Polymer Composites in Present Scenario

  • Sarita Chandra Department of Physics, Graphic Era Deemed to be University, Dehradun, Uttarakhand, India
  • Divya Uniyal Department of Physics, Graphic Era Deemed to be University, Dehradun, Uttarakhand, India
  • Fateh Singh Gill Department of Physics, Graphic Era Deemed to be University, Dehradun, Uttarakhand, India
Keywords: Composites, Nanocomposites, Fabrication

Abstract

Present scenario of growing development demands more sophisticated and engineered materials to facilitate the lifestyle and to meet the challenges in the establishment of colonies in space. The advancements in composite technology meet the growing demands. Composites are the engineered material for future. There are many scopes in composites with various emerging nanotechnology and smart materials. This paper is a brief review of the composite's concept and their types. The differentiation between the electronically conducting polymers and conducting polymer composites are also discussed along with their contemporary applications.

Downloads

Download data is not yet available.

References

Agarwal, U. S., Nisal, A., & Joseph, R. (2007). PET-SWNT nanocomposites through ultrasound assisted dissolution-evaporation.European Polymer Journal,43(6), 2279-2285.

Andrews, R., Jacques, D., Qian, D., & Rantell, T. (2002). Multiwall carbon nanotubes: synthesis and application. Accounts of Chemical Research, 35(12), 1008-1017.

Ansari, R. (2006). Polypyrrole conducting electroactive polymers: synthesis and stability studies.Journal of Chemistry, 3(4), 186-201.

Antunes, R. A., De Oliveira, M. C., Ett, G., & Ett, V. (2011). Carbon materials in composite bipolar plates for polymer electrolyte membrane fuel cells: A review of the main challenges to improve electrical performance. Journal of Power Sources, 196(6), 2945-2961.

Averitt, R. D., Padilla, W. J., Chen, H. T., O'Hara, J. F., Taylor, A. J., Highstrete, C., . & Gossard, A. C. (2007, September). Terahertz metamaterial devices. In Terahertz Physics, Devices, and Systems II (Vol. 6772, p. 677209). International Society for Optics and Photonics.

Baillie, C. (Ed.). (2005). Green composites: polymer composites and the environment. CRC Press.

Beall, G. W., & Powell, C. E. (2011).Fundamentals of polymer-clay nanocomposites. Cambridge University Press.

Bertsch, A., Lorenz, H., & Renaud, P. (1998, January). Combining microstereolithography and thick resist UV lithography for 3D microfabrication. In Micro Electro Mechanical Systems, 1998. MEMS 98. Proceedings., The Eleventh Annual International Workshop on(pp. 18-23). IEEE.

Bhatnagar, N. B. A. I. I. O. T., Ramakrishnan, N., Naik, N. K., & Komanduri, R. B. A. O. S. U. (1995). On the machining of fiber reinforced plastic (FRP) composite laminates. International Journal of Machine Tools and Manufacture, 35(5), 701-716.

Bregar, V. B. (2004). Advantages of ferromagnetic nanoparticle composites in microwave absorbers.IEEE Transactions on Magnetics, 40(3), 1679-1684.

Carotenuto, G., Her, Y. S., & Matijević, E. (1996). Preparation and characterization of nanocomposite thin films for optical devices. Industrial & Engineering Chemistry Research, 35(9), 2929-2932.

Cho, J. W., & Paul, D. R. (2001). Nylon 6 nanocomposites by melt compounding. Polymer, 42(3), 1083-1094.

Chujo, Y., & Saegusa, T. (1992). Organic polymer hybrids with silica gel formed by means of the sol-gel method. In Macromolecules: Synthesis, Order and Advanced Properties(pp. 11-29). Springer, Berlin, Heidelberg.Chujo, Y., & Tamaki, R. (2001). New preparation methods for organic–inorganic polymer hybrids. MRS Bulletin, 26(5), 389-392.

Dang, Z. M., Lin, Y. H., & Nan, C. W. (2003). Novel ferroelectric polymer composites with high dielectric constants. Advanced Materials, 15(19), 1625-1629.

Dang, Z. M., Yuan, J. K., Zha, J. W., Zhou, T., Li, S. T., & Hu, G. H. (2012). Fundamentals, processes and applications of high-permittivity polymer–matrix composites. Progress in Materials Science, 57(4), 660-723.

Deraguin, B. V., & Landau, L. (1941). Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solution of electrolytes. Acta Physicochim: USSR, 14, 633-662.

Ellyard, D. (2000). Putting it together–the science and technology of composite materials. Australian Academy of Science, Cooperative Research Centre for Advanced Composite Structures Ltd.Endo, M., Koyama, T., & Hishiyama, Y. (1976). Structural improvement of carbon fibers prepared from benzene. Japanese Journal of Applied Physics, 15(11), 2073.6.

Freund, M. S., & Deore, B. A. (2007). Self-doped conducting polymers. John Wiley & Sons.Fudala, Á., Pálinkó, I., & Kiricsi, I. (1999). Preparation and characterization of hybrid organic− inorganic composite materials using the amphoteric property of amino acids: amino acid intercalated layered double hydroxide and montmorillonite. Inorganic Chemistry, 38(21), 4653-4658.

Fukuda, T., Fujiwara, T., Fujita, H., & Goda, H. (2005). Properties of Organic Nano Hybrid Composites-Site Selective Molecular Hibrid Method. Seikei-Kakou, 17(2), 109-114.

Gibson, R. F. (2011). Principles of composite material mechanics. CRC press.Goda, H., & Frank, C. W. (2001). Fluorescence studies of the hybrid composite of segmented-polyurethane and silica. Chemistry of Materials, 13(9), 2783-2787.

Gul, V. E. (Ed.). (1996). Structure and properties of conducting polymer composites(Vol. 8). VSP.Guo, Z., Park, S., Hahn, H. T., Wei, S., Moldovan, M., Karki, A. B., & Young, D. P. (2007). Magnetic and electromagnetic evaluation ofthe magnetic nanoparticle filled polyurethane nanocomposites.Journal of Applied Physics, 101(9), 09M511.

Guo, Z., Wei, S., Shedd, B., Scaffaro, R., Pereira, T., & Hahn, H. T. (2007). Particle surface engineering effect on the mechanical, optical and photoluminescent properties of ZnO/vinyl-ester resin nanocomposites. Journal of Materials Chemistry, 17(8), 806-813.

Hashimoto, M., Takadama, H., Mizuno, M., & Kokubo, T. (2006). Enhancement of mechanical strength of TiO2/high-density polyethylene composites for bone repair with silane-coupling treatment. Materials Research Bulletin, 41(3), 515-524.

Hollaway, L. C.(Ed.). (1994). Handbook of polymer composites for engineers. Elsevier.Homan, W. J., & Jorissen, A. J. (2004). Wood modification developments. Heron, 49(4), 360-369.

Hon, D. S. (2017). Chemical modification of lignocellulosic materials. Routledge.Huang, J. C. (2002). Carbon black filled conducting polymers and polymer blends. Advances in Polymer Technology: Journal of the Polymer Processing Institute, 21(4), 299-313.

Inzelt, G. (2008). Historical Background (Or: There Is Nothing New Under the Sun).Conducting Polymers: A New Era in Electrochemistry, 265-269.

Jakopin, S. (1979). Compounding of additives. In Proceedings of 37th Annual SPE Technical Conference (ANTEC 1979 Conference)(pp. 987-991).

Jankong, S., & Srikulkit, K. (2008). Preparation of polypropylene/hydrophobic silica nanocomposites. Journal of Metals, Materials and Minerials, 18(2), 143-146.

Kalaitzidou, K., Fukushima, H., & Drzal, L. T. (2007). A new compounding method for exfoliated graphite–polypropylene nanocomposites with enhanced flexural properties and lower percolation threshold. Composites Science and Technology, 67(10), 2045-2051.

Katepalli, H., Bikshapathi, M., Sharma, C. S., Verma, N., & Sharma, A. (2011). Synthesis of hierarchical fabrics by electrospinning of PAN nanofibers on activated carbon microfibers for environmental remediation applications. Chemical Engineering Journal, 171(3), 1194-1200.

Kumar, S. (2007). Chemical modification of wood. Wood and Fiber Science, 26(2), 270-280.

Lechtman, H. N., & Hobbs, L. W. (1987). Roman concrete and the Roman architectural revolution. Ceramics and Civilization, 3, 81-128.

Li, Y. Q., Fu, S. Y., Yang, Y., & Mai, Y. W. (2008). Facile synthesis of highly transparent polymer nanocomposites by introduction of core–shell structured nanoparticles. Chemistry of Materials, 20(8), 2637-2643.

Lin, J. J., Cheng, I. J., Wang, R., & Lee, R. J. (2001). Tailoring basal spacings of montmorillonite by poly (oxyalkylene) diamine intercalation. Macromolecules, 34(26), 8832-8834.

Liu, L., Das, A., & Megaridis, C. M. (2014). Terahertz shielding of carbon nanomaterials and their composites–a review and applications. Carbon, 69, 1-16.Liu, Y., Chu, Y., & Yang, L. (2006). Adjusting the inner-structure of polypyrrole nanoparticles through microemulsion polymerization. Materials Chemistry and Physics, 98(2-3), 304-308.

Lopresto, V., Leone, C., & De Iorio, I. (2011). Mechanical characterisation of basalt fibre reinforced plastic. Composites Part B: Engineering, 42(4), 717-723.

Ma, P. C., Siddiqui, N. A., Marom, G., & Kim, J. K. (2010). Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Composites Part A: Applied Science and Manufacturing, 41(10), 1345-1367.

Manas-Zloczower, I., Nir, A., & Tadmor, Z. (1982). Dispersive mixing in internal mixers—a theoretical model based on agglomerate rupture. Rubber Chemistry and Technology, 55(5), 1250-1285.

Mayer, A. B. (1998). Formation of noble metal nanoparticles within a polymeric matrix: Nanoparticle features and overall morphologies. Materials Science and Engineering: C, 6(2-3), 155-166.

Nakao, Y. (1993). Preparation and characterisation of noble metal solid sols in poly (methyl methacrylate). Journal of the Chemical Society, Chemical Communications, (10), 826-828.

Novak, B. M. (1993). Hybrid nanocomposite materials—between inorganic glasses and organic polymers. Advanced Materials, 5(6), 422-433.

Ogata,N., Jimenez, G., Kawai, H., & Ogihara, T. (1997). Structure and thermal/mechanical properties of poly (l‐lactide)‐clay blend. Journal of Polymer Science Part B: Polymer Physics, 35(2), 389-396.

Palmgren, H. (1975). Processing conditions in the batch-operated internal mixer. Rubber Chemistry and Technology, 48(3), 462-494.

Petrovic, Z. S., Kricheldorf, H. R., Nuyken, O., & Swift, G. (2005). Handbook of Polymer Synthesis.

Marcel Dekker, Inc, New York. Pino, P., & Moretti, G. (1987). The impact of the discovery of the polymerization of the α-olefins on the development of the stereospecific polymerization of vinyl monomers. Polymer, 28(5), 683-692.

Preghenella, M., Pegoretti, A., & Migliaresi, C. (2005). Thermo-mechanical characterization of fumed silica-epoxy nanocomposites. Polymer, 46(26), 12065-12072.

Ratna, D., Manoj, N. R., Varley, R., Singh Raman, R. K., & Simon, G. P. (2003). Clay‐reinforced epoxy nanocomposites. Polymer International, 52(9), 1403-1407.

Ray, S. S., & Okamoto, M. (2003). Polymer/layered silicate nanocomposites: a review from preparation to processing. Progress in Polymer Science, 28(11), 1539-1641.

Reynaud, E., Jouen, T., Gauthier, C., Vigier, G., & Varlet, J. (2001). Nanofillers in polymeric matrix: a study on silica reinforced PA6. Polymer, 42(21), 8759-8768.

Shenoy, S. L., Kaya, I., Erkey, C., & Weiss, R. A. (2001). Synthesis of conductive elastomeric foams by an in situ polymerization of pyrrole using supercritical carbon dioxide and ethanol cosolvents. Synthetic Metals, 123(3), 509-514.

Shiga, S., & Furuta, M. (1985). Processability of EPR in an internal mixter (II)―Morphological changes of carbon black agglomerates during mixing. Rubber Chemistry and Technology, 58(1), 1-22.Shioyama, H. (1997). Polymerization of isoprene and styrene in the interlayer spacing of graphite. Carbon, 10(35), 1664-1665.

Shioyama, H., Tatsumi, K., Iwashita, N., Fujita, K., & Sawada, Y. (1998). On the interaction between the potassium—GIC and unsaturated hydrocarbons. Synthetic Metals, 96(3), 229-233.

Shirakawa, H., Louis, E. J., MacDiarmid, A. G., Chiang, C. K., & Heeger, A. J. (1977). Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene,(CH) x. Journal of the Chemical Society, Chemical Communications, (16), 578-580.

Sun, D., Miyatake, N., & Sue, H. J. (2007). Transparent PMMA/ZnO nanocomposite films based on colloidal ZnO quantum dots. Nanotechnology, 18(21), 215606.

Takadama, H., Hashimoto, M., Takigawa, Y., Mizuno, M., & Kokubo, T. (2004). Effect of melt flow rate of polyethylene on bioactivity and mechanical properties of polyethylene/titania composites. In Key Engineering Materials(Vol. 254, pp. 569-572). Trans Tech Publications.

Tanahashi, M. (2010). Development of fabrication methods of filler/polymer nanocomposites: With focus on simple melt-compounding-based approach without surface modification of nanofillers. Materials, 3(3), 1593-1619.

Tanahashi, M. (2010). Development of fabrication methods of filler/polymer nanocomposites: With focus on simple melt-compounding-based approach without surface modification of nanofillers. Materials, 3(3), 1593-1619.

Tanahashi, M., Hirose, M., Watanabe, Y., Lee, J. C., & Takeda, K. (2007). Silica/perfluoropolymer nanocomposites fabricated by direct melt-compounding: A novel method without surface modification on nano-silica. Journal of Nanoscience and Nanotechnology, 7(7), 2433-2442.

Tanahashi, M., Watanabe, Y., & Fujisawa, T. (2009). Fabrication and crystallization temperature of silica/polypropylene nanocomposites by simple method without any hydrophobic treatment of nano-silica surfaces. Journal of the Society of Materials Science, Japan, 58(5), 408-415.

Uppal, N., & Shiakolas, P. S. (2008). Modeling of temperature-dependent diffusion and polymerization kinetics and their effects on two-photon polymerization dynamics. Journal of Micro/Nanolithography, MEMS, and MOEMS, 7(4), 043002.

Usuki, A., Kawasumi, M., Kojima, Y., Okada, A., Kurauchi, T., & Kamigaito, O. (1993). Swelling behavior of montmorillonite cation exchanged for ω-amino acids by∊-caprolactam. Journal of Materials Research, 8(5), 1174-1178.

Vaia, R. A., & Giannelis, E. P. (1997). Lattice model of polymer melt intercalation in organically-modified layered silicates.Macromolecules, 30(25), 7990-7999.

Vaia, R. A., & Giannelis, E. P. (1997). Polymer melt intercalation in organically-modified layered silicates: model predictions and experiment. Macromolecules, 30(25), 8000-8009.

Vaia, R. A., Ishii, H., & Giannelis, E. P. (1993). Synthesis and properties of two-dimensional nanostructures by direct intercalation of polymer melts in layered silicates. Chemistry of Materials, 5(12), 1694-1696.

Vassilopoulos, A. P., Georgopoulos, E. F., & Keller, T. (2008). Comparison of genetic programming with conventional methods for fatigue life modeling of FRP composite materials.International Journal of Fatigue, 30(9), 1634-1645.

Villmow, T., Pegel, S., John, A., Rentenberger, R., & Pötschke, P. (2011). Liquid sensing: smart polymer/CNT composites. Materials Today, 14(7-8), 340-345.

Watanabe, Y., Tanahashi, M., & Takeda, K. (2006). Dispersion of silica particles with hydrophilic surfaces into polymer. Kobunshi Ronbunshu, 63(11), 737-744.

Yang, F., & Nelson, G. L. (2006). Polymer/silica nanocomposites prepared via extrusion. Polymers for Advanced Technologies, 17(4), 320-326.

Zhang, L., Aboagye, A., Kelkar, A., Lai, C., & Fong, H. (2014). A review: carbon nanofibers from electrospun polyacrylonitrile and their applications. Journal of Materials Science, 49(2), 463-480.

Zois, H., Apekis, L., & Mamunya, Y. P. (2003). Dielectric properties and morphology of polymer composites filled with dispersed iron. Journal of Applied Polymer Science, 88(13), 3013-3020.

Published
2018-09-20
Section
Articles