Dielectric Analysis of PVDF-CNF Conductive Polymer Nanocomposite for EMI Shielding Application

  • Brijesh Prasad Department of Mechanical Engineering, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, India
  • Vikas Rathi Department of Electronics and Communication Engineering, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, India
  • Varij Panwar Department of Electronics and Communication Engineering,Graphic Era (Deemed to be University), Dehradun, Uttarakhand, India
Keywords: Conductivity, Dielectric, Electromagnetic Shielding, Polymer Nanocomposite

Abstract

Carbon based Nano fillers polymer nanocomposites are the advance polymer materials used in electrical device applications. Among them carbon nanofibers are highly preferred because of their high aspect ratio, long fiber range, high contact surface area, higher electrical conduction with uniform dispersion property. In the present work we have developed a thin (PVDF-CNF) conductive polymer nanocomposite by solvent casting technique. Here we have focused on understating the dispersion effect on electrical conductivity and for electromagnetic interference (EMI). The developed conductive polymer nanocomposite showed uniform dispersion with higher conductivity and higher dielectric properties. The newly developed composite has significant applications in the field of sensor and shielding.

Downloads

Download data is not yet available.

References

Ahmad, K., Pan, W., & Shi, S. L. (2006). Electrical conductivity and dielectric properties of multiwalled carbon nanotube and alumina composites. Applied Physics Letters, 89(13), 133122.

Al-Saleh, M. H., & Sundararaj, U. (2009). Electromagnetic interference shielding mechanisms of CNT/polymer composites. Carbon, 47(7), 1738-1746.

Becerril, H. A., Mao, J., Liu, Z., Stoltenberg, R. M., Bao, Z., & Chen, Y. (2008). Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano, 2(3), 463-470.

Cipriano, B. H., Kota, A. K., Gershon, A. L., Laskowski, C. J., Kashiwagi, T., Bruck, H. A., & Raghavan, S. R. (2008). Conductivity enhancement of carbon nanotube and nanofiber-based polymer nanocomposites by melt annealing. Polymer, 49(22), 4846-4851.

Collins, S. A., Padilla, C. E., Notestine, R. J., Von Flotow, A. H., Schmitz, E., & Ramey, M. (1992). Design, manufacture, and application to space robotics of distributed piezoelectric film sensors. Journal of Guidance, Control, and Dynamics, 15(2), 396-403.

Fonseca, C. P., Benedetti, J. E., & Neves, S. (2006). Poly (3-methyl thiophene)/PVDF composite as an electrode for supercapacitors. Journal of Power Sources, 158(1), 789-794.

Gu, H., Zhao, Y., & Wang, M. L. (2005). A wireless smart PVDF sensor for structural health monitoring. Structural Control and Health Monitoring: The Official Journal of the International Association for Structural Control and Monitoring and of the European Association for the Control of Structures, 12(3‐4), 329-343.

Hammes, P. C. A., & Regtien, P. P. L. (1992). An integrated infrared sensor using the pyroelectric polymer PVDF. Sensors and Actuators A: Physical, 32(1-3), 396-402.

Hernández, J. J., García-Gutiérrez, M. C., Nogales, A., Rueda, D. R., Kwiatkowska, M., Szymczyk, A., Roslaniec, Z., Concheso, A., Guinea, I.,& Ezquerra, T. A. (2009). Influence of preparation procedure on the conductivity and transparency of SWCNT-polymer nanocomposites. Composites Science and Technology, 69(11-12), 1867-1872.

Kim, H., Abdala, A. A., & Macosko, C. W. (2010). Graphene/polymer nanocomposites. Macromolecules, 43(16), 6515-6530.

Kumar, B., Scanlon, L. G., & Spry, R. J. (2001). On the origin of conductivity enhancement in polymer-ceramic composite electrolytes. Journal ofPower Sources, 96(2), 337-342.

Luo, H., & Hanagud, S. (1999). PVDF film sensor and its applications in damage detection. Journal of Aerospace Engineering, 12(1), 23-30.

Li, Y. J., Xu, M., Feng, J. Q., & Dang, Z. M. (2006). Dielectric behavior of a metal-polymer composite with low percolation threshold. Applied Physics Letters, 89(7), 072902.

Prasad, B., Arora, S., Rathi, V., Panwar, V.,&Patil, P.P.(2019). Modelling of PVDF/CNF conducting polymer nanocomposite. International Journal of Mathematical, Engineering and Management Sciences, 4(3), 786-794.

Prasad, B., Panwar, V., Chaturvedi, M., Rathi, V., Gill, F. S., Sharma, K., & Patil, P. P., (2018). Development of Conductive Nanocomposite for Sensing Application, 7(3.12), 1025-1029.

Qi, L., Lee, B. I., Chen, S., Samuels, W. D., & Exarhos, G. J. (2005). High‐dielectric‐constant silver–epoxy composites as embedded dielectrics. Advanced Materials, 17(14), 1777-1781.

Rathi, V., Panwar, V., Anoop, G., Chaturvedi, M., Sharma, K., & Prasad, B. (2018). Flexible, thin composite film to enhance the electromagnetic compatibility of biomedical electronic devices. IEEE Transactions on Electromagnetic Compatibility, 61(4), 1033 -1041.

Shahinpoor, M., & Mojarrad, M. (2000). U.S. Patent No. 6,109,852. Washington, DC: U.S. Patent and Trademark Office.Sumita, M., Sakata, K., Asai, S., Miyasaka, K., & Nakagawa,H. (1991). Dispersion of fillers and the electrical conductivity of polymer blends filled with carbon black. Polymer Bulletin, 25(2), 265-271.

Shen, Y., Lin, Y. H., & Nan, C. W. (2007). Interfacial effect on dielectric properties of polymer nanocompositesfilled with core/shell‐structured particles. Advanced Functional Materials, 17(14), 2405-2410.

Sun, L. L., Li, B., Zhao, Y., Mitchell, G., & Zhong, W. H. (2010). Structure-induced high dielectric constant and low loss of CNF/PVDF composites with heterogeneous CNF distribution. Nanotechnology, 21(30), 305702.

Tang, C. W., Li, B., Sun, L., Lively, B., & Zhong, W. H. (2012). The effects of Nano fillers, stretching and recrystallization on microstructure, phase transformation and dielectric properties in PVDF nanocomposites. European Polymer Journal, 48(6), 1062-1072.

Wang, F., Tanaka, M., & Chonan, S. (2003). Development of a PVDF piezo polymersensor for unconstrained in-sleep cardiorespiratory monitoring. Journal of Intelligent Material Systems and Structures, 14(3), 185-190.

Wang, L., & Dang, Z. M. (2005). Carbon nanotube composites with high dielectric constant at low percolation threshold. Applied Physics Letters, 87(4), 042903.

Wong, C. P., & Bollampally, R. S. (1999). Thermal conductivity, elastic modulus, and coefficient of thermal expansion of polymer composites filled with ceramic particles for electronic packaging. Journal of Applied Polymer Science, 74(14), 3396-3403.

Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J. W., Potts, J. R., & Ruoff, R. S. (2010). Graphene and graphene oxide: synthesis, properties, and applications. Advanced Materials, 22(35), 3906-3924

Published
2020-03-09
Section
Articles