Polymer Composites in Present Scenario


  • Sarita Chandra Department of Physics Graphic Era Deemed to be University, Dehradun, Uttarakhand, India
  • Divya Uniyal Department of Physics Graphic Era Deemed to be University, Dehradun, Uttarakhand, India
  • Fateh Singh Gill Department of Physics Graphic Era Deemed to be University, Dehradun, Uttarakhand, India


Composites, Nanocomposites, Fabrication


Present scenario of growing development demands more sophisticated and engineered materials to facilitate the
lifestyle and to meet the challenges in the establishment of colonies in space. The advancements in composite
technology meet the growing demands. Composites are the engineered material for future. There are many
scopes in composites with various emerging nanotechnology and smart materials. This paper is a brief review of
the composite's concept and their types. The differentiation between the electronically conducting polymers and
conducting polymer composites are also discussed along with their contemporary applications.


Download data is not yet available.


Agarwal, U. S., Nisal, A., & Joseph, R. (2007). PET-SWNT nanocomposites through ultrasound assisted

dissolution-evaporation. European Polymer Journal, 43(6), 2279-2285.

Andrews, R., Jacques, D., Qian, D., & Rantell, T. (2002). Multiwall carbon nanotubes: synthesis and

application. Accounts of Chemical Research, 35(12), 1008-1017.

Journal of Graphic Era University

Vol. 6, Issue 2, 246-262, 2018

ISSN: 0975-1416 (Print), 2456-4281 (Online)

Ansari, R. (2006). Polypyrrole conducting electroactive polymers: synthesis and stability studies. Journal of

Chemistry, 3(4), 186-201.

Antunes, R. A., De Oliveira, M. C., Ett, G., & Ett, V. (2011). Carbon materials in composite bipolar plates for

polymer electrolyte membrane fuel cells: A review of the main challenges to improve electrical performance.

Journal of Power Sources, 196(6), 2945-2961.

Averitt, R. D., Padilla, W. J., Chen, H. T., O'Hara, J. F., Taylor, A. J., Highstrete, C., . & Gossard, A. C. (2007,

September). Terahertz metamaterial devices. In Terahertz Physics, Devices, and Systems II (Vol. 6772, p.

. International Society for Optics and Photonics.

Baillie, C. (Ed.). (2005). Green composites: polymer composites and the environment. CRC Press.

Beall, G. W., & Powell, C. E. (2011). Fundamentals of polymer-clay nanocomposites. Cambridge University


Bertsch, A., Lorenz, H., & Renaud, P. (1998, January). Combining microstereolithography and thick resist UV

lithography for 3D microfabrication. In Micro Electro Mechanical Systems, 1998. MEMS 98. Proceedings., The

Eleventh Annual International Workshop on (pp. 18-23). IEEE.

Bhatnagar, N. B. A. I. I. O. T., Ramakrishnan, N., Naik, N. K., & Komanduri, R. B. A. O. S. U. (1995). On the

machining of fiber reinforced plastic (FRP) composite laminates. International Journal of Machine Tools and

Manufacture, 35(5), 701-716.

Bregar, V. B. (2004). Advantages of ferromagnetic nanoparticle composites in microwave absorbers. IEEE

Transactions on Magnetics, 40(3), 1679-1684.

Carotenuto, G., Her, Y. S., & Matijević, E. (1996). Preparation and characterization of nanocomposite thin films

for optical devices. Industrial & Engineering Chemistry Research, 35(9), 2929-2932.

Cho, J. W., & Paul, D. R. (2001). Nylon 6 nanocomposites by melt compounding. Polymer, 42(3), 1083-1094.

Chujo, Y., & Saegusa, T. (1992). Organic polymer hybrids with silica gel formed by means of the sol-gel

method. In Macromolecules: Synthesis, Order and Advanced Properties(pp. 11-29). Springer, Berlin,


Chujo, Y., & Tamaki, R. (2001). New preparation methods for organic–inorganic polymer hybrids. MRS

Bulletin, 26(5), 389-392.

Dang, Z. M., Lin, Y. H., & Nan, C. W. (2003). Novel ferroelectric polymer composites with high dielectric

constants. Advanced Materials, 15(19), 1625-1629.

Dang, Z. M., Yuan, J. K., Zha, J. W., Zhou, T., Li, S. T., & Hu, G. H. (2012). Fundamentals, processes and

applications of high-permittivity polymer–matrix composites. Progress in Materials Science, 57(4), 660-723.

Deraguin, B. V., & Landau, L. (1941). Theory of the stability of strongly charged lyophobic sols and of the

adhesion of strongly charged particles in solution of electrolytes. Acta Physicochim: USSR, 14, 633-662.

Ellyard, D. (2000). Putting it together–the science and technology of composite materials. Australian Academy

of Science, Cooperative Research Centre for Advanced Composite Structures Ltd.

Endo, M., Koyama, T., & Hishiyama, Y. (1976). Structural improvement of carbon fibers prepared from

benzene. Japanese Journal of Applied Physics, 15(11), 2073.6

Freund, M. S., & Deore, B. A. (2007). Self-doped conducting polymers. John Wiley & Sons.

Fudala, Á., Pálinkó, I., & Kiricsi, I. (1999). Preparation and characterization of hybrid organic− inorganic

composite materials using the amphoteric property of amino acids: amino acid intercalated layered double

hydroxide and montmorillonite. Inorganic Chemistry, 38(21), 4653-4658.

Journal of Graphic Era University

Vol. 6, Issue 2, 246-262, 2018

ISSN: 0975-1416 (Print), 2456-4281 (Online)

Fukuda, T., Fujiwara, T., Fujita, H., & Goda, H. (2005). Properties of Organic Nano Hybrid Composites-Site

Selective Molecular Hibrid Method. Seikei-Kakou, 17(2), 109-114.

Gibson, R. F. (2011). Principles of composite material mechanics. CRC press.

Goda, H., & Frank, C. W. (2001). Fluorescence studies of the hybrid composite of segmented-polyurethane and

silica. Chemistry of Materials, 13(9), 2783-2787.

Gul, V. E. (Ed.). (1996). Structure and properties of conducting polymer composites (Vol. 8). VSP.

Guo, Z., Park, S., Hahn, H. T., Wei, S., Moldovan, M., Karki, A. B., & Young, D. P. (2007). Magnetic and

electromagnetic evaluation of the magnetic nanoparticle filled polyurethane nanocomposites. Journal of Applied

Physics, 101(9), 09M511.

Guo, Z., Wei, S., Shedd, B., Scaffaro, R., Pereira, T., & Hahn, H. T. (2007). Particle surface engineering effect

on the mechanical, optical and photoluminescent properties of ZnO/vinyl-ester resin nanocomposites. Journal of

Materials Chemistry, 17(8), 806-813.

Hashimoto, M., Takadama, H., Mizuno, M., & Kokubo, T. (2006). Enhancement of mechanical strength of

TiO2/high-density polyethylene composites for bone repair with silane-coupling treatment. Materials Research

Bulletin, 41(3), 515-524.

Hollaway, L. C. (Ed.). (1994). Handbook of polymer composites for engineers. Elsevier.

Homan, W. J., & Jorissen, A. J. (2004). Wood modification developments. Heron, 49(4), 360-369.

Hon, D. S. (2017). Chemical modification of lignocellulosic materials. Routledge.

Huang, J. C. (2002). Carbon black filled conducting polymers and polymer blends. Advances in Polymer

Technology: Journal of the Polymer Processing Institute, 21(4), 299-313.

Inzelt, G. (2008). Historical Background (Or: There Is Nothing New Under the Sun). Conducting Polymers: A

New Era in Electrochemistry, 265-269.

Jakopin, S. (1979). Compounding of additives. In Proceedings of 37th Annual SPE Technical Conference

(ANTEC 1979 Conference) (pp. 987-991).

Jankong, S., & Srikulkit, K. (2008). Preparation of polypropylene/hydrophobic silica nanocomposites. Journal

of Metals, Materials and Minerials, 18(2), 143-146.

Kalaitzidou, K., Fukushima, H., & Drzal, L. T. (2007). A new compounding method for exfoliated graphite–

polypropylene nanocomposites with enhanced flexural properties and lower percolation threshold. Composites

Science and Technology, 67(10), 2045-2051.

Katepalli, H., Bikshapathi, M., Sharma, C. S., Verma, N., & Sharma, A. (2011). Synthesis of hierarchical fabrics

by electrospinning of PAN nanofibers on activated carbon microfibers for environmental remediation

applications. Chemical Engineering Journal, 171(3), 1194-1200.

Kumar, S. (2007). Chemical modification of wood. Wood and Fiber Science, 26(2), 270-280.

Lechtman, H. N., & Hobbs, L. W. (1987). Roman concrete and the Roman architectural revolution. Ceramics

and Civilization, 3, 81-128.

Li, Y. Q., Fu, S. Y., Yang, Y., & Mai, Y. W. (2008). Facile synthesis of highly transparent polymer

nanocomposites by introduction of core–shell structured nanoparticles. Chemistry of Materials, 20(8), 2637-

Lin, J. J., Cheng, I. J., Wang, R., & Lee, R. J. (2001). Tailoring basal spacings of montmorillonite by poly

(oxyalkylene) diamine intercalation. Macromolecules, 34(26), 8832-8834.

Journal of Graphic Era University

Vol. 6, Issue 2, 246-262, 2018

ISSN: 0975-1416 (Print), 2456-4281 (Online)

Liu, L., Das, A., & Megaridis, C. M. (2014). Terahertz shielding of carbon nanomaterials and their composites–

a review and applications. Carbon, 69, 1-16.

Liu, Y., Chu, Y., & Yang, L. (2006). Adjusting the inner-structure of polypyrrole nanoparticles through

microemulsion polymerization. Materials Chemistry and Physics, 98(2-3), 304-308.

Lopresto, V., Leone, C., & De Iorio, I. (2011). Mechanical characterisation of basalt fibre reinforced plastic.

Composites Part B: Engineering, 42(4), 717-723.

Ma, P. C., Siddiqui, N. A., Marom, G., & Kim, J. K. (2010). Dispersion and functionalization of carbon

nanotubes for polymer-based nanocomposites: a review. Composites Part A: Applied Science and

Manufacturing, 41(10), 1345-1367.

Manas-Zloczower, I., Nir, A., & Tadmor, Z. (1982). Dispersive mixing in internal mixers—a theoretical model

based on agglomerate rupture. Rubber Chemistry and Technology, 55(5), 1250-1285.

Mayer, A. B. (1998). Formation of noble metal nanoparticles within a polymeric matrix: Nanoparticle features

and overall morphologies. Materials Science and Engineering: C, 6(2-3), 155-166.

Nakao, Y. (1993). Preparation and characterisation of noble metal solid sols in poly (methyl methacrylate).

Journal of the Chemical Society, Chemical Communications, (10), 826-828.

Novak, B. M. (1993). Hybrid nanocomposite materials—between inorganic glasses and organic polymers.

Advanced Materials, 5(6), 422-433.

Ogata, N., Jimenez, G., Kawai, H., & Ogihara, T. (1997). Structure and thermal/mechanical properties of poly

(l‐lactide)‐clay blend. Journal of Polymer Science Part B: Polymer Physics, 35(2), 389-396.

Palmgren, H. (1975). Processing conditions in the batch-operated internal mixer. Rubber Chemistry and

Technology, 48(3), 462-494.

Petrovic, Z. S., Kricheldorf, H. R., Nuyken, O., & Swift, G. (2005). Handbook of Polymer Synthesis. Marcel

Dekker, Inc, New York.

Pino, P., & Moretti, G. (1987). The impact of the discovery of the polymerization of the α-olefins on the

development of the stereospecific polymerization of vinyl monomers. Polymer, 28(5), 683-692.

Preghenella, M., Pegoretti, A., & Migliaresi, C. (2005). Thermo-mechanical characterization of fumed silica-

epoxy nanocomposites. Polymer, 46(26), 12065-12072.

Ratna, D., Manoj, N. R., Varley, R., Singh Raman, R. K., & Simon, G. P. (2003). Clay‐reinforced epoxy

nanocomposites. Polymer International, 52(9), 1403-1407.

Ray, S. S., & Okamoto, M. (2003). Polymer/layered silicate nanocomposites: a review from preparation to

processing. Progress in Polymer Science, 28(11), 1539-1641.

Reynaud, E., Jouen, T., Gauthier, C., Vigier, G., & Varlet, J. (2001). Nanofillers in polymeric matrix: a study on

silica reinforced PA6. Polymer, 42(21), 8759-8768.

Shenoy, S. L., Kaya, I., Erkey, C., & Weiss, R. A. (2001). Synthesis of conductive elastomeric foams by an in

situ polymerization of pyrrole using supercritical carbon dioxide and ethanol cosolvents. Synthetic Metals,

(3), 509-514.

Shiga, S., & Furuta, M. (1985). Processability of EPR in an internal mixter (II)―Morphological changes of

carbon black agglomerates during mixing. Rubber Chemistry and Technology, 58(1), 1-22.

Shioyama, H. (1997). Polymerization of isoprene and styrene in the interlayer spacing of graphite. Carbon,

(35), 1664-1665.

Journal of Graphic Era University

Vol. 6, Issue 2, 246-262, 2018

ISSN: 0975-1416 (Print), 2456-4281 (Online)

Shioyama, H., Tatsumi, K., Iwashita, N., Fujita, K., & Sawada, Y. (1998). On the interaction between the

potassium—GIC and unsaturated hydrocarbons. Synthetic Metals, 96(3), 229-233.

Shirakawa, H., Louis, E. J., MacDiarmid, A. G., Chiang, C. K., & Heeger, A. J. (1977). Synthesis of electrically

conducting organic polymers: halogen derivatives of polyacetylene,(CH) x. Journal of the Chemical Society,

Chemical Communications, (16), 578-580.

Sun, D., Miyatake, N., & Sue, H. J. (2007). Transparent PMMA/ZnO nanocomposite films based on colloidal

ZnO quantum dots. Nanotechnology, 18(21), 215606.

Takadama, H., Hashimoto, M., Takigawa, Y., Mizuno, M., & Kokubo, T. (2004). Effect of melt flow rate of

polyethylene on bioactivity and mechanical properties of polyethylene/titania composites. In Key Engineering

Materials (Vol. 254, pp. 569-572). Trans Tech Publications.

Tanahashi, M. (2010). Development of fabrication methods of filler/polymer nanocomposites: With focus on

simple melt-compounding-based approach without surface modification of nanofillers. Materials, 3(3), 1593-

Tanahashi, M. (2010). Development of fabrication methods of filler/polymer nanocomposites: With focus on

simple melt-compounding-based approach without surface modification of nanofillers. Materials, 3(3), 1593-

Tanahashi, M., Hirose, M., Watanabe, Y., Lee, J. C., & Takeda, K. (2007). Silica/perfluoropolymer

nanocomposites fabricated by direct melt-compounding: A novel method without surface modification on nano-

silica. Journal of Nanoscience and Nanotechnology, 7(7), 2433-2442.

Tanahashi, M., Watanabe, Y., & Fujisawa, T. (2009). Fabrication and crystallization temperature of

silica/polypropylene nanocomposites by simple method without any hydrophobic treatment of nano-silica

surfaces. Journal of the Society of Materials Science, Japan, 58(5), 408-415.

Uppal, N., & Shiakolas, P. S. (2008). Modeling of temperature-dependent diffusion and polymerization kinetics

and their effects on two-photon polymerization dynamics. Journal of Micro/Nanolithography, MEMS, and

MOEMS, 7(4), 043002.

Usuki, A., Kawasumi, M., Kojima, Y., Okada, A., Kurauchi, T., & Kamigaito, O. (1993). Swelling behavior of

montmorillonite cation exchanged for ω-amino acids by∊-caprolactam. Journal of Materials Research, 8(5),


Vaia, R. A., & Giannelis, E. P. (1997). Lattice model of polymer melt intercalation in organically-modified

layered silicates. Macromolecules, 30(25), 7990-7999.

Vaia, R. A., & Giannelis, E. P. (1997). Polymer melt intercalation in organically-modified layered silicates:

model predictions and experiment. Macromolecules, 30(25), 8000-8009.

Vaia, R. A., Ishii, H., & Giannelis, E. P. (1993). Synthesis and properties of two-dimensional nanostructures by

direct intercalation of polymer melts in layered silicates. Chemistry of Materials, 5(12), 1694-1696.

Vassilopoulos, A. P., Georgopoulos, E. F., & Keller, T. (2008). Comparison of genetic programming with

conventional methods for fatigue life modeling of FRP composite materials. International Journal of Fatigue,

(9), 1634-1645.

Villmow, T., Pegel, S., John, A., Rentenberger, R., & Pötschke, P. (2011). Liquid sensing: smart polymer/CNT

composites. Materials Today, 14(7-8), 340-345.

Watanabe, Y., Tanahashi, M., & Takeda, K. (2006). Dispersion of silica particles with hydrophilic surfaces into

polymer. Kobunshi Ronbunshu, 63(11), 737-744.

Journal of Graphic Era University

Vol. 6, Issue 2, 246-262, 2018

ISSN: 0975-1416 (Print), 2456-4281 (Online)

Yang, F., & Nelson, G. L. (2006). Polymer/silica nanocomposites prepared via extrusion. Polymers for

Advanced Technologies, 17(4), 320-326.

Zhang, L., Aboagye, A., Kelkar, A., Lai, C., & Fong, H. (2014). A review: carbon nanofibers from electrospun

polyacrylonitrile and their applications. Journal of Materials Science, 49(2), 463-480.

Zois, H., Apekis, L., & Mamunya, Y. P. (2003). Dielectric properties and morphology of polymer composites

filled with dispersed iron. Journal of Applied Polymer Science, 88(13), 3013-3020




How to Cite

Chandra, S., Uniyal, D., & Gill, F. S. (2023). Polymer Composites in Present Scenario. Journal of Graphic Era University, 6(2), 246–62. Retrieved from https://www.journal.riverpublishers.com/index.php/JGEU/article/view/81