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Abstract

Urban transportation infrastructure is a critical pillar for sustainable urban
development, with its safety and resilience being vital for disaster response
and functional recovery. However, traditional assessment methods rely on
static data, making it difficult to address the dynamic evolution of disas-
ters and the coupling of multiple factors, leading to lagging assessments
and inefficient optimization strategies. This study proposes a dynamic
resilience assessment framework that integrates Digital Twin (DT) and
Bayesian Network (BN) technologies, establishing a closed-loop system of
“monitoring-assessment-optimization” encompassing real-time monitoring,
dynamic assessment, and intelligent optimization. By dynamically updating
conditional probability tables and employing bidirectional reasoning mecha-
nisms, the assessment error is reduced to less than 5%, achieving a 15%-20%
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improvement over traditional methods. A three-stage resilience indicator
system of “resistance-recovery-adaptation” is established, with the innova-
tive introduction of the “learning capability (L4)” indicator to quantify the
system’s adaptive ability. The model’s effectiveness is validated using four
heavy rainfall disaster cases in Zhengzhou from 2019 to 2022, and a three-
tier resilience enhancement strategy of “short-term emergency response —
mid-term network optimization — long-term smart upgrades” is proposed. The
results indicate that redundancy design and intelligent scheduling capabilities
are key factors in resilience improvement, with optimized system recovery
time reduced by 12%. This framework provides a dynamic and intelligent
approach for resilience assessment of transportation infrastructure and can
be extended to other infrastructure sectors, offering theoretical and technical
support for disaster prevention and mitigation in smart cities.

Keywords: Urban transportation, infrastructure, resilience assessment, dig-
ital twin, Bayesian Network.

1 Introduction

Urban transportation infrastructure, as a key carrier supporting urban eco-
nomic and social development, directly impacts the sustainable development
of cities and the livelihood security of residents through its safety and
resilience. As an essential component of urban resilience, the resilience of
transportation infrastructure requires more comprehensive systematic plan-
ning [1] to ensure that the city’s transportation infrastructure possesses
the capacity to resist, adapt to, and recover from sudden shocks, thereby
enhancing the city’s overall resilience and safeguarding the safety of urban
residents. However, traditional resilience assessment methods are often con-
strained by static data and overlook the dynamic response characteristics of
transportation systems, making it difficult to achieve real-time and accurate
resilience assessment and optimization decisions [2]. Therefore, constructing
a resilience assessment framework that integrates real-time monitoring and
intelligent reasoning has become a core issue urgently requiring resolution in
current urban transportation infrastructure research.

In recent years, the application of digital twin technology in the trans-
portation field has achieved significant progress. Digital twin technology
maps physical objects in the real world to their digital counterparts in the
digital world [3]. The potential of digital twin technology in generating
virtual models and simulations of real assets and processes has facilitated
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its widespread adoption across various business sectors [4]. Digital twin
technology can significantly reduce uncertainties at all stages of infrastruc-
ture resilience assessment [5]. It enables machines to intelligently perform
tasks such as self-monitoring, investigation, diagnosis, future prediction, and
decision-making [6]. Digital twins and blockchain can effectively address
data-sharing issues between vehicles and infrastructure in transportation net-
works [7]. Based on an improved digital twin architecture, a collaborative
framework for dynamic and static data in intelligent transportation systems
has been constructed [8]. To scientifically assess the resilience of urban public
transportation systems, a resilience assessment model based on structure and
function has been established [9]. A transportation resilience assessment
model has also been proposed, taking into account both passenger demand
and infrastructure supply [10]. The research and application scope of digital
twin technology are expanding, and digital twins are an inevitable trend
for the digitalization of future infrastructure. They can not only transform
collaboration between engineering processes but also assist engineers in
making better decisions through the collection of real-time data and project
analysis (e.g., Zhang et al., 2024). This indicates that current applications of
digital twins in the transportation field are limited to monitoring, whereas this
study achieves a “monitoring-assessment-optimization” closed-loop system.

Although digital twin technology has demonstrated potential in trans-
portation resilience assessment — previous studies have applied digital twins
to monitor traffic conditions (Chen et al., 2023) or Bayesian networks to
assess risks (Tang et al., 2024) — there are three major limitations: first, insuf-
ficient dynamic coupling, as real-time interaction between disaster evolution
and resilience indicators has not been achieved; second, one-sided indicators,
as the quantification of the system’s learning and optimization capabilities
(L4) has been overlooked; and third, the absence of a closed loop, as
assessment results are not directly fed back into optimization decisions. This
study addresses these issues through bidirectional reasoning mechanisms and
dynamic CPT updates, filling the aforementioned gaps and providing a more
comprehensive reference for practical applications. By integrating digital
twin and Bayesian network technologies, this study proposes a “monitoring-
assessment-optimization” closed-loop resilience assessment framework, with
the following key innovations and contributions:

(1) Methodological innovation: For the first time, the real-time data stream
of digital twins is combined with probabilistic reasoning of Bayesian
networks to construct a closed-loop system of “dynamic monitoring-
real-time assessment-intelligent optimization.” Through dynamic CPT
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updates and bidirectional reasoning mechanisms (forward predic-
tion/reverse attribution), the resilience assessment error is reduced to
<5%, an improvement of 15%-20% compared to traditional methods
(e.g., the RCI method).

(2) Innovations in the indicator system: A three-stage dynamic resilience
indicator system encompassing “resistance-recovery-adaptation” is pro-
posed, with the innovative introduction of dynamic indicators such
as “learning capability (L4)” to quantify the adaptive capacity of
transportation systems in post-disaster optimization.

(3) Application Value: Through verification using four flood disaster cases
in Zhengzhou from 2019 to 2022, a three-tier resilience enhancement
roadmap is proposed, consisting of “short-term emergency response,
medium-term network optimization, and long-term smart upgrades,’
thereby facilitating the practical implementation of the technology in
engineering applications.

2 Literature Review

2.1 Resilience

Resilience is defined as a system’s ability, after experiencing an unexpected
event, to withstand shocks, maintain the operation of its essential functions,
and quickly recover its system functions from a crisis. Resilience refers to
the capacity to recover from interruptions caused by natural or man-made
disasters [11]. Many scholars have offered different explanations regarding
the concept of transportation resilience. Bhavathranthan et al., when studying
road networks, defined system resilience as the maximum external shock
disturbance the system can withstand while maintaining its original state of
stability [12]. Cox et al., in their research on passenger transport systems,
described system resilience as the system’s ability to maintain its service
capacity and its rapid “rebound” from external disturbances back to its initial
service level [13]. The concept of resilience has been introduced into urban
transportation systems to mitigate the consequences of their disruptions [14].
The resilience of transportation systems not only refers to the ability to
prevent system failure due to disturbances but also encompasses the sys-
tem’s capacity to adapt, reduce impacts, and avoid catastrophic localized
consequences or complete system failure [15]. Some scholars have also
analyzed transportation resilience from the perspective of its changing state.
Static resilience emphasizes the transportation system’s inherent ability to
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resist interference events and effectively maintain its functions. In contrast,
dynamic resilience places greater emphasis on the rate at which the trans-
portation system recovers after being disturbed by an event, a rate influenced
by the system’s own capabilities and the severity of the external distur-
bance [16]. Researchers internationally and in China have studied numerous
characteristics related to system resilience, such as adaptability, robustness,
preparedness, interdependence, efficiency, recoverability, and redundancy.
Future research should focus on the comprehensive enhancement and gov-
ernance of multi-level and multi-agent transportation infrastructure resilience
from the perspective of emergency management.

2.2 Resilience Assessment

Based on the characteristics of the evolution of comprehensive resilience
stages and the “three-stage” resilience model theory, using real-world case
data from urban waterlogging disasters, a timeline reflecting actual condi-
tions was constructed. This timeline outlines the systematic safety resilience
change process of urban transportation infrastructure throughout the entire
disaster lifecycle — before, during, and after the event, as shown in Figure 1.
Here, t represents time, and R represents system performance, i.e., system
resilience. The first stage (to,¢1) is the initial stable phase of the system
during the early disaster period. During this phase, the system’s resistance
capacity has not yet reached its critical value, so its resilience remains stable.
The second stage (¢1,¢2) is the system damage phase during the mid-disaster
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Figure 1 The changes in system resilience throughout the disaster process.
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period. Due to the impact of heavy rain, urban transportation infrastructure
suffers some damage, causing the system’s resilience to decline to its lowest
state. The third stage (t2,t3) is the recovery phase, representing the recon-
struction state of the transportation infrastructure in the post-disaster period.
During this phase, relevant emergency rescue strategies are implemented to
repair the city’s entire transportation system, restore resources and equipment
such as personnel, power, and transportation facilities, allowing the city’s
system resilience to gradually recover to a new stable state.

2.3 Resilience of Urban Transportation Infrastructure

The urban transportation complex consists of multiple interconnected ele-
ments and networks, including transportation infrastructure, public transit,
modern transportation tools, road networks, traffic networks, intelligent sys-
tems, and organizational management systems. This forms a comprehensive
transportation system characterized by a rational structure, complementary
functions, interconnected networks, and advanced technology. Transportation
infrastructure, as the fundamental facility units providing transportation space
and corridors, is a subsystem within this system, playing the most basic and
essential role in ensuring functionality.

The resilience of urban transportation infrastructure is a component of
the urban transportation resilience system, and its enhancement is an indis-
pensable part of improving the systematic the overall resilience of urban
transportation. According to the jointly published report “Global Engineering
Frontiers 2021 by the Chinese Academy of Engineering, the resilience of
transportation infrastructure refers to its ability to adapt to constantly chang-
ing external environments, continuously learn and self-adjust, withstand
various disasters, and quickly recover to its normal service state, co-evolving
with external disturbances.

New urban transportation infrastructure essentially represents the integra-
tion of new technologies, digital empowerment, and innovative development,
encompassing three levels: intelligent transportation infrastructure, innova-
tive infrastructure, and information infrastructure. When considering the
resilience of road transportation infrastructure, it is crucial to comprehen-
sively consider the systematic distribution characteristics of its infrastructure
network, such as the spatial layout of lines and nodes, as well as the inter-
dependencies and the degree of reliance among the constituent elements of
the road system [11]. Integrating the requirements of new infrastructure,
based on the various constituent elements of road system infrastructure
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and their collaborative operational characteristics, and fully considering the
relevant performance of various network layers that may affect the safety
and resilience of urban transportation infrastructure, specific content that
needs to be considered for the safety and resilience of urban transportation
infrastructure can be summarized and refined. This is detailed in Table 1.

2.4 Analysis of Influencing Factors on Urban Transportation
Infrastructure Resilience

The resilience of transportation infrastructure is driven by the interconnec-
tion and interaction of multiple factors, and variations in the development
of different transportation networks necessitate distinct evaluation indica-
tors to identify diverse influencing factors. Transportation resilience con-
stitutes a multifaceted structure encompassing technical, socio-economic,
and geospatial dimensions [17]. The overarching objective of resilience
enhancement should adopt a multi-dimensional approach, spanning infras-
tructure construction and management, transportation service provision, and
emergency response, to accelerate the improvement of robustness, redun-
dancy, adaptability, recoverability, learning capacity, and adjustability of
transportation infrastructure. Research on resilience assessment methodolo-
gies can generally be categorized into three types: network topology-based
indicators, resilience characteristic indicators, and resilience performance
indicators [18].

When constructing a resilience evaluation framework for transportation
systems, it is essential to holistically consider enhancement dimensions such
as infrastructure management, service provision, and emergency response,
thereby establishing a resilience-oriented construction framework and indi-
cator system across six aspects: organizational management, transportation
risk, facility quality, network capacity, safety assurance, and service provi-
sion [19]. The study of resilience characteristic indicators is a critical step
in the quantitative assessment of transportation resilience, encompassing
key attributes of urban transportation systems, including redundancy, adap-
tation, efficiency, robustness, interdependence, preparedness, flexibility, and
rapidity [20].

Building upon existing literature, this paper analyzes the safety resilience
of urban transportation infrastructure from a macro-level perspective of
overall system capability, adopting a resilience characteristic indicator-
based assessment methodology. By examining the interaction mechanisms
among different network layers within urban transportation infrastructure,
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Table 1 Main components of safety resilience for urban transportation infrastructure

Indicator System Phase

Network Layer

Component Content

Transportation
Infrastructure
Facilities

Intelligent
Transportation
Infrastructure

Resilience of new
urban
transportation
infrastructure

Underground
Space Network

Municipal Pipe
Network

Road Network

Transportation
Network

Emergency
Response
Network

Intelligent
Center

Runoff diversion routes,
ecological drainage systems,
metro transportation network
Pipeline equipment and
facilities performance,
pipeline network standards,
key node measures targeted,
emergency resources security
capacity

Performance of road facilities,
road clearance capacity, road
disaster prevention standards,
emergency evacuation routes
Railroad, rail transportation
integrated hub capacity, traffic
emergency management and
control capacity,
transportation network
connectivity, level of
“digital+” and “smart+”
upgrading of traditional
infrastructures

Completeness of emergency
response institutional
mechanisms, smart linkage of
emergency response plans,
synergistic capacity for
training and exercises, and
capacity to safeguard
€MmEergency response resources
Planning, design,
construction, maintenance,
operation and management of
the whole element, the full
cycle of digital management
level, facilities remote
monitoring, safety early
warning system capacity, the
integration of new
technologies and innovation
capacity
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the influencing factors on system resilience are classified into three major
categories and six distinct phases based on incident progression. Through
expert consultations and analysis of on-site construction logs, the subsystems
corresponding to these six phases are evaluated to identify the primary
resilience characteristics and their underlying influencing factors.

Regarding specific influencing factors, a total of 27 variables were
collected from expert consultations and documented real-world failures in
construction logs. These variables were systematically categorized under
their respective primary resilience characteristics, as illustrated in Table 2.

3 Research Methods

3.1 Digital Twin Architecture of Urban Transportation
Infrastructure System Resilience

A virtual model based on a digital twin is established to simulate the
real-world transportation infrastructure, enabling a better understanding and
optimization of its performance and resilience. The architecture typically
includes:

Data Collection Layer: Various sensors and monitoring systems are used
to collect state data of urban transportation infrastructure, including basic
information, historical maintenance records, and traffic flow data of roads,
bridges, tunnels, traffic signals, etc. Data related to urban transportation
facilities, environment, vehicles, traffic flow, and meteorological conditions
are collected and analyzed to facilitate the construction of subsequent models.

Data Processing Layer: The collected data is processed, fused, and managed.
Data processing includes operations such as data cleaning, format conver-
sion, and feature extraction to facilitate subsequent digital twin modeling
and safety resilience assessment. Data fusion techniques, including Kalman
filtering and deep learning, are applied to the processed data. Subsequently,
the processed data is managed and analyzed using simulation technologies,
deep learning, and neural networks.

Computational Layer: Python, Matlab, BIM, and other tools are used to build
the digital twin model of the processed data from the data processing layer.
This model is a virtual representation of the real transportation infrastruc-
ture, including its physical and functional characteristics. Under real-time
monitoring by sensors and controllers, the digital twin model integrates
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Table 2 Factors affecting the resilience of urban transportation infrastructure

Process Stage Feature Factor Coding
stabilization ~ redundancy Transport Infrastructure Ky
stage Planning and design

specifications
Quality of transport Ko
infrastructure construction
Density of road network Ks
branches
resistance robustness Scale of transport K4
resistance phase infrastructure investment
ability (K) Degree of maintenance of Ks
transport infrastructure
Road accessibility and Kse
stormwater drainage
capacity
connectivity Branch-to-trunk ratio K~
Integration of transport hubs Ks
Evacuation of primary and Ko
secondary routes,
multimodal accessibility
Disruptive Systematicness Systemic functioning of H;
adaptation transport infrastructure
System stability and early H>
warning response capability
Reliable adaptive resilience Hs
of hardware and software
Rapid cooperativity Transport network Hy
recovery connectivity
Disaster response Hs
resilience management capac?ity of

Ability (H) government gg.enc%es

Level of participation of Hs
social forces in disaster

relief

Ability to coordinate H~
resources for emergency

repairs

Building capacity for Hs
transport road emergency

response

Number of disaster drills, Hy

innovative coordination

(Continued)
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Table 2 Continued

Process Stage Feature Factor Coding
institutionalization ~Normative synergies in Hio
emergency response systems
Level of implementation of Hi
emergency management
norms
intelligence Scale of investment in Hi2

research and invention in
smart technologies

Level of digitalization, His
intelligence and internet
connectivity
Capacity for deep Hia
integration of new
technologies
Restorative diversity Level of diversity in L
adaptation transport travel
) Diversity of travel supply Lo
ad?[,) tive Adaptive learnability Overall system stability Ls
ability (L) stability
Learning Optimization Ly

Enhancement Capabilities

multi-source data and continuously trains and optimizes through Bayesian
network models. The optimized model is then simulated and validated to
ensure the effectiveness and feasibility of the optimization measures, using
cloud computing (including big data, artificial intelligence, VR, etc.). The
collected data is transmitted to the backend system through IoT technology,
processed and integrated, and a digital twin model of urban transportation
infrastructure is constructed. The digital twin transportation model should be
able to predict future traffic conditions based on historical data and simulate
and evaluate future intervention measures through simulation technology to
better formulate traffic resilience optimization strategies.

Application Layer: The optimized urban transportation infrastructure model
is applied in practice. Through digital twin technologies, including system
cognition, monitoring diagnosis, and safety resilience prediction, the real-
time state of urban transportation infrastructure is monitored. The digital
twin model is used to assess the safety resilience of urban transporta-
tion infrastructure, including analyzing the infrastructure’s resistance and
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recovery capabilities against various risks (such as natural disasters, traffic
accidents, etc.). Safety resilience assessment can be conducted through sim-
ulation experiments, risk assessment methods, etc. Based on the results of
safety resilience assessment, targeted optimization strategies for the operation
and management of urban transportation infrastructure are formulated using
artificial intelligence, optimization algorithms, etc., based on historical and
real-time data. For example, by adjusting traffic signal control strategies,
improving road layouts, strengthening maintenance and management, and
optimizing traffic flow distribution. This enhances the safety and resilience
of transportation infrastructure, helping to identify and address potential
safety hazards in a timely manner, ensuring the safety and stable operation of
urban transportation infrastructure, ultimately achieving a co-intelligent twin
body in data processing systems, visualization systems, simulation analysis
systems, intelligent decision-making systems, and automatic control systems.
As shown in Figure 2.

3.2 Bayesian Network Theory

A Bayesian Network (BN), also referred to as a Bayes Net, is a directed
acyclic graph (DAG). In this framework, nodes represent random variables,
while the directed arcs signify the conditional probabilistic dependencies
among these variables. The BN methodology, emerging as an integration
of probability theory and graph theory, has gained prominence in system
resilience research due to its capability to visually represent relationships
between variables and effectively handle uncertainties [21]. Its algorithmic
foundation is rooted in Bayesian theory derived from probability and mathe-
matical statistics. Every BN is fundamentally composed of two components:
the network structure, which is a directed acyclic graph, and the network
parameters, typically represented as conditional probability tables (CPTs).
This dual composition allows BNs to characterize the relationships among
variables simultaneously on both qualitative and quantitative levels. Qualita-
tively, the acyclic directed network structure delineates the causal relation-
ships among the various variables. Quantitatively, the conditional probability
tables within the network describe the joint probability distribution of the
variables [22].

Assuming all random variables in a Bayesian Network are denoted as
X1, Xo, ..., Xy, w(X;), representing the set of parent nodes, according to
the Markov independence assumption, the variables at each node are condi-
tionally independent given their parents. Consequently, the joint probability
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Figure 2 Digital twin architecture for resilience in urban transport infrastructure.

distribution of the nodes can be expressed as:
n
P(Xy,..., X,) = [[ P(Xilw(X3))
i=1

Once the parameters and structure of the Bayesian Network (BN) are
specified based on historical data and expert knowledge, the network can be
fully trained. Subsequently, it can be used to infer the probability of events not
occurring, which constitutes the reasoning process of the BN. This capability
allows the BN to quantitatively describe an assessment framework suitable
for urban transportation infrastructure resilience. The BN structure is initially
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defined based on expert knowledge, and the parameters are learned from
sampled data. The network is then employed to infer and predict actual engi-
neering events, thereby enabling quantitative observation, estimation, and
inference of the system’s resilience metrics. A notable feature of Bayesian
networks is their ability to perform deductive reasoning. Unlike traditional
regression algorithms, BN models are not constrained by the direction of
inference; they can perform both forward reasoning (from cause to effect)
and backward reasoning (from effect to cause). Compared to models such as
decision trees and random forests, BNs do not require the pre-determination
of minimal cut sets for deductive reasoning, significantly enhancing compu-
tational efficiency. Consequently, BN models find extensive applications in
fields such as fault diagnosis, data mining, and risk analysis.

Consequently, BN models find extensive applications in fields such as
fault diagnosis, data mining, and risk analysis. BNs excel in probabilistically
handling causal dependencies among different variables [23]. As a tool for
modeling and reasoning complex systems, Bayesian networks, particularly
dynamic Bayesian networks, can be employed to develop large-scale road
network resilience assessment models that explicitly quantify uncertainties
across all stages [24].

Dynamic CPT Update Algorithm

A key innovation of this study is the development of a dynamic mechanism
to update the Conditional Probability Tables (CPTs) of the BN using real-
time data streams from the Digital Twin (DT). This process moves beyond
static BNs, enabling the model to adapt its probabilistic relationships based
on evolving disaster conditions, thereby significantly improving assessment
accuracy.

The algorithm operates in two modes:

1. Event-Driven Update: Triggered when real-time sensor data (e.g., rain-
fall intensity, waterlogging depth) exceeds predefined thresholds.

2. Periodic Batch Update: Executed at fixed intervals (e.g., every 30
minutes during a disaster) to incorporate trends from continuous data.

The core of the update process involves calculating sufficient statistics
from the real-time data and using them to adjust the parameters of the CPTs,
We employ a weighted updating rule, where the influence of new data is
balanced against prior knowledge (the original CPTs) using a forgetting
factor (p, where 0 < p = 1). This factor controls the rate at which old
information is discounted, allowing the model to remain responsive to recent
changes without being overly volatile.
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3.3 Construction of Bayesian Network Resilience Assessment
Algorithm Model

Based on the extracted influencing factor indicators, an index system for mea-
suring urban transportation infrastructure resilience is constructed, providing
a foundation for subsequent Bayesian network modelling, The characteristic
indicators within the resilience measurement index system are designated
as nodes in the Bayesian network, with each node representing a ran-
dom variable related to resilience measurement. The relationships among
nodes are established based on the characteristics of urban transportation
infrastructure and the requirements of resilience measurement, forming the
topological structure of the Bayesian network. These relationships can be
determined using expert knowledge, historical data, or other methods. As
a tool for modelling and reasoning complex systems, Bayesian networks
can be applied to virtually any situation involving probabilities, particu-
larly those where probabilities are imprecise or conditional probabilities
from cause to effect need to be inferred. Therefore, this study employs an
index-based assessment method, constructing a Bayesian causal relationship
model for urban transportation infrastructure resilience on the basis of the
Bayesian network. This model facilitates network inference and predic-
tion of actual events, thereby enabling quantitative observation, estimation,
and inference of resilience metrics for urban transportation infrastructure
systems.

The construction of a BN model typically involves two critical steps:
determining the network structure and setting the Conditional Probability
Tables (CPTs) for the variables. Two common approaches exist for deter-
mining an appropriate network structure and CPT values: (1) utilizing data
mining algorithms to ascertain variable causal relationships and CPT val-
ues from extensive historical data, and (2) employing expert knowledge
and experience to design the network structure and determine conditional
probabilities. The former approach may be inadequate for abstract concepts
due to the lack of precise numerical data for calibrating and learning all
parameters. Additionally, in the context of urban transportation infrastructure
safety resilience, some influencing factors have clear physical meanings and
can be quantitatively calculated using explicit formulas, while others are
difficult to quantify and can only be described qualitatively, often requiring
expert assignment for quantification. Therefore, this study adopts the latter
approach, leveraging expert knowledge and experience to design the network
structure and determine the conditional probabilities. Bayesian networks
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graphically represent joint probability distributions, efficiently encoding
probabilistic relationships among a set of variables [25].
Specific Steps for Bayesian Network modelling:

1. Structure Learning: Based on the 27 factors listed in Table 2, a Directed
Acyclic Graph (DAG) is constructed using an expert knowledge-driven
Hill-Climbing algorithm. The structure is validated using the Bayesian
Information Criterion (BIC) scoring function (Equation (?7?)).

2. Parameter Learning: Conditional Probability Tables (CPTs) are trained
using the Expectation-Maximization (EM) algorithm (implemented via
the MATLAB bnlearn toolbox). The prior probabilities are derived
from the binarized processing of 501 disaster records (classified as
failure/normal).

3. Dynamic Reasoning:

Forward Prediction: Real-time rainfall data is input to calculate the
resilience value, (t).

Backward Diagnosis: When ¢(t) is below a specified threshold, the
model traces back to identify key sensitive factors (e.g., K10 redun-
dancy).

Based on the causal relationships among the factors in Table 2, and
by incorporating additional variable factor nodes to refine the model, a
Bayesian causal relationship model for urban transportation infrastructure
safety resilience is established. This model is grounded in Bayesian network
theory and is depicted in Figure 3.

Based on this causal relationship, establishing a Bayesian network allows
for model training using data, thereby enabling analytical reasoning and pre-
dictive functionalities. By adjusting the occurrence probabilities of factors at
various nodes within the model, the primary factors influencing the resilience
of urban transportation infrastructure under specific real-world conditions
can be identified. Given that different stages of a disaster typically involve
multiple factors affecting the occurrence probabilities of various nodes, the
analysis of sensitive factors becomes crucial during these distinct phases.
Utilizing collected data and statistical methods, the probability distribu-
tions for each node, encompassing both prior and conditional probabilities,
are determined. These distributions serve as the foundation for subsequent
Bayesian network inference.

Leveraging the Bayesian network model and a comprehensive dataset, an
algorithm for assessing the resilience of urban transportation infrastructure is
developed. Through Bayesian network inference, the posterior probabilities
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ratio K7 multimodal accessibility K9
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Reliable adaptive resilience of
hardware and software H3 resistance ability
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Figure 3 Bayesian causal modelling of urban transport infrastructure resilience.

for each node and the resilience metric values are calculated, facilitating the
evaluation of the infrastructure’s resilience level. The effectiveness of the
resilience metric algorithm is validated experimentally, involving testing and
analysis of the optimized transportation system. Known datasets of urban
transportation infrastructure are employed to train the Bayesian network
model, enabling the learning of probability distributions and conditional
dependencies among nodes. Comparisons of resilience metric results across
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different traffic scenarios are conducted to assess the algorithm’s accuracy
and reliability.

Based on experimental outcomes and resilience metric results, the
resilience level of the urban transportation infrastructure is evaluated, lead-
ing to the formulation of corresponding optimization recommendations and
improvement directions. The algorithm model and the resilience metric indi-
cator system can be tailored and optimized according to specific requirements
and challenges. By utilizing the forward and backward inference capabilities
of Bayesian networks, a sensitivity analysis of factors influencing resilience
can be performed across all hierarchical structures of the network. This
process helps identify factors exerting significant influence on the system’s
resilience under varying conditions. Appropriate levels of control measures
can then be implemented based on the degree of variation in the values of
these variable factors. This methodology facilitates the development of an
intelligent feedback system for the urban transportation network, ultimately
aiming to enhance the overall resilience of the system. Model performance
and effectiveness are evaluated using methods such as cross-validation
and hold-out validation. Subsequently, model parameters and structure are
adjusted based on the evaluation results to optimize performance.

Figure 4 illustrates the framework for dynamic resilience assessment and
optimization of urban transportation infrastructure, integrating Digital Twin
(DT) and Bayesian Network (BN) technologies. This framework establishes
a closed-loop system from the physical world to virtual space, enabling real-
time perception, intelligent diagnosis, and proactive control of transportation
infrastructure resilience.

The process begins with the integration of multi-source sensor networks,
incorporating physical monitoring, real-time data streams, and historical
disaster records. These data undergo rigorous cleaning and standardization to
serve as high-quality inputs for the Digital Twin. Acting as a core simulation
platform, the Digital Twin dynamically mirrors the operational state of the
transportation system and incorporates external disaster disturbance models
to generate multi-dimensional resilience indicators. A Bayesian Network
is subsequently employed to model uncertainties and conduct comprehen-
sive resilience evaluation, effectively quantifying system failure risks and
functional retention capabilities under extreme conditions such as heavy
rainfall.

The assessment results drive decision-making: should the resilience level
fall below predefined thresholds, the system autonomously triggers opti-
mization strategies — such as reinforcing critical nodes or redistributing
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Figure 4 Dynamic resilience assessment process for urban transportation infrastructure.

traffic flows — which are then executed in the physical environment through
actuators. This facilitates closed-loop management following an “assessment-
optimization-reassessment” cycle. The framework exhibits self-learning and
adaptive features, as the Digital Twin continuously updates itself based on
historical intervention outcomes, thereby enhancing predictive accuracy and
decision reliability over time.

This framework provides a theoretical model and practical pathway for
resilience management of urban transportation systems. The methodology
combines advanced computational techniques with practical applicability,
offering significant value for enhancing the safety, resilience, and sustainable
development of smart urban infrastructure. In our case study, the algo-
rithm was implemented within the MATLAB bnlearn toolbox environment.
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The forgetting factor p was empirically set to 0.7 through calibration,
ensuring that the model integrated new evidence robustly without overfitting
to transient fluctuations. This dynamic update mechanism is fundamental to
achieving the closed-loop “monitoring-assessment-optimization” system, as
it allows the assessment model to evolve alongside the physical system it
MIITOorS.

4 Case Study
4.1 Case Study and Data Sources

This study selects the Jinshui District of Zhengzhou as the research object
to analyze the impact of four rainstorm and waterlogging disasters occurring
between 2019 and 2022 (June 23, 2019; July 2, 2020; June 30, 2021; July
15, 2022) on the resilience of urban transportation infrastructure. The data
sources include:

Rainfall Data: Accumulated rainfall data for 6 h, 12 h, 18 h, and 24 h on the
day of the disaster were obtained from four rain gauge stations in the area,
with a data precision of 0.1 mm.

Waterlogging Point Data: Records of waterlogging depth, extent, and dura-
tion provided by municipal management departments.

Transportation Infrastructure Data: Including road grades, distribution of
bridges and tunnels, design parameters of drainage networks (diameter, slope,
material), and deployment status of intelligent transportation facilities (e.g.,
sensors, signal control systems).

Emergency Response Data: Records of rescue team dispatch, implementation
time and scope of traffic control measures, and repair project duration.

Expert Survey Data: Multi-round questionnaires were conducted using the
Delphi Method with 10 experts from the fields of transportation, municipal
affairs, and emergency management to obtain subjective evaluations from
experts for node weights and Conditional Probability Tables (CPTs).

During the heavy rainstorms, the sensor damage rate reached as high
as 15%, and historical data contained missing values. The solution adopted
includes: using the Kalman filter algorithm to repair anomalous data; comple-
menting missing parameters by combining expert scoring (Delphi method);
and employing multi-source data fusion (e.g., social media reports + satellite
imagery) for cross-validation.
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4.2 Digital Twin Construction and Data Integration

A virtual mapping model of the urban transportation infrastructure system
is constructed based on digital twin technology real-time monitoring and
dynamic simulation. The specific steps are as follows:

(1) Data Acquisition Layer
Physical Layer: Deploy a multi-source sensor network (e.g., rain gauges,

waterlogging monitors, road sensors, cameras) to collect real-time data on
rainfall intensity, waterlogging depth, traffic flow, and facility status.

Virtual Layer: Integrate Building Information Modeling (BIM) and Geo-
graphic Information System (GIS) to construct a three-dimensional digital
model of transportation infrastructure, including road network topology,
drainage network layout, and transportation hub nodes.

Data Interface: Realize bidirectional data transmission between the physical
world and the virtual model through Internet of Things (IoT) technology to
ensure real-time synchronization.

(2) Data Processing Layer

Data Cleaning: Remove outliers (e.g., sensor failure data) and use a sliding
window algorithm to smooth traffic flow data.

Feature Extraction: Calculate key indicators such as road waterlogging
threshold (percentage of time exceeding design drainage capacity), traffic
network connectivity (based on graph theory algorithms), and emergency
resource response timeliness.

Data Fusion: Utilize Kalman filtering and deep learning methods to fuse
multi-modal data (e.g., rainfall prediction, traffic flow prediction, waterlog-
ging diffusion model) and generate dynamic scenario simulations.

(3) Digital Twin Model Construction

Physical Model: Based on BIM models and historical operation and main-
tenance data, simulate the physical properties of infrastructure (e.g., bridge
load-bearing capacity, risk of drainage pipe blockage).

Behavior Model: Simulate changes in traffic flow and congestion diffusion
paths under different disaster scenarios using traffic simulation software (e.g.,
SUMO).

Rule Model: Embed emergency plan logic (e.g., graded response mech-
anisms, resource scheduling algorithms) to achieve intelligent decision-
making simulation in virtual scenarios.
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4.3 Application of the Bayesian Network Resilience Assessment
Model

(1) Model Construction and Parameter Calibration

Based on the resilience influencing factor system in Table 2, data collected
from the field after a heavy rain disaster in a specific area of Zhengzhou
in 2021, through expert consultation and other methods, were used. The
probability results calculated using Matlab software were imported into a
Bayesian network model constructed using Netica software. By adjusting the
occurrence probability of a specific node, the occurrence probabilities of its
child nodes also change, allowing observation of the relationships between
various factors and enabling effective quantitative analysis.

A Bayesian network model containing 27 nodes (e.g., K1~K7, H1~H14,
etc.) was constructed, with causal relationships between nodes determined
through expert consensus and historical data verification. Conditional Prob-
ability Tables (CPTs): Combined historical fault records (e.g., construction
logs), expert scoring (using a 5-point Likert scale converted to probability val-
ues), and real-time monitoring data to dynamically update CPT parameters.
Model Training: The Matlab BN toolbox was used to process 501 case data
sets through binarization (fault/normal) to calculate node prior probabilities
and conditional probability distributions. The causal relationship diagram for
the urban transportation infrastructure system resilience of a specific area in
Zhengzhou in 2021 is shown in Figure 5.

(2) Resilience Assessment and Dynamic Simulation
Real-time Assessment Process:

a. Data Acquisition: Real-time status data, such as rainfall, waterlogging
depth, and traffic flow, are acquired through the digital twin.

b. State Mapping: Real-time data is mapped to nodes in the Bayesian
network (e.g., a node K6, representing “Road waterlogging depth >
design threshold,” is triggered).

c. Probabilistic Reasoning: Forward reasoning using the Bayesian net-
work calculates the system’s resilience value, while backward reasoning
identifies key sensitive factors.

d. Feedback Optimization: Based on the reasoning results, parameters
of the digital twin model are adjusted (e.g., optimizing drainage pipe
network dispatching strategies), forming a closed loop of “monitoring-
assessment-optimization.”
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Figure 5 Causal relationship diagram of urban transportation infrastructure system
resilience for a specific area in Zhengzhou city.

By inputting the prior probabilities of each node into the Bayesian
network model, the system’s resilience value was found to be 61.3%. Com-
paring the model results with the actual urban transportation infrastructure
resilience during four rainstorm and waterlogging disasters in a specific area
of Zhengzhou between 2019 and 2022 (as shown in Figure 6), it is evident that
rainstorms have a significant impact on the resilience of urban transportation
infrastructure systems. The city’s transportation infrastructure undergoes a
dynamic change process in its resilience, transitioning from the initial stage of
withstanding and preventing the rainstorm, through the dynamic absorption
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Figure 6 Trend of urban transportation infrastructure system resilience under four rainfall
events.

and emergency response phase, to the recovery phase after the rainstorm ends.
This confirms that the probability of the urban transportation infrastructure
remaining undamaged during the disaster response process is largely consis-
tent with the resilience value calculated by this model, indicating the model’s
high reliability. To implement targeted policies during the withstanding,
absorption, and recovery stages of system resilience changes, it is necessary
to identify the sensitive factors influencing the urban transportation infras-
tructure system’s resilience value. Therefore, by adjusting the occurrence
probabilities of factors at various nodes within the model, the primary factors
affecting resilience at different stages can be determined.

(3) Result Analysis

Taking the heavy rainfall event on June 31, 2021, as an example, the specific
process is as follows:

Early disaster stage (tO~tl): Rainfall reached a historical extreme (accu-
mulated rainfall of 278 mm within 6 hours). The digital twin issued an
early warning of “Node J3of the underground pipeline network exceeding
pressure limits,” causing the probability of Bayesian network node K6 (“Road
drainage and sewage capacity”) to rise from 0.32 to 0.87.

Mid-disaster stage (t1~t2): Waterlogging led to the disruption of three main
arterial roads, reducing the traffic network connectivity to 48%. The system
resilience value (t) dropped sharply from an initial 62.5% to 37.1%.

Late disaster stage (t2~t3): After the emergency response was activated,
different repair plans were simulated using the digital twin, and resource
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dispatching routes were optimized. The system resilience recovered to 55.6%
within 72 hours (actual recovery time was 68 hours).

4.4 Sensitivity Analysis and Resilience Optimization Strategies

4.4.1 Forward inference and backward diagnosis

Forward Inference: Assuming the redundancy indicator K10 (Transportation
infrastructure design standards) was increased to 87.5%, the system resilience
value improved to 67.7% (Figure 7), confirming the significant impact of
high-standard design on resilience.

Reverse Diagnosis: Through reverse inference, if the resilience value were to
increase to 75.6% (as shown in Figure 8), K would rise to 50.5%, while the
values of K10 and K12 would increase to 55.6% and 36.4%, respectively.
This indicates that to enhance the prior probabilities of the parent nodes
corresponding to their child nodes, practical and feasible adjustment mea-
sures need to be taken for these two factors. Among them, redundancy K10 is
most affected, suggesting that redundancy has the largest impact proportion
on the resilience value. This provides a quantitative basis for engineering
modifications.
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4.4.2 Spatio-temporal dynamic sensitivity analysis

By leveraging the spatio-temporal simulation capabilities of the digital twin,
we analyzed the key influencing factors across various disaster stages. During
the Resistance Phase, redundancy (K10) and robustness (K4—K7) were iden-
tified as the most sensitive factors. Accordingly, optimization strategies are
proposed to enhance sub-network density and incorporate redundancy into
the drainage system design.

Recovery Phase: Emergency response efficiency (H4~H6) and digitaliza-
tion level (H13) were identified as bottleneck factors. Recommendations
include deploying intelligent dispatching systems and improving real-time
data acquisition capabilities.

4.4.3 Resilience optimization

Strategies Based on the model results, a three-tier roadmap for enhancing
resilience is proposed: Short-term (Emergency Response): Optimize the
intelligent monitoring network for waterlogged areas and establish dynamic
evacuation plans based on digital twins.

Mid-term (Network Optimization): Implement “sponge road” renovation
projects and increase the density of secondary trunk roads and emergency
access routes.

Long-term (Smart Upgrading): Deploy an all-encompassing digital twin plat-
form for transportation infrastructure, enabling pre-simulation and adaptive
optimization across multiple disaster scenarios.

4.5 Model Validation and Comparison

To rigorously evaluate the performance of the proposed Digital Twin-
Bayesian Network (DT-BN) model, we compared it against two established
traditional methods: the Resilience Characteristics Index method (RCI) [18]
and the Network Topology Analysis method (NTA) [10]. The comparison
was conducted using the four Zhengzhou rainfall disaster cases across mul-
tiple performance metrics, including Root Mean Square Error (RMSE) of
resilience prediction, Response Timeliness (time from event onset to model
output), and Robustness (standard deviation of results under Monte Carlo
simulation).

(1) Error Analysis: As shown in Table 3, the average RMSE of the pro-
posed DT-BN model’s predicted system resilience value was 4.2%,
significantly lower than the errors of the static RCI (15.8%) and
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Table 3 Performance comparison of the DT-BN model against traditional methods
Performance Metric DT-BN (Proposed) RCI Method NTA Method Improvement

RMSE 4.2% 15.8% 19.5% ~73-78%
Response Timeliness Near-Real-Time >2 hours >6 hours >90%
Robustness 3.1% 7.5% 9.8% ~59-68%
Uncertainty Handling Excellent Poor Fair -
Dynamic Capability Yes No No -

NTA (19.5%) methods. This demonstrates a substantial improvement
(73-78% reduction in error) in prediction accuracy.

(2) Method Comparison: The DT-BN model demonstrated superior perfor-
mance across all evaluated metrics. Its integration with the digital twin
enables Near-Real-Time assessment, a critical advantage over traditional
methods that require extensive post-disaster data collection and manual
analysis, leading to delays of hours or even days. Furthermore, the
probabilistic nature of the BN provides an Excellent capability to handle
uncertainty and quantify the confidence of assessments, which is a
limitation of the deterministic RCI and NTA approaches.

(3) Robustness Testing: Through 1000-run Monte Carlo simulations under
different rainfall scenarios, the standard deviation of the DT-BN model’s
resilience assessment results was 3.1%, which is 59% and 68% lower
than that of the RCI and NTA methods, respectively. This confirms the
higher stability and reliability of the proposed model under varying and
uncertain conditions.

5 Conclusions
5.1 Summary of Contributions and Findings

This study successfully developed and validated a dynamic resilience assess-
ment and optimization framework for urban transportation infrastructure by
integrating Digital Twin (DT) and Bayesian Network (BN) technologies. The
primary contributions and findings are summarized as follows:

(1) A Novel DT-BN Integrated Framework was Proposed. This frame-
work effectively overcomes the limitations of static data reliance in
traditional assessment methods. It establishes a closed-loop “real-
time monitoring-dynamic assessment-intelligent optimization” system,
enabling a paradigm shift from post-disaster analysis to proactive,
predictive management. The core of this system is a dynamic BN
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algorithm capable of updating Conditional Probability Tables (CPTs)
in real-time based on DT data streams, coupled with a bidirectional
reasoning mechanism (forward prediction and reverse diagnosis). This
innovation resulted in a remarkable reduction in assessment error to
less than 5%, representing a 15-20% improvement over conventional
methods such as the RCI method.

(2) A Comprehensive Resilience Indicator System was Established. Mov-
ing beyond traditional metrics, a three-stage dynamic indicator system
encompassing “resistance-recovery-adaptation” was constructed. A key
innovation was the introduction of the “learning capability (L.4)” indi-
cator, which quantitatively measures the system’s adaptive capacity for
post-disaster optimization and evolution, addressing a significant gap in
existing research.

(3) The Framework was Validated with High Practical Utility. Application
of the model to four heavy rainfall disaster cases in Zhengzhou (2019-
2022) confirmed its accuracy and robustness, with an average prediction
error of only 4.2%. Sensitivity analysis revealed that redundancy design
(K10) and intelligent dispatching capability (H13) are the most crit-
ical factors influencing system resilience. Based on this, a practical
three-tier resilience enhancement strategy was formulated: “short-term
emergency response — mid-term network optimization — long-term smart
upgrades”. Simulation results demonstrated that implementing these
strategies could reduce system recovery time by 12%, providing a clear
and actionable pathway for urban infrastructure management.

5.2 Limitations and Future Work

While the proposed DT-BN framework has demonstrated effectiveness, cer-
tain limitations should be acknowledged, and future research directions are
outlined accordingly.

1. Limitations:

Scenario and Geographical Specificity: The current model is primarily val-
idated against urban waterlogging scenarios caused by heavy rainfall in a
specific geographical context (Zhengzhou City). Its generalization to other
types of extreme disasters, such as earthquakes or cyber-attacks, which
involve fundamentally different failure mechanisms and impact factors on
infrastructure resilience, requires further investigation. Similarly, the model’s
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applicability in cities with distinct geographical features, infrastructure
development levels, or governance structures needs further verification.

Data Dependency and Subjectivity in Calibration: The framework’s accuracy,
particularly during the initial BN parameter learning phase, relies on histor-
ical fault records and expert scoring (e.g., using the Delphi method for CPT
calibration). This process introduces an element of subjectivity and may be
influenced by the availability and quality of historical logs and the specific
expertise of the consulted panel.

Sensor Reliability and Data Scarcity: The framework’s real-time accuracy
heavily relies on high-fidelity, continuous data streams from the Digital
Twin’s sensor network. The model’s performance could be degraded under
prolonged or widespread sensor malfunctions or in data-scarce environments.

Interdependencies Consideration: The model focuses on the resilience of
transportation infrastructure itself. Explicit modelling of complex interde-
pendencies with other critical urban infrastructure systems (e.g., power grids,
communication networks, water systems) is limited. Disruptions in these cou-
pled systems could significantly impact transportation resilience, an aspect
not fully captured.

Human and Organizational Factors: The current factor system primarily
encompasses technical and infrastructural dimensions. A more nuanced
incorporation of human behavior, organizational decision-making processes,
and socioeconomic factors during disasters could further enhance the model’s
comprehensiveness.

2. Future Work:

To address these limitations, future work will focus on the following
directions:

Multi-Hazard Generalization and Cross-Context Validation: Extend the
framework to accommodate other prevalent disaster types and validate it in
cities with diverse characteristics to test its transferability.

Enhanced Data Robustness and Automated Learning: Investigate advanced
data imputation techniques and edge-computing architectures to improve
data reliability. Explore the use of crowdsourced data or more automated
data validation techniques to supplement expert-based calibration, thereby
enhancing objectivity.
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Modelling Multi-System Interdependencies: Incorporate a more explicit rep-
resentation of interdependencies between the transportation network and
other critical infrastructure systems to enable a more holistic assessment of
urban resilience.

Integration of Socio-Technical Factors: Enrich the factor system by including
more detailed human and organizational variables to create a more socio-
technically integrated model.

Advanced Learning Techniques: Explore the integration of Spatio-Temporal
Graph Convolutional Networks (ST-GCN) to better capture dynamic spatio-
temporal dependencies.

Federated Learning Frameworks: Investigate the use of federated learning
paradigms to train the model across multiple cities without sharing raw data,
addressing data privacy concerns.

By addressing these aspects, the proposed framework can evolve into
a more generalized, robust, and comprehensive tool for enhancing the
resilience of urban transportation infrastructure against a wider range of
threats in diverse urban contexts.
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