
Journal of Graphic Era University

Vol. 6, Issue 2, 183-196, 2018

ISSN: 0975-1416 (Print), 2456-4281 (Online)

183

Analyzing and Defending Web Application Vulnerabilities through

Proposed Security Model in Cloud Computing

Prabhat Bisht1*, Devesh Pant2, Manmohan Singh Rauthan3

1,2Uttarakhand Technical University Dehradun, India
3Department of Computer Science and Engineering

H. N. B. Garhwal University, Srinagar (Garhwal), India
*Corresponding author: prabhat.bisht@gov.in

(Received August 23, 2017; Accepted May 15, 2018)

Abstract

Security of web applications from attackers is one of a challenging task in cloud computing infrastructure.

Unsecure source code is one of a top reason for cyber-attacks, due to which valuable data like username,

password, credit card information or even personal information related to aadhar enabled biometric system, can

be compromised. Most of the vulnerabilities in web application source code is related to Open Web Application

Security Project (OWASP), these vulnerabilities are SQL, NoSQL, LDAP Injection, Broken Authentication,

Sensitive data exposure, XML external entities, broken access control, security misconfiguration, Cross site

scripting (XSS), Insecure deserialization and insufficient monitoring and logging etc. Vulnerable web

applications are the hot spot for hackers. According to Symantec’s Internet Security Threat Report published in

July 2017, more than 2 lakh attacks against websites occur each day and more than 76% websites hosted in

cloud contain un-patched vulnerabilities. This paper proposes a new innovative conceptual security tool name as

SECUREWEB. This tool will detect vulnerabilities in web application source code and automatically patch

detected vulnerabilities and return secure source code free from any identified vulnerabilities. This tool works

on the concept of proxy based source code analyzer SECUREEYE model for detecting OWASP Top 10

vulnerabilities and SECURESOLUTION model for auto patching of detected vulnerabilities.

Keywords- Vulnerabilities; Security; Open Web Application Security Project (OWASP); Hypertext Transfer

Protocol (HTTP); Threats; Cloud; Virtual Machine (VM).

1. Introduction

After digital India initiative most of the critical information like biometric information, credit

card information, PAN card information, digitally signed document through eSign technology

and many more information are stored in cloud based virtual machines through different web

applications. Data security or information leakage becomes one of the biggest challenges

over internet. Attackers are always ready to execute attack vectors so that to find out the

loopholes in web or mobile applications and if web applications source code have OWASP

(2015) vulnerabilities then such applications can be hacked. This paper aims to present deep

analysis on detection and defending various OWASP vulnerabilities in web application

source code and proposes a conceptual tool (SECUREWEB).

SECUREWEB works in two models SECUREYE and SECURESOLUTION.

Journal of Graphic Era University

Vol. 6, Issue 2, 183-196, 2018

ISSN: 0975-1416 (Print), 2456-4281 (Online)

184

SECUREEYE: source code analyzer works on HTTP request and HTTP response interceptor

model while SECURESOLUTION: works on sanitization of input parameters to prevent SQL

injection, Cross Site Scripting (XSS), Cross Site Request Forgery (CSRF) and Phishing

attacks.

2. Related Work

Most of the research work has been carried out to find the vulnerabilities in web application

source code. Top 10 vulnerabilities in source code are related to SQL injection, Cross Site

Scripting (XSS), Cross Site Request Forgery (CSRF), Session hijacking, Phishing. These are

the most common vulnerabilities which can be exploited by attackers in order to gain access

to web server or web applications. For gaining access to web server or web applications

attackers intercept HTTP request parameters through proxy based tool and inject malicious

data in POST request variables. Malicious data when processed by web server results

unexpected information, this information later exploited by attacker in order to gain server

access.

To avoid this OWASP which is a free and open software security community identified Top

10 vulnerabilities. Common vulnerabilities are:

 Injection: Injection flaws such as SQL injection, NoSQL injection, LDAP injection occurs

when malicious code is injected in SQL query string through attackers. Attackers

intercept data passing from client web browser to server through proxy based interceptor

tool like Burpsuit and manipulate data in between request and response, manipulated data

is processed by web server leading to SQL, NoSQL, LDAP injection flaws.

 Broken Authentication: Mismanagement of username, password and session handling is

often implemented incorrectly. Attackers compromise session key, unencrypted password

or unencrypted critical information like credit card information, PAN card details to

exploit server cluster and web application deployed on it.

 Sensitive data exposure: In most of the web application sensitive data like personal

information, credit card information, and biometric data is not properly protected. Hacker

can steal and manipulated weakly protected data which causes credit card fraud, identity

theft. Sensitive data must be protected through data encryption mechanism.

 XML external entities: Poorly configured XML files if uploaded from client browser to

server and if that XML file get manipulated in between Request and Response by hacker

can result data loss and data violation. Hacker can execute remote code, internal port

scanning, internal file access and even DOS attack through XML files to server.

 Security Misconfiguration: Misconfiguration of web server services like apache, tomcat,

misconfiguration of firewall rule through open ports, incomplete or adhoc configuration

of firewall, misconfiguration of HTTP header in web application source code etc. are

basic causes of information security breach.

Journal of Graphic Era University

Vol. 6, Issue 2, 183-196, 2018

ISSN: 0975-1416 (Print), 2456-4281 (Online)

185

 Cross Site Scripting: Cross site scripting occurs when data from client to server is not

properly validated or not properly escaped through html entities. Attackers can execute

JavaScript by hacking HTTP request $_POST variable data and inject malicious code on

it. Data if not properly validated and escaped before sending it to web server for

processing can cause cross site scripting attack.

Research is going on regarding developing a mechanism to find out vulnerabilities in web

application source code. In past, Fonseca et al. (2014) had developed Vulnerability and attack

injection tool for an evaluation of web security mechanism using fault injection technique.

Djuric (2013) had developed a SQL injection vulnerability detection tool using black box

approach. Through this approach analyse HTTP request and response from the web server

Nguyen-Tuong et al. (2005) proposed a fully automated approach for securely hardening web

applications. It checks for tainted data and dangerous content came from untrustworthy

sources. Huang et al. (2017) proposed a tool VULSCAN, this scanner automatically

generates test data for revealing vulnerabilities in source code. Kankhare and Manjrekar

(2016) proposed a cloud based system to sense security vulnerabilities of web application in

open source private cloud IAAS.

3. Statement of Problem

Today when all the valuable information like personal information, credit card information,

biometric related information are available in cloud through different web applications hosted

in virtual machines over cloud then security of critical data over internet is a matter of

concern. For keeping web applications free from cyber attacks and hackers, web application

should be free from OWASP Top 10 vulnerabilities because attackers find out loopholes in

web application source code and manipulate the code by intercepting the request and

inserting malicious code in the application as a result web application behaves differently as

they intended by the coders. In this paper what we tried to find out the most common

vulnerabilities any web application can have through the proposed security model source

code analyzer tool SECUEEYE (Model 1) and correspondingly proposed a solution for

making PHP based web application free from vulnerabilities through the proposed patching

model SECURESOLUTION (Model 2).

3.1 Methodology Adopted for Detection and Prevention of Vulnerabilities in Source

Code

In this paper, a vulnerabilities analysis tool SECUREWEB is proposed which works on two

models, SECUREEYE (Model 1) and SECURESOLUTION (Model 2), for making web

applications secure from cyber threats.

Model 1 is based on proxy based interceptor mechanism, which is used to analyze the current

security mechanism of application by injecting possible vulnerabilities in the source code.

Journal of Graphic Era University

Vol. 6, Issue 2, 183-196, 2018

ISSN: 0975-1416 (Print), 2456-4281 (Online)

186

Model 2 provides solution for preventing web application from attacks by automatically

patching top possible indentified vulnerabilities.

Model 1 Intercept HTTP request parameters through proposed proxy based source code

analyzer tool SECUREEYE. It manipulates request parameters $_POST variables by

injecting malicious code and then forwards manipulated values/variables to server, which are

processed by the server and server sends back the processed information to client as HTTP

response. HTTP Response is then analyzed for vulnerabilities and it is found that most of the

web applications are attacked from cyber-threats because of the following vulnerabilities.

 Blind SQL injection, SQL Injection, MongoDB NoSQL Injection, LDAP injection.

 Cross Site Scripting XSS.

 Link Injection which facilitates cross site request forgery CSRF.

 Phishing through Frames.

 Weak Cryptographic Hash for encryption of valuable data like credit card information,

biometric information, password etc.

 System information is leaked externally through use of in-built functions in programming

languages.

 Misconfiguration and mismanagement of session related issues.

4. Proposed Architecture of Secure Web Vulnerabilities Analysis Tool

Attackers are always ready to inject attack vector on vulnerable source code in order to gain

access over server. Attacks on web server and web application in cloud based virtual

machines are possible from n number of hosts concurrently, so it is mandatory to detect

attacks efficiently and defend affectively to reduce its impact on web applications. Successful

penetration of malicious data can lead to great damage of the web application or even web

server or application database leading to financial loss. This purposed tool works through two

models.

Model 1-SECUREEYE is a proxy based HTTP request interceptor, which works in three

stages:

a) Monitoring Stage: Intercept HTTP request.

In this stage HTTP request is intercepted by attackers before request is send to web

server for processing i.e. In between HTTP request and HTTP response.

b) Injection Stage: Injecting malicious code.

In this stage attacker insert malicious data in request $_POST variables i.e. attacker

manipulate $_POST variable data in between client and server i.e. inject vulnerable

data as an attack vector for processing.

c) Attack Stage: Attack payload creation through penetration testing.

Journal of Graphic Era University

Vol. 6, Issue 2, 183-196, 2018

ISSN: 0975-1416 (Print), 2456-4281 (Online)

187

In this stage manipulated data is forwarded to server for processing and if Request

$_POST variables are not properly escaped by html entities, can cause SQL injection

and Cross site scripting attack.

Model 2- SECURESOLUTION which prevent web attacks by sanitizing $_POST variables.

a) Prevention Stage: Attack prevention by patching input variables.

The functionality of proposed conceptual tool (SECUREWEB) describing SECUREEYE and

SECURESOLUTION is shown in Figure 1.

Figure 1. SECUREWEB tool

Journal of Graphic Era University

Vol. 6, Issue 2, 183-196, 2018

ISSN: 0975-1416 (Print), 2456-4281 (Online)

188

4.1 OWASP Vulnerabilities Analysis through SECUREEYE Proposed Model 1

4.1.1 Boolean-Based Blind SQL Injection

Step 1: Open the following URL

“http://127.0.0.1/test.php?datepicker1=17/04/2017&cause_type=1”

Intercept the request through SECUREWEB-SECUREEYE proxy based proposed tool and

sends it to web server for processing and then analyse the response returned for

vulnerabilities as shown in the snapshot below:

test.php [HTML input form]

<form name=”frm” action =”test_action.php”>

<input type =”text” name=”datepicker” value=”<?php echo $date_picker;?>”>

<input type =”text” name=”cause_type” value =”<? php echo $cause_type ;?>”>

<input type=”button” name=”submit”>

</form>

Step 2: Intercept request through SECUREEYE and enter the following payload, cause_type

=1'%20or%20'1'%3d'1(1’ or ‘1’=’1) and it is seen that the content length is 10622, now if

it is changed as cause_type =1'%20or%20'1'%3d'2(1’ or ‘1’=’2) then content length

changes from 10622 to 3672 as shown below in Figure 2.

Figure 2. Boolean based blink SQL injection

This confirms that application is vulnerable to Boolean-based Blind SQL Injection.

4.1.2 Blind SQL Injection Attack Scenario

The HTTP request was intercepted through SECUREWEB-SECUREEYE proposed tool and

malicious data was inserted on user request, as a result response gets manipulated, which

indicates the existence of blind SQL vulnerability, because the tool succeeded in appending

malicious values to parameter and was executed by the server.

HTTP Request from browser

<form name=”frm” action=”new_page.php”><input type =”text” name=”book” value=”<? php echo book;

?>” />

<input type=”submit” name=”submit1” value=”add”></form>

Journal of Graphic Era University

Vol. 6, Issue 2, 183-196, 2018

ISSN: 0975-1416 (Print), 2456-4281 (Online)

189

HTTP Response from server

CurYear=2017&curMonth=08&curDay=13&book=1234%27+and+%27f%27%3D%27f%27+--

+&submit1=add

This vulnerability can be removed by proper sanitization of hazardous character on user

input. The process of data sanitization is explained in proposed SECURESOLUTION

security model.

4.1.3 SQL Injection Attack Scenario

Request and response test was performed on PHP source code as written below, request was

successfully intercepted in between client and server and malicious data was successfully

inserted on user request, as a result response gets manipulated.

HTTP Request from browser

<form name=”frm” action=”new_page.php”>

<input type =”text” name=”username” value=”<? php echo $username ;?>”/>

 <input type =”text” name=”password” value=”<? php echo $password ;?>”/>

<input type=”button” name=”submit1” value=”add”>

< /form>

HTTP Response (new_page.php)

<?php

$username =$_POST[‘username’];

$password =$_POST[‘password’];

$sql=”select loginid from user_master where username=’$username’ and password =’$password’”;

$db->execute($sql);

?>

Most of the time programmers do not write parameterized SQL queries as shown in above

script, resulting vulnerable SQL Injection. A simple example of an SQL Injection payload

can be achieved by setting the password field to password’ OR 1=1. This will result SQL

query something as shown below.

SELECT loginid FROM user_master WHERE username=’$username’ AND password=’password’

OR1=1’

This query if gets executed in database server can result in authentication bypass. In the event

of authentication bypass, the application will most likely enters the attacker into the database

and results the login-id from users_master in the query result.

Journal of Graphic Era University

Vol. 6, Issue 2, 183-196, 2018

ISSN: 0975-1416 (Print), 2456-4281 (Online)

190

This vulnerability can be removed by writing parameterized queries. Tricks to write

parameterized queries in PHP code is explained in proposed SECURESOLUTION security

model.

4.1.4 MongoDB NoSQL Injection Attack Scenario

The request and response test was performed on PHP source code as written below, request

was successfully intercepted in between through SECUREWEB-SECUREEYE conceptual

tool and had successfully inserted special characters { }' " \ ; in request input variable, as a

result response gets manipulated, which lead to trigger a database error within MongoDB.

For example within MongoDB, if a string containing any of the following special characters

({ }' " \ ;) it will trigger the database error.

HTTP Request from browser

<form name=”frm” action=”new_page.php”><input type =”text” name=”book” value=”<?php echo

$book;?>”/> //$book variable is not sanitized

<input type=”button “name=”submit1”value=”add”><form>

The request was intercepted in between and special characters ({ }' " \) were inserted in

request parameters which results MongoDB SQL vulnerability in source code;

HTTP request intercepted

User-Agent: Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 6.1; WOW64; Trident/4.0; SLCC2; .NET

CLR 2.0.50727; .NET4.0C; .NET4.0E; .NET CLR 3.5.30729; .NET CLR 3.0.30729)

Content-Length: 500

curYear=2017&curMonth=08&curDay=13&book=2","$2836":"&submit1=add

HTTP Response showing MongoDB NoSQL injection

Failed: SQLSTATE[22P02]: Invalid text representation: ERROR: invalid input syntax for integer:

"2","$query":{},"A":""curYear=2017&curMonth=08&curDay=13&book=2","query":"

MongoDB NoSQL injection is possible only when the hacker succeeds in injecting

MongoDB commands and those commands gets executed on database server. This issue can

also be patched by proper sanitization of hazardous character on user input described in

SECURESOLUTION security model.

4.1.5 Cross Site Scripting Attack Scenario

Request and response test performed on PHP source code seems to indicate XSS

vulnerability, because if a piece of code is written like this then hacker can easily append

script in the response, and that script gets executed on page loads in the user’s browser,

leading to XSS vulnerability.

Journal of Graphic Era University

Vol. 6, Issue 2, 183-196, 2018

ISSN: 0975-1416 (Print), 2456-4281 (Online)

191

HTTP Request from browser

<form name=”frm” action=”new_page.php”><input type =”text” name=”book” value=”<?php echo

$book;?>”/>

<input type=”button” name=”submit1” value=”add”><form>

HTTP request intercepted and embedded javascript

Content-Length: 147

curYear=2017&curMonth=03&curDay=13&book=09"/>

<script>alert(1243)</script>

HTTP Response from server

<input type="text" name="book" value="09"/>

<script>alert(1243)</script>" onFocus="SetBg(this)" onBlur ="UnSetBg(this)">

<input type="button" name="button" value="Go" size="20" onClick="return submitForm2();"/>

JavaScript is successfully embedded in source code. This vulnerability in source code can be

patched by proper sanitization of hazardous character on user input, proposed in

SECURESOLUTION security model.

4.1.6 Link Injection (Facilitates Cross Site Request Forgery CSRF) Attack Scenario

Request and response test performed on PHP source code through SECUREEYE tool,

intercepted HTTP request variables and manipulated HTTP request variable by injecting link,

request got executed seems to indicate CSRF vulnerability because HTTP response contained

a link to the file. Because of that it is possible to steal or manipulate customers session and

cookies allowing the hacker to view or alter user records. This vulnerbility can be patched by

sanitization of input parameters as described in SECURESOLUTION model.

HTTP Request from browser

Content-Disposition: form-data; name="case_no""'>

HTTP Response from server

<td width="54" align="left">

<input type="text" maxlength="7" size="8" name="case_no"value=" ">

" onFocus="SetBg(this)" onBlur="UnSetBg(this)">

</td>

Journal of Graphic Era University

Vol. 6, Issue 2, 183-196, 2018

ISSN: 0975-1416 (Print), 2456-4281 (Online)

192

4.1.7 Phising Through Frames Attack Scenario

Intercepted request and successfully injected HTML frames in request parameters, response

result seems to indicate phising vulnerability through frames because test response contained

an iframe/frame to URL. This vulnerability can be patched through proper sanitization of

hazardous characters into input paramters.

HTTP Request from browser

curYear=2017&curMonth=03&curDay=13&book=1234%27%22%3E%3Ciframe+id%3D1198+src%3Dhttp

%3A%2F%2Fdemo.testfire.net%2Fphishing.html%3E&

HTTP Response from server

<input type="text" name="book" value="1234'"><iframe id=1198

src=http://demo.testfire.net/phishing.html>" onFocus="SetBg(this)" onBlur="UnSetBg(this)

4.1.8 Weak Cryptographic Hash Attack Scenario

It is found that weak cryptographic hashes cannot guarantee data integrity and should not be

used in web application source code.

$key = sha1(microtime());

d = md5_gg(d, a, b, c, x[i+ 2], 9 , -51403784);

return hex_md5("abc").toLowerCase() == "900150983cd24fb0d6963f7d28e17f72";

return rstr2any(rstr_hmac_md5(str2rstr_utf8(k), str2rstr_utf8(d)), e)

return binl2rstr(binl_md5(opad.concat(hash), 512 + 128));

There should be strong 256 bit encryption policy.

4.1.9 System Information Leak External

While auditing source code it was found that most of the time coder use in-built system

functions in program such as use of error_reporting which reveled important information

about web server and error logs.

error_reporting(E_ALL);

print "<h4>Testing adodb_date and adodb_mktime. version=".ADODB_DATE_VERSION.'

PHP='.PHP_VERSION."</h4>";

Use of system in-built functions should be strictly prohibited into the source code.

Journal of Graphic Era University

Vol. 6, Issue 2, 183-196, 2018

ISSN: 0975-1416 (Print), 2456-4281 (Online)

193

4.1.10 Session Identifier

It is always a great threat to steal or manipulate customer session and cookies if session

identifier remains same before and after login, so it is mandatory to change or reset session

identifier after login and logout.

Content-Type: application/x-www-form-urlencoded Cookie: PHPSESSID=61nidlbc1tqk1rnoir4o34n2c2

4.2 Defending Source Code Vulnerabilities through SECURESOLUTION Security

Model 2

Case Study 1

Since web applications are hosted in cloud infrastructure and these are accessible 24*7 by

different type of users through different type of devices. Suppose all the users are genuine,

who access web applications, surf applications and move back.

Figure 3. Request with no attack performed

In this case, users receive expected result corresponding to the input data parameters. Since

users are genuine so there is no threat to the web application even if source code is vulnerable

as shown in Figure 3.

Case Study 2

Since all the users who are accessing web portal cannot be genuine, few can be attackers,

who can try to hack application in cloud. So it is the responsibility of web application owner

to make sure web application must be free from all types of vulnerabilities as discussed in

this paper. To identify vulnerabilities in source code a proxy based source code analyzer tool

named SECUREEYE is proposed in this paper, which intercepts HTTP request and modify

HTTP request data to check response in client’s web browser. If the source code is not

secure, then response will throw SQL, CSRF, PHISING, CSRF and many more

vulnerabilities in client’s browser. In this case all users are not genuine and hence they can

intercept HTTP request as a result output varies from user to user as shown below in Figure

4.

Journal of Graphic Era University

Vol. 6, Issue 2, 183-196, 2018

ISSN: 0975-1416 (Print), 2456-4281 (Online)

194

Figure 4. Request with payload attacks

Case Study 3

Suppose users are not genuine but source code is properly secured and input request

parameters are properly sanitized as proposed in SECURESOLUTION security model, then

what will happen.

Figure 5. Defended attacks through SECURESOLUTION security model

As shown above in Figure 5 user tried to intercept HTTP request and injected malicious code,

but application did not behaved wrongly and had not thrown any server and web

vulnerabilities as a response to web browser. This is achieved by proper sanitization of input

variables through SECURESOLUTION model, in this case only customized error messages

shown in web browser.

Journal of Graphic Era University

Vol. 6, Issue 2, 183-196, 2018

ISSN: 0975-1416 (Print), 2456-4281 (Online)

195

Checklist for Prevention of Vulnerabilities in Source Code

 Implement captcha on all public pages, captcha must be alphanumeric with minimum 6

character.

 Proper validation in request and response parameters from client and server end. Special

characters must be whitelisted.

 Use parameterized queries or stored procedure to avoid SQL injection, which occurs

through inline SQL queries.

 There should be a strong application audit trail mechanism to check what activates are

carried out in application by users.

 Store critical data like aadhar information, credit card information in encryption form.

 Password must be strongly hashed on client browser before sending to server for

processing.

 Implementation of proper error handling modules in application.

 Use POST method to pass values from one page to another page.

 Implementation of random token base system that changes with every page request in

application to avoid CSRF attacks.

 Implementation of proper session handling and session timeout mechanism in application.

5. Conclusion

Best practices such as protecting source code against SQL injection flaws, broken

authentication and session management, insecure direct object references, security

misconfiguration, insecure cryptographic storage, failure to restrict URL, filtering, session

handling, CSRF protection, XSS and Phishing can prevent applications from cyber-attacks.

This research paper proposes threat finding and threat defending conceptual tool named

SECUREWEB, which is based on combination of two models. Model 1: SECUREEYE

Proxy based source code analyzer tool for intercepting request and response for finding

vulnerabilities in source code. Model 2: SECURESOLUTION security model automatically

sanitizes input variables and make application secure from cyber-attacks.

Since, there is no such tool available right now which can perform both these tasks

automatically, so developers manually patches vulnerabilities in source code, which is time

consuming and not 100% efficient. So there is great need of one such tool like

SECUREWEB.

References

Djuric, Z. (2013, September). A black-box testing tool for detecting SQL injection vulnerabilities. In

Informatics and Applications (ICIA), 2013 Second International Conference on (pp. 216-221). IEEE.

Fonseca, J., Vieira, M., & Madeira, H. (2014). Evaluation of web security mechanisms using vulnerability &

attack injection. IEEE Transactions on Dependable and Secure Computing, 11(5), 440-453.

Journal of Graphic Era University

Vol. 6, Issue 2, 183-196, 2018

ISSN: 0975-1416 (Print), 2456-4281 (Online)

196

Huang, H. C., Zhang, Z. K., Cheng, H. W., & Shieh, S. W. (2017). Web application security: threats,

countermeasures, and pitfalls. Computer, 50(6), 81-85.

Kankhare, D. D., & Manjrekar, A. A. (2016, December). A cloud based system to sense security vulnerabilities

of web application in open-source private cloud IAAS. In Electrical, Electronics, Communication, Computer

and Optimization Techniques (ICEECCOT), 016 International Conference on (pp. 252-255). IEEE.

Nguyen-Tuong, A., Guarnieri, S., Greene, D., Shirley, J., & Evans, D. (2005, May). Automatically hardening

web applications using precise tainting. In IFIP International Information Security Conference (pp. 295-307).

Springer, Boston, MA.

Open Web Application Security Project (OWASP) 2015, OWASP Top 10, Available https://www.owasp.org,

last accessed 10-02-2018.

