Parameter Extraction of PV Solar Cell: A Comparative Assessment Using Newton Raphson, Simulated Annealing and Particle Swarm Optimization


  • Nikita Rawat Department of Electrical Engineering Graphic Era (Deemed to be University), Dehradun, Uttarakhand, India
  • Padmanabh Thakur Department of Electrical Engineering Graphic Era (Deemed to be University), Dehradun, Uttarakhand, India


PV Cell, Simulated Annealing, Newton Raphson, Particle Swarm Optimization, Single-Diode Model


Proper modelling of PV cell is important to calculate its unknown parameters close to the accurate values, to
attain the I-V characteristic curve close to the hardware model. This can help for simulation, computing
efficiency, maximum power point tracing design, optimization and regulation of PV system. This paper
estimates single diode PV model parameters such as photocurrent, the saturation current, the series resistance,
the shunt resistance and the ideality factor. The estimation is done by three different optimization methods for
single-diode model in an attempt to judge which method is surpassing in terms of convergence time and relative
error. The first method Newton-Raphson is a numerical method based on gradient descent approach, while the
second and third methods are evolutionary methods, simulated annealing and particle swarm optimization
respectively. It was observed that particle swarm optimization algorithm is best among the methods and
simulated annealing showed the worse performance.


Download data is not yet available.


Almonacid, F. J. M. F., Rus, C., Hontoria, L., & Muñoz, F. J. (2010). Characterisation of PV CIS module by

artificial neural networks. A comparative study with other methods. Renewable Energy, 35(5), 973-980.

Almonacid, F., Rus, C., Hontoria, L., Fuentes, M., & Nofuentes, G. (2009). Characterisation of Si-crystalline

PV modules by artificial neural networks. Renewable Energy, 34(4), 941-949.

Appelbaum, J., & Peled, A. (2014). Parameters extraction of solar cells–A comparative examination of three

methods. Solar Energy Materials and Solar Cells, 122, 164-173.

Askarzadeh, A., & dos Santos Coelho, L. (2015). Determination of photovoltaic modules parameters at different

operating conditions using a novel bird mating optimizer approach. Energy Conversion and Management, 89,


Awadallah, M. A., & Venkatesh, B. (2015, March). Estimation of PV module parameters from datasheet

information using optimization techniques. In Industrial Technology (ICIT), 2015 IEEE International

Conference on (pp. 2777-2782). IEEE.

Chan, D. S. H., Phillips, J. R., & Phang, J. C. H. (1986). A comparative study of extraction methods for solar

cell model parameters. Solid-State Electronics, 29(3), 329-337.

Journal of Graphic Era University

Vol. 7, Issue 2, 119-131, 2019

ISSN: 0975-1416 (Print), 2456-4281 (Online)

De Soto, W., Klein, S. A., & Beckman, W. A. (2006). Improvement and validation of a model for photovoltaic

array performance. Solar Energy, 80(1), 78-88.

Dizqah, A. M., Maheri, A., & Busawon, K. (2014). An accurate method for the PV model identification based

on a genetic algorithm and the interior-point method. Renewable Energy, 72, 212-222.

Eberhart, R., & Kennedy, J. (1995, October). A new optimizer using particle swarm theory. In Micro Machine

and Human Science, 1995. MHS'95., Proceedings of the Sixth International Symposium on (pp. 39-43). IEEE.

El-Naggar, K. M., AlRashidi, M. R., AlHajri, M. F., & Al-Othman, A. K. (2012). Simulated annealing

algorithm for photovoltaic parameters identification. Solar Energy, 86(1), 266-274.

Enebish, N., Agchbayar, D., Dorjkhand, S., Baatar, D., & Ylemj, I. (1993). Numerical analysis of solar cell

current-voltage characteristics. Solar Energy Materials and Solar Cells, 29(3), 201-208.

Ghani, F., & Duke, M. (2011). Numerical determination of parasitic resistances of a solar cell using the Lambert

W-function. Solar Energy, 85(9), 2386-2394.

Ghani, F., Duke, M., & Carson, J. (2013). Numerical calculation of series and shunt resistances and diode

quality factor of a photovoltaic cell using the Lambert W-function. Solar Energy, 91, 422-431.

Hunt, T. (2015). The solar singularity is nigh. Greentech Media. Retrieved, 29.

Ishaque, K., & Salam, Z. (2011). An improved modeling method to determine the model parameters of

photovoltaic (PV) modules using differential evolution (DE). Solar Energy, 85(9), 2349-2359.

Ishaque, K., Salam, Z., Taheri, H., & Shamsudin, A. (2011). A critical evaluation of EA computational methods

for Photovoltaic cell parameter extraction based on two diode model. Solar Energy, 85(9), 1768-1779.

Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. Science,

(4598), 671-680.

Lun, S. X., Du, C. J., Yang, G. H., Wang, S., Guo, T. T., Sang, J. S., & Li, J. P. (2013). An explicit approximate

I–V characteristic model of a solar cell based on padé approximants. Solar Energy, 92, 147-159.

Ma, J., Ting, T. O., Man, K. L., Zhang, N., Guan, S. U., & Wong, P. W. (2013). Parameter estimation of

photovoltaic models via cuckoo search. Journal of Applied Mathematics, 2013.

Mahmoud, Y. A., Xiao, W., & Zeineldin, H. H. (2013). A parameterization approach for enhancing PV model

accuracy. IEEE Transactions on Industrial Electronics, 60(12), 5708-5716.

Nayak, B. K., Mohapatra, A., & Mohanty, K. B. (2013, December). Parameters estimation of photovoltaic

module using nonlinear least square algorithm: A comparative study. In India Conference (INDICON), 2013

Annual IEEE (pp. 1-6). IEEE.

Ortiz-Conde, A., Sánchez, F. J. G., & Muci, J. (2006). New method to extract the model parameters of solar

cells from the explicit analytic solutions of their illuminated I–V characteristics. Solar Energy Materials and

Solar Cells, 90(3), 352-361.

Quaschning, V., & Hanitsch, R. (1996). Numerical simulation of current-voltage characteristics of photovoltaic

systems with shaded solar cells. Solar Energy, 56(6), 513-520.

Siddiqui, M. U., & Abido, M. (2013). Parameter estimation for five-and seven-parameter photovoltaic electrical

models using evolutionary algorithms. Applied Soft Computing, 13(12), 4608-4621.

Silva, E. A., Bradaschia, F., Cavalcanti, M. C., & Nascimento, A. J. (2016). Parameter estimation method to

improve the accuracy of photovoltaic electrical model. IEEE Journal of Photovoltaics, 6(1), 278-285.

Soon, J. J., & Low, K. S. (2012). Photovoltaic model identification using particle swarm optimization with

inverse barrier constraint. IEEE Transactions on Power Electronics, 27(9), 3975-3983.

Journal of Graphic Era University

Vol. 7, Issue 2, 119-131, 2019

ISSN: 0975-1416 (Print), 2456-4281 (Online)

Tivanov, M., Patryn, A., Drozdov, N., Fedotov, A., & Mazanik, A. (2005). Determination of solar cell

parameters from its current–voltage and spectral characteristics. Solar Energy Materials and Solar Cells, 87(1-

, 457-465.

Villalva, M. G., Gazoli, J. R., & Ruppert Filho, E. (2009). Comprehensive approach to modeling and simulation

of photovoltaic arrays. IEEE Transactions on Power Electronics, 24(5), 1198-1208.

Wei, H., Cong, J., Lingyun, X., & Deyun, S. (2011, April). Extracting solar cell model parameters based on

chaos particle swarm algorithm. In Electric Information and Control Engineering (ICEICE), 2011 International

Conference on (pp. 398-402). IEEE.

Xiao, W., Dunford, W. G., & Capel, A. (2004, June). A novel modeling method for photovoltaic cells. In Power

Electronics Specialists Conference, 2004. PESC 04. 2004 IEEE 35th Annual (Vol. 3, pp. 1950-1956). IEEE.

Ye, M., Wang, X., & Xu, Y. (2009). Parameter extraction of solar cells using particle swarm optimization.

Journal of Applied Physics, 105(9), 094502




How to Cite

Rawat, N., & Thakur, P. (2023). Parameter Extraction of PV Solar Cell: A Comparative Assessment Using Newton Raphson, Simulated Annealing and Particle Swarm Optimization. Journal of Graphic Era University, 7(2), 119–131. Retrieved from