Technical Review on Electromagnetic Inverse Scattering

  • Babu Linkoon P. Meenaketan Department of Electronics and Communication, Birla Institute of Technology, Mesra, Ranchi, India
  • Srikanta Pal Department of Electronics and Communication, Birla Institute of Technology, Mesra, Ranchi, India
  • N. Chattoraj Department of Electronics and Communication, Birla Institute of Technology, Mesra, Ranchi, India
Keywords: Inverse Scattering, Microwave Imaging, Electromagnetic Forward Scattering, Terahertz Imaging, MovingTarget Imaging, Radar Imaging, Non-Relativistic Imaging

Abstract

Electromagnetic inverse scattering is a method to identify the geometry, location and material properties of unknown target/targets using the collected scattered field data which may be due to known or unknown sources. This area of research also extended to work with the dynamic object where the objective is to retrieve velocity profile along with its general properties.Here we represent all the major development done in electromagnetic inverse scattering both in static and dynamic platform since last four decades both in time and frequency domain with its working principle, advantages, and its limitations. We also provided a comprehensive discussion of the basic theory of inverse scattering analysis both in the static and dynamic domain.

Downloads

Download data is not yet available.

References

Abubaker, A., & Van Den Berg, P. M. (2001). Contrast source inversion method: state of art. IEEE Transactions on Image Processing, 10(9), 1384-1392. https://doi.org/10.1109/83.941862.

Borden, B., & Cheney, M. (2005). Synthetic-aperture imaging from high-Doppler-resolution measurements. Inverse Problems, 21(1), 1-11. https://doi.org/10.1088/0266-5611/21/1/001.

Brown, W. M. (1967). Synthetic aperture radar. IEEE Transactions on Aerospace and Electronic Systems,3(2), 217-229. https://doi.org/10.1109/TAES.1967.5408745.

Cakoni, F., & Colton, D. (2003). The linear sampling method for cracks. Inverse Problems, 19, 279-295. https://doi.org/10.1088/0266-5611/19/2/303.

Chew, W. C., & Wang, Y. M. (1990). Reconstruction of two-dimensional permittivity distribution using the distorted born iterative method. IEEE Transactions on Medical Imaging, 9(2), 218-225. https://doi.org/10.1109/42.56334.

Devaney, A. J. (1983). A Computer simulation study of diffraction tomography. IEEE Transactions on Biomedical Engineering,30(7), 377-386. https://doi.org/10.1109/TBME.1983.325037.

Eskandari, M., & Safian, R. (2010). Inverse scattering method based on contour deformations using a fast marching method. Inverse Problems, 26(9), 095002. https://doi.org/10.1088/0266-5611/26/9/095002.

Ferrayé, R. (2003). An inverse scattering method based on contour deformations by means of a level set method using frequency hopping technique. Antennas and Propagation, 1(5),1100–1113. Retrieved from http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1208518.

Fouda, A. E. (2013). Electromagnetic Time-reversal imaging and tracking techniques for inverse scattering and wireless communications (Doctoral dissertation, The Ohio State University).

Ito, K., Jin, B., & Zou, J. (2012). A direct sampling method to an inverse medium scattering problem. Inverse Problems, 28(2), 025003. https://doi.org/10.1088/0266-5611/28/2/025003.

Iwata, K., & Nagata, R. (1975). Calculation of refractive index distribution from interferograms using the born and rytov’s approximation. Japanese Journal of Applied Physics, 14, 379-383. https://doi.org/10.7567/JJAPS.14S1.379.

Kleinman, R. E., & Van Den Berg, P. M. (1992). A modified gradient meth for two-dimensional problems in tmography. Journal of Computational and Applied Mathematics, 42, 17-35.

Linkoon P.Meenaketan, B., Pal, S., & Chattoraj, N. (2016). Inverse scattering using scattered field patteren. In International Symphosium on Antenna and Propagation(pp. 173-176).

Ozdemir, C., Bhalla, R., Trintinalia, L. C., Ling, H., & Member, S. (1998). Antenna synthetic aperture radar imaging. Imaging, 46(12), 1845-1852.

Lesselier, D. (1978). Determination of index profiles by time domain reflectometry.Journal of Optics, 9(6), 349-358.

Pastorino, M., Raffetto, M., & Randazzo, A. (2015). Electromagnetic inverse scattering of axially moving cylindrical targets. IEEE Transactions on Geoscience and Remote Sensing, 53(3), 1452-1462. https://doi.org/10.1109/TGRS.2014.2342933.

Roulston, M. S., & Muhleman, D. O. (1997). Synthesizing radar maps of polar regions with a Doppler-only method. Applied Optics, 36(17), 3912-3919. https://doi.org/10.1364/AO.36.003912.

Stuff, M., Biancalana, M., Arnold, G., & Garbarino, J. (2004). Imaging moving objectsin 3D from single aperture synthetic aperture data. Proceedings of IEEE Radar Conference, 94-98. https://doi.org/10.1109/NRC.2004.1316402.

Tijhuis, A. G. (1981). Iterative determination of permittivity and conductivity profiles of a dielectric slab in the time domain. IEEE Transactions on Antennas and Propagation, 29(2), 239-245.

Vouldis, A. T., Kechribaris, C. N., Maniatis, T. a, Nikita, K. S., & Uzunoglu, N. K. (2005). Investigating the enhancement of three-dimensional diffraction tomography by using multiple illumination planes. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 22(7), 1251-1262. https://doi.org/10.1364/JOSAA.22.001251.

Walker, J. L. (1980). Range-doppler imaging of rotating objects. IEEE Transactions on Aerospace and Electronic Systems, 16(1), 23-52. https://doi.org/10.1109/TAES.1980.308875.

Wang, Y. M., & Chew, W. C. (1989). An iterative solution of the two-dimensional electromagnetic inverse scattering problem. International Journal of Imaging Systems and Technology, 1(1), 100-108. https://doi.org/10.1002/ima.1850010111.

Yaolong, Q., Rui, L., Zengshu, H., Weixian, T., Yanping, W., & Longzhe, J. (2017, May). Snapshot imaging radar for moving target detection based on distributed compression sensing. In Control And Decision Conference (CCDC), 2017 29th Chinese(pp. 5248-5252). IEEE.

Yegulalp, A. F. (1999). Fast backprojection algorithm for synthetic aperture radar. In Radar Conference, 1999. The Record of the 1999 IEEE (pp. 60-65). IEEE.

Zheng, B., Changyin, S., & Mengdao, X. (2000). Principles and algorithms for inverse synthetic aperture radar imaging of manoeuvring targets. InRadar Conference, 2000. The Record of the IEEE 2000 International(pp. 316-321). IEEE.

Published
2018-09-20
Section
Articles