrylonitrile and their applications. Journal of Materials Science, 49(2), 463-480.
Zois, H., Apekis, L., & Mamunya, Y. P. (2003). Dielectric properties and morphology of polymer composites
filled with dispersed iron. Journal of Applied Polymer Science, 88(13), 3013-3020