Molecular Drug Targets in Candida glabrata

  • Payal Gupta Department of Biotechnology, Graphic Era University, Dehradun, India
  • Nishant Rai Department of Biotechnology, Graphic Era University, Dehradun, India
  • Navin Kumar Department of Biotechnology, Graphic Era University, Dehradun, India
Keywords: Candida glabrata, Molecular Target, Drug Target, Kre1, Kre2, Cch1, Mid1, Cdr1, Rox1, Upc2B

Abstract

Incidence of candidiasis has increased in past decade. Epidemiology is reported shifting from albicans to non-albicans Candida (NAC) species like C. glabrata, which is intrinsically resistant to azole drugs. No new antifungal has come into practice from last decade. Rising resistance to existing antifungal (in clinical isolates of Candida) have necessitated the need for new antifungals. New molecular drug targets need to be explored for the development of novel antifungal drugs. The drug targets are oftenly the cellular proteins of various metabolic pathways (like ergosterol synthesis-, cell wall biogenesis-, calcium-calcineurin-and DNA checkpoint pathways etc.), having no significant similarity with host proteins to overrule the possibility of side effects. In this review, some potential proteins of C. glabrata and their pathways are discussed in context to explore their potential as drug target for antifungal drug development.

Downloads

Download data is not yet available.

References

Akins, R. A. (2005). An update on antifungal targets and mechanisms of resistance in Candida albicans. Medical Mycology, 43(4), 285-318.

Al Thaqafi, A. H., Farahat, F. M., Al Harbi, M. I., Al Amri, A. F., & Perfect, J. R. (2014). Predictors and outcomes ofCandida bloodstream infection: eight-year surveillance, western Saudi Arabia. International Journal of Infectious Diseases, 21, 5-9.

Alcasabas, A. A., Osborn, A. J., Bachant, J., Hu, F., Werler, P. J., Bousset, K., Furuya, K., Diffley, J. F., Carr, A. M.,& Elledge, S. J. (2001). Mrc1 transduces signals of DNA replication stress to activate Rad53. Nature Cell Biology, 3(11),958-965.

Anand, J., Semwal, P., Gautam, P.,Thapliyal, A., & Rai, N. (2015). Prediction of novel drug targets in Ergosterol biosynthesis pathway: a proposed mechanism of anticandidal activity of green tea phytocompounds. Journal of Chemical and Pharmaceutical Research, 7(2), 672-684.

Arthington, B.A., Bennett, L. G., Skatrud, P. L., Guynn, C. J., Barbuch, R. J., Ulbright, C. E., & Bard, M. (1991). Cloning, disruption, and sequence of the gene encoding yeast C-5 sterol desaturase. Gene, 102(1), 39–44.

Balasubramanian, B., Lowry, C. V., & Zitomer, R.S. (1993). The Rox1 repressor of the Saccharomyces cerevisiaehypoxic genes is a specific DNA-binding protein with a high-mobility-group motif. Molecular and Cellular Biology, 13(10), 6071–6078.

Bard, M., Bruner, D. A., Pierson, C. A., Lees, N. D., Biermann, B., Frye, L., Koegel, C., & Barbuch, R. (1996). Cloning and characterization of ERG25, the Saccharomyces cerevisiaegene encoding C-4 sterol methyl oxidase. Proceedings of the National Academyof Sciences U S A, 93(1), 186-190.

Bard, M., Lees, N. D., Turi, T., Craft, D., Cofrin, L., Barbuch, R., Koegel, C., & Loper, J. C. (1993). Sterol synthesis and viability of erg11 (cytochrome P450 lanosterol demethylase) mutations in Saccharomyces cerevisiaeand Candida albicans. Lipids, 28(11), 963–967.

Belardetti, F., & Zamponi, G. W. (2012). Calcium channels as therapeutic targets. Wiley Interdisciplinary Reviews: Membrane Transport and Signaling, 1(4), 433–451.

Berridge, M. J., Bootman, M. D., & Roderick, H. L. (2003). Calcium signalling: dynamics, homeostasis and remodelling. Nature Reviews Molecular Cell Biology, 4(7), 517-529.

Bonilla, M., & Cunningham, K. W. (2003). Mitogen-activated Protein Kinase stimulation of Ca2+ signaling is required for survival of endoplasmic reticulum stress in yeast. Molecular Biology of Cell, 14(10), 4296–4305.

Boone, C., Sommer, S. S., Hensel, A., & Bussey, H. (1990). Yeast KRE genes provide evidence for a pathway of cell wall beta-glucan assembly. Journal of Cell Biology,110(5), 1833–1843.

Bossche, V. H. (1985). Biochemical targets for antifungal azole derivatives: hypothesis on the mode of action. InM. R. McGinnis (ed.), Current Topics in Medical Mycology, Springer-Verlag, New York, 1, 313–351.

Bossche, V. H., Willemsens, G., & Marshall, P. (1987). Anti-Candidadrugs—the biochemical basis for their action. Critical Reviews in Microbiology, 15(1), 57–72.

Breining, F., Schleinkofer, K., & Schmitt, M. J. (2004). Yeast Kre1p is GPI-anchored and involved in both cellwall assemble and architecture. Microbiology, 150(10), 3209-3218.

Burchmore, R. J., Wallace, L. J., Candlish, D., Al-Salabi, M. I., Beal, P. R., Barrett, M. P., Baldwin, S. A., & De Koning, H. P. (2003). Cloning, heterologous expression, and in situ characterization of the first high affinity nucleo base transporter from a protozoan. Journal of Biological Chemistry, 278(26), 23502–23507.

Calendrone, R. A., & Cihlar, R. L. (2002). Fungal pathogenesis: principles and clinical applications. Marcel Dekker, Inc.NewYork, Basel, 14, 1-24.

Catterall, W. A. (2011). Voltage-gated calcium channel. Cold Spring Harbor Perspectives in Medicine, 3(8), 1-25.

Chaffin, W. L. (2008). Candida albicanscell wall proteins. Microbiology and Molecular Biology Review, 72(3), 495–544.

Chaffin, W. L., Lopez-Ribot, J. L., Casanova, M., Gozalbo, D., & Martinez, J. P. (1998). Cell wall and secreted proteins of Candida albicans: identification, function, and expression. Microbiology and Molecular Biology Reviews, 62(1), 130-180.

Chiu, Y.T., Liu, J., Tang, K., Wong, Y. C., Khanna, K., & Ling, M.T. (2012). Inactivation of ATM/ATR DNA damage checkpoint promotes androgen induced chromosomal instability in prostate epithelial cells. Plos One, 7(12), 1-12.

Clarke, M., Lohan, A. J., Liu, B., Lagkouvardos, I., Roy, S., Zafar, N., Bertelli, C., Schilde, C., Kianianmomeni, A., Burglin, T. R., Frech, C., Turcotte, B., Kopec, K. O., Synnott, J. M., Choo, C., Paponov, I., Finkler, A., Tan, C. S. H., Hutchins, A. P., Weinmeier, T., Rattei, T., Chu, J. S. C., Gimenez, G., Irimia, M., Rigden, D. J., Fitzpatrick, D. A., Lorenzo-Morales, J., Bateman, A., Chiu, C. H., Tang, P., Hegemann, P., Fromm, H., Raoult, D., Greub, G., Miranda-Saavedra, D., Chen, N., Nash, P., Ginger, M. L., Horn, M., Schaap, P., Caler, L., & Loftus,B. J. (2013). Genome of Acanthamoeba castellanii highlights extensive lateral gene transfer and early evolution of tyrosine kinase signaling. Genome Biology, 14(2), 1-14.

Clerici, M., Paciotti, V., Baldo, V., Romano, M., Lucchini, G., & Longhese, M. P. (2001). Hyperactivation of the yeast DNA damage checkpoint by TEL1 and DDC2 overexpression. EMBO Journal, 20(22), 6485–6498.

Cormack, B. P., Chori, N., & Falkow, S. (1999). An adhesin of the yeast pathogen Candida glabratamediating adherence to human epithelial cells. Science, 285(5427), 578-582.

Cueller-Cruz, M., Briones-Martin-del-Campo, M., Canas-Villamar, I., Montalvo-Arredondo, J., Riego-Ruiz, L., Castano, I., & De Las Penas, A. (2008). High Resistance to oxidative stress in the fungal pathogen Candida glabratais mediated by a single catalase, Cta1p, and is controlled by the transcription factors Yap1p, Skn7p, Msn2p, and Msn4p. Eukaryotic Cell, 7(5), 814-825.

Dastidar, R. G., Hooda, J., Shah, A., Cao, T. M., Henke, R.M., & Zhang, L. (2012). The nuclear localization of SWI/SNF proteins is subjected to oxygen regulation. Cell Bioscience, 2(1), 1-13.

De Las Peñas, A., Pan, S. J., Castaño, I., Alder, J., Cregg, R., & Cormack, B. P. (2003). Virulence-related surface glycoproteins in the yeast pathogen Candida glabrataare encoded in subtelomeric clusters and subject to RAP1-and SIR-dependent transcriptional silencing. Genes andDevelopment, 17(18), 2245-2258.

De Risi, J., Van Den Hazel, B., Marc, P., Balzi, E., Brown, P., Jacq, C., & Goffeau, A. (2000). Genome microarray analysis of transcriptional activation in multidrug resistance yeast mutants. FEBS Letters, 470(2), 156–160.

De-Castro, P. A., Chiaratto, J., Winkelstroter, L. K., Pedro Bom, V. L., Ramalho, L. N. Z., Goldman, M. H. S., Brown, N. A., & Goldman, G. H. (2014). The involvement of the Mid1/Cch1/Yvc1 calcium channels in Aspergillus fumigatus virulence. Plos One, 9(8), 1-12.

Deckert, J., Torres, A. M. R., Simon, J. T., & Zitomer, R. S. (1995). Mutational analysis of Rox1, a DNA-bending repressor of hypoxic genes in Saccharomyces cerevisiae. Molecular and Cellular Biology, 15(11), 6109-6117.

Del Aguila, E. M., Silva, J. T., & Paschoalin, V. M. F.(2003). Expression of the yeast calcineurin subunits CNA1 and CNA2 during growth and hyper-osmotic stress. FEMS Microbiology Letters, 221(2), 197–202.

Delahodde, A., Pandjaitan, R., Corral-Debrinski, M., & Jacq, C. (2001). Pse1/Kap121-dependent nuclear localization of the major yeast multidrug resistance (MDR) transcription factor Pdr1. Molecular Microbiology, 39(2), 304–313.

Ding, X., Yu, Q., Xu, N., Wang, Y., Cheng, X., Qian, K., Zhao, Q., Zhang, B., Xing, L., & Li, M. (2013). Ecm7, a regulator of HACS, functions in calcium homeostasis maintenance, oxidative stress response and hyphal development in Candida albicans. Fungal Genetics and Biology, 57, 23-32.

Dupont, S., Lemetais, G., Ferreira, T., Cayot, P., Gervais, P., & Beney, L. (2012). Ergosterol biosynthesis: a fungal Pathway for life on land. Evolution, 66(9), 2961-2968.

Gachotte, D., Pierson, C. A., Lees, N. D., Barbuch, R., Koegel, C., & Bard, M. (1997). A yeast sterol auxotroph (erg25) is rescued by addition of azole antifungals and reduced levels of heme. Proceedings of the National Academy of Sciences U S A, 94(21), 11173–11178.

Geber, A., Hitchcock, C. A., Swartz, J. E., Pullen, F. S., Marsden, K. E., Kwon-Chung, K. J., & Bennett, J. E. (1995). Deletion of the Candida glabrata ERG3 and ERG11 genes: effect on cell viability, cell growth, sterol composition, and antifungal susceptibility. Antimicrobial Agents and Chemotherapy, 39(12), 2708-2717.

Gil-Bona, A., Reales-Calderon, J. A., Parra-Giraldo, C. M., Martinez-Lopez, R., Monteoliva, R., & Gil, C.(2016). The cell wall protein Ecm33 of Candida albicansis involved in chronological life span, morphogenesis, cell wall regeneration, stress tolerance and host–cell interaction. Frontiers in Microbiology, 7, 1-14.

Giri, S., & Kindo, A. J. (2012). A review of Candida species causing blood stream infection. Indian Journal of Medical Microbiology, 30(3), 270-278.

Gleason, J. E., Corrigan, D. J., Cox, J. E., Reddi, A. R., McGinnis, L. A., & Culotta, V. C. (2011). Analysis of Hypoxia and Hypoxia-Like States through Metabolite Profiling. Plos One, 6(9), 1-13.

Golin, J., Ambudkar, S. V., & May, L. (2007). The yeast Pdr5p multidrug transporter: how does it recognize so many substrates? Biochemical and Biophysical Research Communication, 356(1), 1-5.

Gozalbo, D., Roig, P., Villamon, E., & Gil, M. L. (2004). Candida and Candidiasis: The cell wall as a potential molecular target for antifungal therapy. Current Drug Targets-Infectious Disorders, 4(2), 117-135.

Grahl, N., & Cramer Jr, R. A. (2010). Regulation of hypoxia adaptation: an overlooked virulence attribute of pathogenic fungi. Medical Mycology, 48(1), 1-15.

Guinea, J. (2014). Global trends in the distribution of Candidaspecies causing candidemia. Clinical Microbiology and Infections, 20(s6), 5-10.

Gupta, P., Chanda, R., Rai, N., Kataria, V. K.,& Kumar, N. (2016). Antihypertensive, amlodipine besilate inhibits growth an biofilm of human fungal pathogen Candida. Assay and Drug Development Technologies, 14 (5), 291-297.

Harren, K., & Tudzynski, B. (2013). Cch1 and Mid1 are functionally required for vegetative growth under low-calcium conditions in the phytopathogenic ascomycetes Botrytis cinerea. Eukaryotic Cell, 12(5), 712-724.

Hill, K., Boone, C., Goebl, M., Puccia, R., Sdicu, A., & Bussey, H. (1992).Yeast KRE2defines a new gene family encoding probable secretory proteins, and is required for the correct N-glycosylation of proteins. Genetics, 130(2), 273-283.

Hong, M. P., Vu, K., Bautos, J., & Gelli, A. (2010). Cch1 restores intracellular Ca2+ in fungal cells during endoplasmic reticulum stress. Journal of Biological Chemistry, 285(14), 10951-10958.

Iida, H., Nakamura, H., Ono, T., Okumura, M. S., & Anraku, Y. (1994). MID1, a novel Saccharomyces cerevisiaegene encoding a plasma membrane protein, is required for Ca2+ influx and mating. Molecular and Cell Biology, 14(12), 8259-8271.

Johnson, M. K. (1998). Iron-sulfur proteins: new roles for old clusters. Current Opinion in Chemical Biology, 2(2), 173-181.Johnston, M. (1987). A model fungal gene regulatory mechanism: the GAL genes of Saccharomyces cerevisiae. Microbiology Review, 51(4), 458–476.

Kadosh, D., & Johnson, A. D. (2001). Rfg1, a protein related to the Saccharomyces cerevisiaehypoxic regulator Rox1, controls filamentous growth and virulence in Candida albicans. Molecular and Cell Biology, 21(7), 2496-2505.

Kalb, V. F., Woods, C. W., Dey, C. R., Sutter, T. R., Turi, T. G., & Loper, J. C. (1987). Primary structure of the P450 lanosterol demethylase gene from Saccharomyces cerevisiae. DNA, 6(6), 529–537.

Kaur, R., Castano, I., & Cormack, B. P. (2004). Functional Genomic analysis of fluconazole susceptibility in the pathogenic yeast Candida glabrata: roles of calcium signaling and mitochondria. Antimicrobial Agents and Chemotherapy, 48(5), 1600–1613.

Kaur, R., Goyal, R., Dhakad, M. S., Bhalla, P., & Kumar, R. (2014). Epidemiology and virulence determinants including biofilm profile of candida infections in an ICU in a tertiary hospital in India. Journal of Mycology, 2014, 1-8.

Kenna, S., Bligh, H. F.J., Watson, P. F., & Kelly, S. L. (1989). Genetic and physiological analysis of azole sensitivity in Saccharomyces cerevisiae. Journal of Medical and Veterinay Mycology, 27(6), 397–406.

Keogh, M. C., Kim, J. A., Downey, M., Fillingham, J., Chowdhury, D., Harrison, J. C., Onishi, M., Datta, N., Galicia, S., Emili, A., Lieberman, J., Shen, X., Buratowski, S., Haber, J. E., Durocher, D., Greenblatt, J. F., & Krogan N. J. (2006). A phosphatase complex that dephosphorylates hamma H2AX regulates DNA damage checkpoint recovery. Nature, 439(7075), 497-501.

Khalaf, R. A., & Zitomer, R. S. (2001). The DNA binding protein Rfg1 is a repressor of filamentation in Candida albicans. Genetics, 157(4), 1503-1512.

Kispal, G., Csere, P., Guiard, B., & Lill, R. (1997). The ABC transporter Atm1p is required for mitochondrial iron homeostasis. FEBS Letter, 418(3), 346-350.

Kispal, G., Csere, P., Prohl, C., & Lill, R. (1999). The mitochondrial proteins Atm1p and Nfs1p are essential for biogenesis of cytosolic Fe/S proteins. The EMBO Journal, 18(14), 3981-3989.

Kolodner, R. D., Putnam, C. D., & Myung, K. (2002). Maintenance of genome stability in Saccharomyces cerevisiae. Science, 297(5581), 552-557.

Kraus, P. R., Nicholas, C. B., & Heitman, J. (2005). Calcium and calcineurin-independent roles for calmodulin in Cryptococcus neoformans morphogenesis and high-temperature growth. Eukaryotic Cell, 4(6), 1079-1087.

Landl, K. M., Klosch, B., & Turnowsky, F. (1996). ERG1, encoding squalene epoxidase, is located on the right arm of chromosomeVII of Saccharomyces cerevisiae. Yeast, 12(6), 609-613.

Leber, R., Landl, K., Zinser, E., Ahorn, H., Spok, A., Kohlwein, S. D., Turnowsky, F., & Daum, G. (1998). Dual localization of squalene epoxidase, Erg1p, in yeast reflects a relationship between the endoplasmic reticulum and lipid particles. Molecular Biology of Cell, 9(2), 375-86.

Lee, J.H., Xu, B., Lee, C.H., Ahn, J.Y., Song, M.S., Lee, H., Canman, C.E., Lee, J.S., Kastan, M.B., & Lim, D.S. (2003). Distinct functions of nijmegen breakage syndrome in ataxia telangiectasia mutated-dependent responses to DNA damage. Molecular Cancer Research, 1(9), 674-681.

Leighton, J., & Schatz, G. (1995). An ABC transporter in the mitochondrial inner membrane is required for the normal growth of yeast. EMBO Journal, 14(1), 188-195.

Lenardon, M. D., Munro, C. A., & Gow, N. A. R. (2010). Chitin synthesis and fungal pathogenesis. Current Opinion in Microbiology, 13(4), 416–423.Lesage, G., & Bussey,H. (2006). Cell wall assembly in Saccharomyces cerevisiae. Molecular Biology Review, 70(2), 317-343.

Liang, Y., Zhang, B., Zheng, W., Xing, L., & Li, M. (2011). Alkaline stress triggers an immediate calcium fluctuation in Candidaalbicans mediated by Rim101p and Crz1p transcription factors. FEMS Yeast Research, 11(5), 430-439.

Lindsay, M. A. (2003). A review on target discovery. Nature Reviews Drug Discovery, 2(10), 831-838.

Lipke, P. N., & Ovalle, R. (1998). Cell wall architecture in yeast: new structure and new challenges. Journal of Bacteriology, 180(15), 3735–3740.

Liu, S., Hou, Y., Liu, W., Lu, C., Wang, W., & Sun, S. (2015). Components of the calcium-calcineurin signaling pathway in fungal cells and their potential as antifungal targets. Eukaryotic Cell, 14(4), 324-334.

Liu, S., Yue, L., Gu, W. Li, X., Zhang, L., &Sun, S. (2016). Synergistic effect of fluconazole and calcium channel blockers against resistantCandida albicans. Plos One, 11(3), 1-12.

Lowman, D. W., West, L. J., Bearden, D. W., Wempe, M. F., Power, T. D., Ensley, H. E., Haynes, K., Williams, D. L., & Kruppa, M. D. (2011). New insights into the structure of (1R3, 1R6)-β-D-glucan side chains in the Candida glabratacell wall. Plos One, 6(11), 1-10.

Lowry, C. V., & Zitomer, R. S. (1984). Oxygen regulation of anaerobic and aerobic genes mediated by a common factor in yeast. Proceedings in National Academy of Science USA, 81(19), 6129–6133.

Luan, Y., Matsuura, I., Yazawa, M., Nakamura, T., & Yagi, K. (1987). Yeast calmodulin: structural and functional differences compared with vertebrate calmodulin. Journalof Biochemistry, 102(6), 1531-1537.

Lussier, M., Sdicu, A., Winnett, E., Vo, D. H., Sheraton, J., Dusterhoft, A., Storms, R. K., & Bussey, H. (1997). Completion of the Saccharomyces cerevisiaegenome sequence allows identification of KTR5, KTR6 and KTR7 and definition of the nine-membered KRE2/MNT1mannosyltransferase gene family in this organism. Yeast, 13(3), 267-274.

Lustig, A. J., & Petes, T. D. (1986). Identification of yeast mutants with altered telomere structure. Proceedings in National Acadamy of Science USA, 83(5), 1398–1402.

MacPherson, S., Larochelle, M., & Turcotte, B. (2006). A fungal family of transcriptional regulators: the zinc cluster proteins. Microbiology and Molecular Biology Review, 70(3), 583–604.

Mamnun, Y.M., Pandjaitan, R., Mahe, Y., Delahodde, A., & Kuchler, K. (2002). The yeast zinc finger regulators Pdr1p and Pdr3p control pleiotropic drug resistance (PDR) as homo-and heterodimers in vivo. Molecular Microbiology, 46(5), 1429–1440.

Marie, C., Leyde, S., & White, T. C. (2008). Cytoplasmic localization of sterol transcription factors Upc2p and Ecm22p in S. cerevisiae. Fungal Genetics and Biology, 45(10), 1430-1438.

Martin, D. C., Kim, H., Mackin, N. A., Maldonado-Baez, L., Evangelista, Jr. C. C., Beaudry, V. G., Dudgeon, D. D., Naiman, D. Q., Erdman, S. E., & Cunningham, K. W. (2011). New regulators of a high affinity Ca2+ influx system revealed through a genome-wide screen in yeast. Journal of Biological Chemistry, 286(12), 10744-10754.

Mulu, A., Kassu, A., Anagaw, B., Moges, B., Gelaw, A., Alemayehu, M., Belyhun, Y., Biadglegne, F., Hurissa, Z., Moges, F., & Isogai, E. (2013). Frequent detection of ‘azole’ resistant Candida species among late presenting AIDS patients in northwest Ethiopia. BMC Infectious Disease, 13(1), 1-10.

Nagi,M., Nakayama, H., Tanabe, K., Bard, M., Aoyama, T., Okano, M., Higashi, S., Ueno, K., Chibana, H., Niimi, M., Yamagoe, S., Umeyama, T., Kajiwara, S., Ohno, H., & Miyazaki, Y. (2011). Transcription factors CgUPC2A and CgUPC2B regulate ergosterol biosynthetic genes in Candida glabrata. Genes Cells, 16(1), 80-89.

Nakayama, H., Nakayama, N., Arisawa, M., & Aoki, Y. (2001). In vitro and in vivo effects of 14alpha-demethylase (ERG11) depletion in Candida glabrata. Antimicrobial Agents and Chemotherapy, 45(11), 3037-3045.

Nobile, C. J., & Johnson, A. D. (2015). Candida albicansbiofilms and human disease. Annual Review in Microbiology, 69, 71-92.

O'Neill, B. M., Szyjka, S. J., Lis, E. T., Bailey, A. O., Yates, J. R., Aparicio, O. M., & Romesberg, F. E. (2007). Pph3-Psy2 is a phosphates complex required for Rad53 dephosphorylation and replication fork restart during recovery from DNA damage. Proceedings in National Academy Science USA, 104(22), 9290-9295.

Osborn, A. J., & Elledge, S. J. (2003). Mrc1 is a replicationfork component whose phosphorylation in response to DNA replication stress activates Rad53. Genes Development, 17(14), 1755-1767.

Pardo, M., Monteoliva, L., Vazquez, P., Martınez, R., Molero, G., Nombela, C., & Gil, C. (2004). PST1and ECM33encode two yeast cell surface GPI proteins important for cell wall integrity. Microbiology, 150(12), 4157–4170.

Parks, L. W., & Casey, W. M. (1995). Physiological implications of sterol biosynthesis in yeast. Annual Review in Microbiology, 49(1), 95–116.

Paul, S., & Moye-Rowley, W. S. (2014). Multidrug resistance in fungi regulation of transporter encoding gene expression. Frontiers in Physiology,5, 1-14.Paul, S., Schmidt, J. A., & Moye-Rowley, W. S. (2011). Regulation of the CgPdr1 transcription factor from the pathogen Candida glabrata. Eukaryotic Cell, 10(2), 187–197.

Paulsen, R. D., & Cimprich, K. A. (2007). The ATR pathway: fine-tuning the fork. DNA Repair, 6(7), 953-966.

Pfaller, M. A., & Diekema, D. J. (2010). Epidemeology of invasive mycoses in North America. Critical Review in Microbiology, 36(1), 1-53.

Pierce, C. G., & Lopez-Ribot, J. L. (2013). Candidiasis drug discovery and development: new approaches targeting virulence for discovering and identifying new drugs. Expert Opinion in Drug Discovery, 8(9), 1117-1126.

Prasad, R., & Goffeau, A. (2012). Yeast ATP-binding cassette transporters conferring multidrug resistance. Annual Review in Microbiology, 66, 39–63.

Prasad, R., Banerjee, A., Khandelwal, N. K., & Dhamgaye, S. (2015). The ABCs of Candida albicansmultidrug transporter Cdr1. Eukaryotic Cell, 14(12), 1154-1164.

Putnam, C. D., Hayes, T. K., & Kolodner, R. D. (2010). Post-replication repair suppresses duplication-mediated genome instability. PLoS Genetics, 6(5), 1-11.Putnam, C. D., Jaehnig, E. J., & Kolodner, R. D. (2009). Perspectives on the DNA damage and replication checkpoint responses in Saccharomyces cerevisiae. DNA Repair, 8(9), 974–982.

Raleigh, J. M., & O'Connell, M. J. (2000). The G (2) DNA damage checkpoint targets both Wee1 and Cdc25. Journal of Cell Science, 113(10), 1727-1736.

Ritchie, K. B., Mallory, J. C., & Petes, T. D. (1999). Interactions of TLC1(which encodes the RNA sub-unit of telomeres), TEL1and MEC1in regulating telomere length in the yeast Saccharomyces cerevisiae. Molecular and Cell Biology, 19(9), 6065-6075.

Roemer, T., & Bussey, H. (1995). Yeast Kre1p is a cell surface O-glycoprotein. Molecular and General Genetics, 249(2), 209-216.

Roemer, T., Jiang, B., Davison, J., Ketela, T., Veillette, K., Breton, A., Tandia, F., Linteau, A., Sillaots, S., Marta, C., Martel, N., Veronneau, S., Lemieux, S., Kauffman, S., Becker, J., Storms, R., Boone, C., & Bussey, H. (2003). Large-scale essential gene identification in Candida albicansand applications to antifungal drug discovery. Molecular Microbiology, 50(1), 167-181.

Ruiz-Herrea, J. (1992). Fungal cell wall: structure, synthesis and assembly. CRC press: Boca Raton, 1992, 59-85.

Sanchez, Y., Bachant, J., Wang, H., Hu, F., Liu, D., Tetzlaff, M., & Elledge, S. J. (1999). Control of the DNA damage checkpoint by chk1 and rad53 protein kinases through distinct mechanisms. Science, 286(5442), 1166-1171. Sangamwar, A. T., Deshpande, U. D., & Pekamwar, S. S. (2008). Antifungals: need to search for a new molecular target. Indian Journal of Pharmaceutical Science, 70(4), 423-430.

Sanglard, D., Ischer, F., Calabrese, D., Majcherczyk, P. A., & Bille, J. (1999). The ATP binding cassette transporter gene CgCDR1 from Candida glabratais involved in the ressitance of clinical isolates to azole antifungal agents. Antimicrobial Agents and Chemotherapy, 43(11), 2753-2765.

Sanjuán, R., Stock, R., De Mora, J. F., & Sentandreu, R. (1995). Identification of glucan-mannoprotein complexes in the cell wall ofCandida albicansusing a monoclonal antibody that reacts with a (1, 6)-P-glucan epitope. Microbiology, 141(7), 1545-1551.

Sanvisens, N., De.Llanos, R., & Puig, S. (2013). Function and regulation of yeast ribonucleotide reductase: cell cycle, genotoxic stress, and iron bioavailability. Biomedical Journal, 36(2), 51-58.

Saunders, G. W., & Rank, G. H. (1982). Allelism of pleiotropic drug resistance in S. cerevisiae. Canadian Journal of Genetics and Cytology, 24(5), 493–503.

Schjerling, P., & Holmberg, S. (1996). Comparative amino acid sequence analysis of the C6 zinc cluster family of transcriptional regulators. Nucleic Acids Research, 24(23), 4599–4607.

Spitzer, M., Griffiths, E., Blakley, K. M., Wildenhain, J., Ejim, L., Rossi, L., De Pascele, G., Curak, J.,Brown, E., Tyers, M., & Wright, G. D. (2011). Cross-species discovery of syncretic drug combination that potentiate the antifungal fluconazole. Molecular and Systematic Biology, 7(1), 499-513.

Sturgeon, C. M., Kemmer, D., Anderson, H. J., & Roberge, M. (2006). A review on yeast as a tool to uncover the cellular targets of drugs. Biotechnology Journal, 2006 1(3), 289–298.

Stylianou, M., Kulessliy, E., Lopes, J. P., Granlund, M., Wennerberg, K., & Urban, C. F. (2014). Antifungal application of nonantifungal drugs. Antimicrobial Agents and Chemotherapy, 58(2), 1055-1062.

Synnott, J. M., Guida, A., Mulhern-Haughey, S., Higgins, D. G., & Butler, G. (2010). Regulation of the hypoxic response in Candida albicans. Eukaryotic Cell, 9(11), 1734–1746.

Szyjka, S. J., Aparicio, J. G., Viggiani, C. J., Knott, S., Xu, W., Tavare, S., & Aparicio, O. M. (2008). RAd53 reglates replication fork restart after DNA damage in Saccharomyces cerevisiae. Genes Development, 22(14), 1906-1920.

Tada,T., Ohmori, M., & Iida, H. (2003). Molecular dissection of the hydrophobic segments H3 and H4 of the yeast Ca2+ channel component Mid1. Journal of Biological Chemistry, 278(11), 9647-9654.

Tak, V., Mathur, P., Varghese, P., Gunjiyal, J., Xess, I., & Misra, M. C. (2014). The epidemiological profile of Candidemia at an Indian trauma care center. Journal of Labouratory Physicians, 6(2), 96-101.

Taylor, F. R., Rodriguez, R. J., & Parks, L. W. (1983). Requirement for a second sterol biosynthetic mutation for viability of a sterol C-14 demethylationdefect in Saccharomyces cerevisiae. Journal of Bacteriology, 155(1), 64–68.

Teng, J. F., Goto, R., Iida, K., Kojima, I., & Iida, H. (2008). Ion-channel blocker sensitivity of voltage-gated calcium-channel homologue Cch1 in Saccharomyces cerevisiae. Microbiology, 154(12), 3775-3781.

Teng, J., Iida, K., Imai, A., Nakano, M., Tada, T., & Iida, H. (2013). Hyperactive and hypoactive mutations in Cch1, a yeast homologue of the voltage-gated calcium-channel pore-forming subunit. Microbiology, 159(5), 970-979.

Terashima, H., Hamada, K., & Kitada, K. (2003). The localization change of Ybr078w/Ecm33, a yeast GPI-associated protein, from the plasma membrane to the cell wall, affecting the cellular function. FEMS Microbiology Letters, 218(1), 175-180.

Thompson, D. S., Carlisle, P. L., & Kadosh, D. (2011). Coevolution of morphology and virulence in CandidaSpecies. Eukaryotic Cell, 10(9), 1173–1182.

Ton, V. K., & Rao, R. (2004). Functional expression of heterologous proteins in yeast: insights into Ca2+ signaling and Ca2+ -transporting ATPases. American Journal of Physiology and Cell Physiology, 287(3), C580-C589.

Tsai, H. F., Bard, M., Izumikawa, K., Krol, A. A., Sturm, A. M., Culbertson, N. T., Pierson, C. A., & Bennett, J. E. (2004). Candida glabrataerg1 mutant with increased sensitivity to azoles and to low oxygen tension. Antimicrobial Agents and Chemotherapy, 48(7), 2483-2489.

Tzamarias, D., & Struhl, K. (1995). Distinct TPR motifs of Cyc8 are involved in recruiting the Cyc8-Tup1 corepressor complex to differentially regulated promoters. Genes andDevelopment, 9(7), 821–831.

Wang, S., Cao, J., Liu, X., Hu, H., Shi, J., Zhang, S., Keller, N. P., & Lu, L. (2012). Putative calcium channels CchA and MidA play the important roles in conidiation, hyphal polarity and cell wall componentsin Aspergillus nidulans. Plos One, 7(10), 1-13.

Watson, P. F., Rose, M. E., & Kelly, S. L. (1988). Isolation and analysis of ketoconazole mutants of Saccharomyces cerevisiae. Journal of Medical and Veterinary Mycology, 26(3), 153–162.

Weig, M., Haynes, K., Rogers, T. R., Kurzai, O., Frosch, M., & Mühlschlegel, F. A. (2001). A GAS-like gene family in the pathogenic fungus Candida glabrata. Microbiology, 147(8), 2007-2019.

Weig, M., Jansch, L., Grob, U., De Koster, C. G., Klis, F. M., & De Groot, P. W. J. (2004). Systematic identification in silico of covalently bound cell wall proteins and analysis of protein-polysaccharide linkages of the human pathogen Candida glabrata. Microbiology, 150(10), 3129-3144.

Yapar, N. (2014). Epidemiology and risk factors for invasive candidiasis. Therapeutic and Clinical Risk Management, 10, 95–105.

Yu, Q., Ding, X., Xu, N., Cheng, X., Qian. K., Zhang, B., Xing, L., & Li, M. (2013). In vitro activity if verapamil alone and in combination with fluconazole or tunicamycin against Candida albicansbiofilms. International Journal of Antimicrobial Agents, 41(2), 179-182.

Zhou, B. B., & Elledge, S. J. (2000). The DNA damage response: putting check points in perspective. Nature, 408(6811), 433-439.

Zou, L., & Elledge, S. J. (2003). Sensing DNA damage through ATRIP recognition of RPA-ss DNA complexes. Science, 300(5625), 1542-1548.

Published
2017-09-22
Section
Articles