TiO2 Nanoparticles in Bulk Heterojunction P3HT-PCBM Organic Solar Cell


  • Kamlesh Kukreti Department of Electronics and Communication Engineering Graphic Era University, Dehradun, India
  • Arun Pratap Singh Rathod Department of Electronics and Communication Engineering Graphic Era University, Dehradun, India
  • Brijesh Kumar Department of Electronics and Communication Engineering Madan Mohan Malaviya University of Technology, Gorakhpur, India


PCBM ([6, 6]-phenyl C61butyric Acid-Methyl Ester), P3HT (Poly (3-hexylthiophene)), TiO2 (Titanium Dioxide), PCE (Power Conversion Efficiency), BHJ (Bulk Heterojunction).


This research paper aims to present a concise, depth insight of organic solar cells. Subsequently, this paper also
discusses various recent advancements in organic solar cells in terms of material, structures and other
performance influencing factors. This paper reviewed to see the effect of TiO2 nano particles on η in the BHJ
polymeric solar cell by its incorporation into the composite active (photovoltaic) layer, comprised of poly3-
hexyl-thiophene P3HT, and [6,6]-phenylC61-butyricacid-methylester (PCBM). Nano-structured TiO2 exhibits
good processability, favourable characteristics of the transport of electrons, and brilliant physical as well as
chemical stability which are important wants in solar cells as impact of blending of TiO2 nano particles in
between photo-active layers is elucidated the electrical performance of P3HT-PCBM- based solar cells. This
paper relates to bulk heterojunction organic solar cells. More specifically, the enhancement of PCE of solar cell
based on polymer, using mix of poly 3-hexylthio-phene(P3HT), derivatives of C60 as [6, 6]-phenyl C61butyric-
acidmethylester (PCBM) and TiO2 nano particles has been reported. P3HT-TiO2 based solar cell has also been
fabricated as there is a probability of improvement in η and JSC by optimizing the blending concentration of
TiO2 nano particles.


Download data is not yet available.


Barth S., & Bassler, H. (1997). Intrinsic photoconduction in PPV-type conjugated polymers. Physical Review

Letters, 79(22), 4445-4447.

Brabec, C. J., Zerza, G., Cerullo, G., De Silvestri, S., Luzzati, S., Hummelen, J. C., & Sariciftci, S. (2001).

Tracing photo induced electron transfer process in conjugated polymer/fullerene Bulk heterojunctions in real

time. Chemical Physics Letters, 340(3), 232-236.

Brabec, C. J. (2004). Organic photovoltaics: technology and market. Solar Energy Materials and Solar Cells,

(2), 273-292.

Brabec, C. J., Sariciftci, N. S., & Hummelen, J. C. (2001). Plastic solar cells. Advanced Functional Materials,

(1), 15-26.

Braun, C. L. (1984). Electric-field assisted dissociation of charge-transfer states as a mechanism of photo carrier

production. Journal of Chemical Physics, 80(9), 4157-4161.

Chapin, D. M., Fuller, C. S., & Pearson, G. L. (1954). A new silicon p-n junction photo cell for converting solar

radiation into electrical power. Journal of Applied Physics, 25(5), 676-677.

Chirvase, D., Parisi, J., Hummelen, J. C., & Dyakonov, V. (2004). Influence of nano morphology on the photo

voltaic action of polymer-fullerene composites. Nano Technology, 15(9), 1317-1323.

Journal of Graphic Era University

Vol. 5, Issue 2, 97-111, 2017

ISSN: 0975-1416 (Print), 2456-4281 (Online)

Choong, V., Park, Y., Gao, Y., Wehrmeister, T., Muellen, K., Hsieh, B. R., & Tang, C. W. (1996). Dramatic

photoluminescence quenching of phenylene vinylene oligomer thin films upon sub mono layer Ca deposition.

Applied Physics Letters, 69(10), 1492-1494.

Coakley, K. M., & Mcgehee, M. D. (2004). Conjugated polymer photovoltaic cell. Chemistry of Materials,

(23), 4533-4542.

Da Costa, P. G., & Conwell, E. M. (1993). Excitons and the band-gap in poly (phenylene vinylene). Physical

Review, 48(3), 26-30.

Ghosh, A. K., & Feng, T. (1978). Merocyanine organic solar cells. Journal of Applied Physics, 49(12), 5982-

Goetzberger, A., Hebling, C., & Schock, H. W. (2003). Photovoltaic materials, history, status and outlook.

Materials Science and Engineering R-Reports, 40(1), 1-46.

Granstrom, M., Petritsch, K., Arias, A. C., Lux, A., Andersson, M. R., & Friend, R. H. (1998). Laminated

fabrication of polymeric photovoltaic diodes. Nature, 395(6699), 257-260.

Grätzel, M. (2001). Photo electrochemical cells, Nature, 414(6861), 338-344.

Green M. A. (1982). Solar cells - Operating principles, technology and system applications. University of New

South Wales, Sydney 1-274.

Green, M. A., Emery, K., King, D. L., Igari, S., & Warta, W. (2005). Solar cell efficiency tables (version25).

Progress in Photovoltaic, 13(1), 49-54.

Gregg, B. A. (1996). Bilayer molecular solar cells on spin-coated TiO2 substrates. Chemical Physics Letters,

(3), 376-380.

Halls, J. J. M., Walsh, C. A., Greenham, N. C., Marseglia, E. A., Friend, R. H., Moratti, S. C., & Holmes A. B.

(1995). Efficient photodiodes from interpenetrating polymer networks. Nature, 376(5), 498-500.

Jana, A. K. (2000). Solar cells based on dyes. Journal of Photochemistry and Photobiology A-Chemistry,

(1), 1-17.

Kallmann, H., & Pope, M. (1959). Photovoltaic effect in organic crystals. Journal of Chemical Physics, 30(2),


Kim, Y., Choulis, S. A., Nelson, J., Bradley, D. D. C, Cook S., & Durrant J. R. (2005). Device effect in organic

solar cells with blends of regioregular poly (3-hexylthiophene) and soluble fullerene. Applied Physics Letters,

(6), 1-3, 063502.

Law, K. Y. (1993). Organic photoconductive materials: Recent trends and developments. Chemical Reviews, 93

(1). 449-486.

Marks, R. N., Halls, J. J. M., Bradley, D. D. C., Friend, R. H., & Holmes, A. B. (1994). The photovoltaic

response in poly (p-phenylene vinylene) thin-film devices. Journal of Physics-Condensed Matter, 6(7), 1379-

O’regan, B., & Gr ̈atzel, M. (1991). A low-cost, high-efficiency solar-cell based on dye-sensitized Colloidal

TiO2 films. Nature, 353(6346), 737-740.

Padinger, F., Rittberger, R. S., & Sariciftci, N. S. (2003). Effects of postproduction treatment on plastic solar

cells. Advanced Functional Materials, 13(1), 85-88.

Peumans, P., Bulovic, V., & Forrest, S. R. (2000). Efficient photon harvesting at high optical intensities in

ultrathin organic double-hetero structure photovoltaic diodes. Applied Physics Letters, 76(19), 2650-2652.

Journal of Graphic Era University

Vol. 5, Issue 2, 97-111, 2017

ISSN: 0975-1416 (Print), 2456-4281 (Online)

Shockley, W., & Queisser, H. J. (1961). Detailed balance limit of efficiency of p-n junction solar Cells. Journal

of Applied Physics, 32(3), 510-519.

Tang, C. W. (1986). Two-layer organic photovoltaic cell. Applied Physics Letters, 48(2), 183-185.

Verploegen, E., Mondal, R., Bettinger, C. J., Sok, S., Toney, M. F., & Bao, Z. (2010). Study the effects of

thermal annealing on polymer/fullerene bulk heterojunction organic cells, 20(20), 3519-3529.

Yu, G., Gao, J., Hummelen, J. C., Wudl, F., & Heeger, A. J. (1995). Polymer photovoltaic cells enhanced

efficiencies via a network of internal donor-acceptor hetero junctions. Science, 270(5243), 1789-1791.




How to Cite

Kukreti, K., Rathod, A. P. S., & Kumar, B. (2023). TiO2 Nanoparticles in Bulk Heterojunction P3HT-PCBM Organic Solar Cell. Journal of Graphic Era University, 5(2), 97–111. Retrieved from https://www.journal.riverpublishers.com/index.php/JGEU/article/view/103




Most read articles by the same author(s)