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Abstract

The demand of open source software is increasing because of the low
cost, high quality, and short delivery. In particular, open source software
is managed by using the bug tracking system. This paper focuses on the
method of reliability assessment based on the deep learning. Then, the Wiener
process is applied to the output value of objective variables. Moreover, several
sensitivity analyses of the parameter of Wiener process are shown as several
numerical examples.
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1 Introduction

Open Source Software (OSS) is distributed as the free of charge on the
Internet. OSS has the advantage that the companies can use the OSS because
it is low cost to implement and can be redistributed. However, as the pop-
ulation of OSS users increases, the number of new fault reports is also
increasing. Simultaneously, the fault correction time becomes large. Then the
fault correction cost is high cost. In this paper, we discuss the application of
Wiener process-based data preprocessing to improve the estimation accuracy
and estimate the fault correction effort for reliability assessment. We also
discuss the machine learning-based software reliability assessment.

OSS software development has no specified testing phase. The OSS faults
are eliminated during the operation phase. In this paper, we discuss the relia-
bility evaluation methods for OSS and propose a reliability evaluation method
using the fault big data in the development environment. Furthermore, we
focus on the characteristics of fault detection events in bug tracking systems.
Also, we analyze by using the deep learning based on data preprocessing.
Then, we consider the influence from Wiener process.

2 Previous Research

2.1 Open Source Software

OSS is well known as the software whose source code is released by the
developer free of charge, and anyone is allowed to freely use, modify, and
redistribute it. The advantage of OSS is that it can be used freely by anyone,
allowing individuals to add functionality to the source code, report vulnera-
bilities, and find and fix bugs. Therefore, the improvement and redistributed
of OSS is performed according to the OSS development cycle. For this
reason, it is currently used by a wide variety of companies and universities.
Representative OSS include Linux, MySQL, Java, and Python, which are
used in many fields such as operating systems, web browsers, server software,
development languages, and databases.

However, OSSRA2021 reports that 84% in 1500 codebases contain OSS,
exacerbating the spread of OSS vulnerabilities. Thus, it can be seen that
there are many global software failures in Cloud OSS, and once a failure
occurs, it is global and the impact surfaces immediately. In addition, OSS
software development differs from general commercial software, because
there is no explicit testing process, and faults are eliminated as they are
used and developed. On the other hand, when we consider the development
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environment, we find that such a development environment is no different
from the intellectual property activity and identical to the fault occurrence
associated with it [1]. In this paper, we discuss the reliability evaluation
method of OSS and propose a reliability evaluation method using fault big
data in the development environment. In addition, we focus on the charac-
teristics of fault generation events in bug tracking systems and analyze them
using deep learning based on data preprocessing. Then, we make a sensitivity
analysis in terms of Wiener process parameter.

2.2 Bug Tracking System

A bug tracking system is a system or tool that manages and tracks the process
from the discovery and reporting of a fault to the assignment of a person in
charge of correcting the fault and the completion of the correction. Functions
include problem reporting and tracking, prioritization, communication, and
history management.

3 Reliability Evaluation

3.1 Software Reliability

Software is a computer program as a product consisting of programs and
documentation created through various development processes. The software
reliability is given as the probability that software will not cause the failure of
a system for a specified time under specified conditions. Moreover, software
reliability can be evaluated by the number of detected faults or the software
failure-occurrence time in the testing phase which is the last phase of the
development process, and it can be also estimated in the operational phase [2,
3, 4].

3.2 Machine Learning

Machine learning is a data analysis technology that is closely related to
artificial intelligence (AI) and deep learning, in which computer systems
learn and acquire patterns and knowledge from a variety of data to make pre-
dictions. These examples include stock price prediction, medicine, language
processing, image processing, and anomaly detection. In addition, the OSS
fault data from the determination and correction are ultimately determined by
the OSS project manager, automation through machine learning will reduce
the development costs, maintenance costs, and time for fault correction. This
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also leads to increase the reliability. Various tools have been developed for
machine learning, and Python, Matlab, and R are commonly used as machine
learning software in programming languages [5].

3.3 Deep Learning

Deep learning is the application of neural networks that reproduce the
structure of human brain neurons. Basically, the deep learning is a machine
learning technique that consists of a neural network with three or more layers
(an input layer, several intermediate layers and an output layer). One of the
main differences between deep learning and machine learning is the differ-
ence in flexibility for quantified data, a feature that enables deeper learning
of complex data by combining multilayer neural networks. At present, the
deep learning technique has been applied to automatic driving, optimization
of advertising systems, and automatic translation [5].

3.4 Software Reliability Assessment Using Machine Learning

Software reliability evaluation using machine learning is one of the methods
to evaluate the probability and quality of software products to work as
predicted. Unlike conventional software reliability evaluation methods such
as test case design and execution, code review and user feedback, and static
analysis tools, this method is highly flexible and enables real-time evaluation.
Because of this characteristic, it has been used in the financial engineering
and the other fields as a predictor of stock prices, and has also been applied
to the prediction of the number of fault findings for software reliability
evaluation [6, 7, 8, 9].

However, the predicting stock prices in financial engineering is different
from predicting the number of fault findings for the purpose of software
reliability assessment. Although the software reliability assessment models
can be applied to the prediction of the number of fault detection for software
reliability evaluation, it is difficult to obtain the same results as the software
reliability growth model because of the problem of estimation accuracy when
the prediction is made over a long period of time.

3.5 Estimated Cumulative Number of Detected Faults

Many software reliability growth models have been developed assuming that
the process of fault detection is an uncertain event [10, 11]. These stochastic
models consist of a continuous physical model with model parameters and
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have the advantage of being able to calculate a variety of evaluation measures,
allowing for long-term predictions. Therefore, not only probabilistic models
but also neural network-based methods have been developed and applied to
various software reliability evaluations, such as research applying time series
analysis, which is used to predict stock prices, to the fault detection process.

However, applying time series analysis, as typified by stock price pre-
diction, to software reliability evaluation has often been difficult due to
differences in stock price trends and fault detection processes. In this paper,
we focus on past problems and discuss improvements to software reliability
evaluation methods using machine learning.

4 Application of the Wiener Process to Fault Big Data
Preprocessing

Considering the optimal fault correction strategies based on deep learning, the
software fault data has been used in many software reliability growth models.
We apply fault correction time to the objective variable in deep learning.
In addition, this paper focuses on the fault correction time and considers a
weight parameter as the contribution of the fault corrector in order to add the
fault corrector information to the optimal correction strategy. As a result, we
define the following equation as the weighted function.

F (i) = (ci − oi)γi. (1)

ci is the fault correction time at the ith fault. oi is the time of fault discovery
at the ith fault. Also, γi represents the frequency of occurrence of the fault
modifier in the ith fault. In this case, (ci − oi) represents the fault correction
time between the (i − 1)th and the ith. Therefore, F (i) represents the ith
weighted fault correction effort. According to increasing of the value of F (i)
increases, the OSS reliability improves.

Next, consider fault big data registered on the OSS bug tracking system.
The software fault discovery process is known as an uncertainty event. Tra-
ditionally, many software reliability growth models have been used in actual
software development. In this case, there are many software reliability growth
models that consider incomplete debugging environments [12]. Considering
such irregularities in the software fault finding process, we define W (i) as the
Wiener process for the white noise σ(i) at the ith fault. The Wiener process
W (i) then has the following properties.

Pr[W (0) = 0] = 1. (2)
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E[W (i)] = 0. (3)

E[W (i)W (i′)] = Min[i, i′]. (4)

Here, E[·] denotes the expected value. In general, Wiener processes are
considered as continuous time. In this paper, since we are considering discrete
events, we assume W (i) as noise for the discrete ith fault. Continuous-time
models based on Wiener processes have also been proposed in conventional
software reliability growth models [13, 14, 15]. In general, the horizontal axis
is treated as a unit of time, but there are examples where it is constructed as a
continuous physical model. In this paper, we assume that the fault correction
process follows a Wiener process and define the following objective function
as the output value of deep learning.

Fω(i) = (ci − oi)γi +W (i), (5)

where W (i) denotes the Wiener process for the ith fault.

5 Numerical Example

Assuming a real OSS environment, we present a numerical example using
fault big data from OpenStack [16], an OSS for cloud computing. Figures 1,
2, 3 and 4 presents the estimated errors for the training and validation data, the
estimated weighted fault correction effort, the scatter plots for the estimated
weighted fault correction effort, and the estimated weighted cumulative fault
correction effort.

Figures 5–9 presents the estimated errors for the training and validation
data, the estimated weighted fault correction effort, the scatter plots for
the estimated weighted fault correction effort, and the estimated weighted
cumulative fault correction effort when the Wiener process is considered.
correction effort.

Comparing 4 and 8, it can be seen that the estimated weighted cumula-
tive fault correction effort in the second half of the estimation is markedly
different, confirming the better fit of 8, which considers the Wiener process.

Furthermore, the mean absolute error rates shown in Figures 4 and 8
were calculated, yielding 11.33% for Figure 4 and 1.64% for Figure 8.
These results confirm the effectiveness of applying the Wiener process in
this method.

In addition, 10, 11, 12 and 13 presents the results of the sensitivity
analysis to the parameterσ in the Wiener process, the results of the sensitivity
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Figure 1 The estimated errors for the training and validation data.

Figure 2 The estimated weighted fault correction effort.
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Figure 3 The scatter plots for the estimated weighted fault correction effort.

Figure 4 The estimated weighted cumulative fault correction effort.
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Figure 5 Estimated errors for training and validation data considering Wiener process noise.

Figure 6 Estimated weighted fault correction effort considering Wiener process noise.
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Figure 7 Scatter plots for estimated weighted fault correction effort considering Wiener
process noise.

Figure 8 Estimated weighted cumulative fault correction effort accounting for Wiener
process noise.
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Figure 9 Scatter plots for estimated weighted cumulative fault correction effort accounting
for Wiener process noise.

Figure 10 Sensitivity analysis results for parameter σ in the Wiener process.
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Figure 11 Sensitivity analysis results for weighted fault correction effort when varying the
parameter σ in the Wiener process (σ = 0.1).

Figure 12 Sensitivity analysis results for weighted fault correction effort when varying the
parameter σ in the Wiener process (σ = 0.05).
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Figure 13 Sensitivity analysis results for weighted fault correction effort when varying the
parameter σ in the Wiener process (σ = 0.025).

analysis to the weighted fault correction effort when varying the parameterσ
in the Wiener process (σ = 0.1). Sensitivity analysis results for weighted
fault-corrected effort for varying the parameterσ in the Wiener process (σ =
0.05), the results of a sensitivity analysis to the weighted fault correction
effort for varying the parameterσ in the Wiener process (σ = 0.025).

These figures show that the noise is small. In particular, he swing width
is large when the σ becomes growth.

6 Concluding Remarks

In this paper, we discussed an OSS reliability evaluation method based
on deep learning. Specifically, this method sets the functions including
development man-hour data and fault correction time as objective variables.
Furthermore, by utilizing the weighted correction effort as learning data
and prediction data, it is considered possible to quickly assign appropriate
correction personnel even in situations where fault data is uncertain.

The method proposed in this study enables the estimation of cumulative
fault correction effort, which can be applied to development man-hour esti-
mates. Furthermore, by utilizing the estimated correction effort for each fault,
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the workload balance among developers can be optimized. Specifically, it
is expected to improve development site efficiency by assigning faults that
require a long time to correct to experienced developers and faults that can be
addressed in a short time to new developers.

In addition, the effectiveness of the proposed method over existing meth-
ods is discussed by presenting an example of reliability evaluation using
actual OSS data in a numerical example. The results confirmed that the
estimation accuracy is appropriate when the noise based on the Wiener
process is applied during the data preprocessing phase.

This paper employed a Wiener process. However, the Wiener processes
have the limitation of being able to represent only continuous and stationary
fluctuations, and cannot adequately capture large-scale discontinuous jumps.
Therefore, a future research topic is to introduce jump-diffusion processes
or Lévy processes to enable the representation of non-stationary and realistic
fluctuations, aiming to construct a reliability evaluation model more suited to
actual operational environments.

The method proposed in this study enables the estimation of cumulative
fault correction effort, which can be applied to development man-hour esti-
mates. Furthermore, by utilizing the estimated correction effort for each fault,
the workload balance among developers can be optimized. Specifically, it
is expected to improve development site efficiency by assigning faults that
require a long time to correct to experienced developers and faults that can be
addressed in a short time to new developers.
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