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Abstract

In recent years, open source software (OSS) has become ubiquitous in every
field of our daily life. Hence, the OSS’s reliability is a significant challenge.
The traditional models, like the software reliability growth model, can not
handle a large scale of data efficiently, while the deep learning provides an
effective method. This paper proposes a multi-input multi-output deep neural
network to predict the fault detection time intervals and the fault modification
time intervals simultaneously. Additionally, we present several numerical
examples with a cross validation conducted with 3 types of data splits.
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1 Introduction

Open Source Software (OSS) is a type of software whose source code is
available to any user and can be redistributed and edited by anyone. However,
it faces challenges in assessing the software reliability due to the large number
of users who are not centralized, which can lead to overwhelming bugs.
Therefore, the software reliability becomes a significant factor. Traditional
methods, such as the software reliability growth model, also have limitations,
including strong assumptions and inadequate handling of complex data. To
overcome those limitations, deep learning has become a new method for
analyzing data.

In this paper, we introduce a multi-input and multi-output deep neural
network model to predict the faults and the fault modification time intervals
between each fault in 2 datasets from OpenStack and Apache HTTP server
by using several numerical examples. For more accurate results, we altered
the ratio between testing data and training data, and verified the validity of
our proposed model.

2 Previous Research

2.1 Open Source Software

OSS refers to software whose source code is given to everyone. In this case,
there are no vendors restricting access to the software’s fundamental code. So,
the OSS developers are usually its users, and they can modify it themselves.
This results in more freedom and faster innovation. However, since there is
no established quality control method, it has unique challenges in assessing
reliability. For it relies on users, and the OSS knowledge of every user differs,
some users may be exposed to safety hazards without knowing it. Despite the
disadvantage, OSS is spreading quickly in our society, such as OpenStack,
Apache HTTP server, and Linux [1, 2, 3, 4].

2.2 Cloud Computing

OpenStack mentioned above is an OSS platform for cloud computing. Cloud
computing is a new paradigm of access to a convenient, on-demand network
that shares the computing resources, for example, networks, databases, and
storage. Cloud computing has several attributes. First, a user can demand
the computing capabilities without contacting the provider. It also allows the
OSS users to use its service on any platform, like computers, smartphones,
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or tablets. The services can often be provided instantly, and it is usually
unlimited. However, the user can only use the pooled services. The users have
no access to manage the service. Additionally, the service usage is monitored
for both the user and provider [5, 6].

2.3 Web Server

A computer having access to the Internet can connect to others, such as acting
as a web server. Simply, a web server is the underlying hardware and software
that receives requests via HTTP from users on the Internet. Once it receives
requests, it deciphers each request and sends files back to the “client,” which
are mostly web browsers. Moreover, it can also store files [7].

2.4 Software Reliability

Lately, the combination of several software called IoT (Internet of Things)
has grown rapidly, and the combination of AI and IoT is developing. The
meaning of this is that software is a major part of our daily lives. Thus, unlike
in the past, software failure can cause major problems in any field nowadays.
Therefore, the software reliability gives us a view of the ability of software to
determine how long it can run without encountering failure [8].

2.5 Deep Learning

Nowadays, it is hard to process big, complex raw data using SRGMs due to
the non-linear, high-dimensional data in bug tracking systems. To solve these
problems, deep learning is used by presenting the characteristics in terms of
more straightforward representations. This means that deep learning learns
and optimizes the features for raw data, which lowers the manual labor. When
more data is added, the model can learn automatically [9, 10]. Furthermore,
with more data, the model is more accurate.

2.6 Deep Neural Network

A deep neural network (DNN) is a type of artificial neural network with
multiple hidden layers between the input and output layers. With numerous
hidden layers, the DNNs build a structure where deeper layers combine lower
layers, which learn simpler features to learn more abstract features. The
shallow networks may face a performance limit on large datasets. However,
DNNs thrive on these, and their ability scales with larger data [11, 12].
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3 Proposed Method

3.1 Learning Method

In this paper, we use the fault data for the software reliability assessment.
We focus on 2 time intervals obtained from the opened and changed columns
from the OpenStack and Apache HTTP server datasets. Then the formula of
the time intervals for detected faults and modifications is as shown:

x(i) = oi − oi−1, (1)

y(i) = max(0, ci − ci−1), (2)

where x(i) is the time interval between the i-th and i−1-th fault, which is
“ opened” , and y(i) is the time interval of fault modification between the
i-th fault and i−1-th one, which is “changed” . Then, oi is the time when the
i-th fault is opened. Similarly, ci is the time when the i-th fault is modified.
It is important to address that the changed time intervals are not calculated
in chronologically changed time, but by the order of fault opened time.
Specifically, this means that the order of the changed time is by their opened
times. Consequently, if a later opened fault was modified before a previously
opened fault, the value of the changed time interval becomes negative. To
avoid this, we use the max function to convert all negative values to 0.
Therefore, when x(i) increases, the software reliability grows. Moreover, the
increase of yi means efficient debugging.

3.2 Model Architecture

Multitask learning can be used to predict OSS quality indicators simultane-
ously, such as fault detection time, fault modification completion time, bug
severity, and defect density. This model uses a multitask learning structure,
which has shared layers learning representations from inputs and branches
out to predict fault detection time and fault modification completion time
simultaneously. Comparing the single-task learning, with the multitask learn-
ing has better performance. First, the multitask learning performs better
because it learns from related tasks and is used as a regularizer. Second, the
multitask learning is more computationally efficient by reducing training and
testing times. Then, the multitask learning makes models more flexible when
faced with less data [13, 14].

This model is a multi-input, multi-output deep neural network, the
architecture is shown in Figure 1.
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Figure 1 The model structure as an example of the proposed deep learning.

This model, implemented in TensorFlow, starts with 2 independent input
layers receiving data from 2 datasets. These 2 inputs are combined into a
concatenation layer. Then, it has 4 hidden layers before branching out, each
layer has 100 neurons. In each branch, it has 4 more layers with 100 neurons
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until the single-neuron output layers. One predicts the opened time interval,
and the other one predicts the changed time interval. This multi-task learning
method allows the model to predict 2 different values simultaneously.

3.3 Training and Evaluation

The activation function of this model is ReLU. For compilation, we use the
“Adam” optimizer. Then, the mean squared error (MSE) is employed as the
loss function, also as the metric for the evaluation of both training and testing.
Overall, the model is trained for 100 epochs with a batch size of 100.

4 Training and Evaluation

In this paper, we use the datasets obtained from OpenStack[15] and the
Apache HTTP server project[16] to show several numerical examples. Since
the OpenStack dataset has more rows of data than the Apache HTTP server
project dataset, we must trim the OpenStack dataset to match the number of
rows in the Apache HTTP server project dataset. We chose the data from
August 30th, 2018. This is because: First, the Apache data ranges from 2002
to 2020, while the OpenStack data ranges from 2012 to 2021. Both datasets
have a wide range of timelines. However, the Apache HTTP server launched
in April 1995, while OpenStack launched in October 2010. This could mean
the data of OpenStack could not be as stable as the Apache one since
OpenStack has been developed for only 2 years. Second, instead of choosing
random rows of data from the OpenStack dataset, choosing consistent data
from 2017 onwards can represent the current state of this dataset.

To ensure this model is not sensitive to a random train-test data split,
we perform a cross-validation. This model uses cross-validation to verify its
robustness and validity. This method is used to make sure that its results and
performances do not depend on a specific data split. Therefore, it offers a
reliable measurement of robustness. We use 3 different data splits: 90% for
training and 10% for testing, 80% to 20%, and 70% to 30%. The following
features in both datasets are used for the objective variables:

• Fault detection time
• Fault modification completion time

The other features that are used as explanatory variables are:

• Bug ID
• Fault assignee
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• Fault reporter
• Software product
• Software component
• Fault resolution
• Fault resolution status
• Hardware type
• Operation system type
• Fault severity
• Software version
• Fault Summary
• Software component/Operation system type
• Software component/Hardware type

Then, we use the frequency encoding from the obtained datasets.

4.1 Model Performance (10% testing data)

First, we run this model with 10% data as testing data. Figures 2–8 present
the estimated error for validation and training data of the fault detection time
intervals, the estimated error for validation and training data of the fault
modification time intervals, the estimated fault detection time intervals, the
estimated fault modification time intervals, the estimated scatter plot of fault
detection time intervals, the estimated scatter plot of fault modification time
intervals, and the estimated OSS performability.

Performability is a new metric. We introduced to provide a comprehensive
assessment of OSS reliability. The performability is defined as

per =
ypred1

ypred1 + ypred2
, (3)

where ypred1 is the predicted fault detection time intervals and ypred2 is
the predicted fault modification time intervals. It ranges from 0 to 1. If the
performability is high, it means that the bugs have been reduced and high
efficiency in debugging. On the other hand, the bugs might be overwhelming
and low efficiency in debugging if performability is low.

4.2 Model Performance (20% testing data)

Second, we run this model with 20% data as testing data for cross-validation.
Figures 9–15 present the estimated error for validation and training data of the
fault detection time intervals, the estimated error for validation and training
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Figure 2 The estimated error for validation and training data of the fault detection time
intervals (In the case of 90% training data).

Figure 3 The estimated error for validation and training data of the fault modification time
intervals (In the case of 90% training data).
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Figure 4 The estimated fault detection time intervals (In the case of 90% training data).

Figure 5 The estimated fault modification time intervals (In the case of 90% training data).
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Figure 6 The estimated scatter plot of fault detection time intervals (In the case of 90%
training data).

Figure 7 The estimated scatter plot of fault modification time intervals (In the case of 90%
training data).
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Figure 8 The estimated OSS performability (In the case of 90% training data).

Figure 9 The estimated error for validation and training data of the fault detection time
intervals (In the case of 80% training data).
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Figure 10 The estimated error for validation and training data of the fault modification time
intervals (In the case of 80% training data).

Figure 11 The estimated fault detection time intervals (In the case of 80% training data).
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Figure 12 The estimated fault modification time intervals (In the case of 80% training data).

Figure 13 The estimated scatter plot of fault detection time intervals (In the case of 80%
training data).
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Figure 14 The estimated scatter plot of fault modification time intervals (In the case of 80%
training data).

Figure 15 The estimated OSS performability (In the case of 80% training data).
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data of the fault modification time intervals, the estimated fault detection
time intervals, the estimated fault modification time intervals, the estimated
scatter plot of fault detection time intervals, the estimated scatter plot of fault
modification time intervals, and the estimated OSS performability.

4.3 Model Performance (30% Testing Data)

Finally, we run this model with 30% data as testing data for cross-validation.
Figures 16–22 present the estimated error for validation and training data of
the fault detection time intervals, the estimated error for validation and train-
ing data of the fault modification time intervals, the estimated fault detection
time intervals, the estimated fault modification time intervals, the estimated
scatter plot of fault detection time intervals, the estimated scatter plot of fault
modification time intervals, and the estimated OSS performability.

4.4 Discussion

Table 1 shows the MSE results for each split. These results show that the 10%
testing split has the lowest MSE for the fault detection time intervals. In terms
of the fault modification time intervals, all splits have high MSEs.

Figure 16 The estimated error for validation and training data of the fault detection time
intervals (In the case of 70% training data).



68 Shan Jiang et al.

Figure 17 The estimated error for validation and training data of the fault modification time
intervals (In the case of 70% training data).

Figure 18 The estimated fault detection time intervals (In the case of 70% training data).
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Figure 19 The estimated fault modification time intervals (In the case of 70% training data).

Figure 20 The estimated scatter plot of fault detection time intervals (In the case of 70%
training data).
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Figure 21 The estimated scatter plot of fault modification time intervals (In the case of 70%
training data).

Figure 22 The estimated OSS performability (In the case of 70% training data).
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Table 1 MSE results for different training/testing splits
Training Data Test Total Test MSE Test MSE

Percentage Loss (Detection) (Modification)
90% 45022.7305 204.4940 44504.8594
80% 48041.8398 2071.6621 45554.9727
70% 54799.2344 847.7702 53473.3203

Figures 2, 3, 9, 10, 16, and 17 show that the errors for training of both
target variables are consistently decreasing over epochs. For the validation
errors, they spike and are not stable. This suggests that there may be an
overfitting problem.

Figures 4, 6, 11, 13, 18, and 20 show that this model underpredicts the
unusual spikes. However, it focuses on the accuracy of normal values over
the outliers.

Figures 5, 7, 12, 14, 19, and 21 show that this model follows the general
trends. However, it underestimates or overestimates the volatile parts of this
dataset. From the scatter plots, we can see that many predictions are spread
along the axes. This is because during the preprocessing of the data, many
values are set to 0. However, we can see that the scatter points are dropped
around the ideal prediction line.

4.5 Limitations

While this method provides a robustness check for our model based on OSS
datasets, it is limited in proprietary software (PS) reliability assessment. This
is mainly because of the difference between OSS and PS. PS has limited and
consistent user feedback, while OSS has feedback from the public, which
results in inconsistent feedback. The model trained on OSS datasets will not
learn the representative of PS. Consequently, the results of cross-validation
may not generalize well in PS reliability assessment [17].

This model may have an overfitting problem. It is shown that as the
number of epochs increase, the validation errors also increase and are not
stable, whereas the training errors consistently decrease. Additionally, this
model has trouble predicting outliers. It underpredicts unusual spikes in fault
detection time intervals and misses some volatile values of fault modification
time intervals.
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5 Concluding Remarks

In this paper, we propose a multi-input multi-output deep neural network in
order to predict the fault detection time intervals and the fault modification
time intervals simultaneously from OpenStack and Apache HTTP server
project data sets. We also make a cross validation on 3 different data splits:
10%, 20% and 30% testing data to validate this model’s robustness. Also, we
introduced performability as a new metric for software reliability.

For future work, there are several improvements that can be made. First,
this model mainly focuses on features of bug tracking systems, adding other
multimodal features, such as code metrics and version history, can improve
reliability assessment. Second, this model faces a problem of overfitting and
an inability to predict outliers. To solve these problems, we can use early
stopping and other ways to handle negative values of the fault modification
time intervals. Finally, adopting this model to PS is a challenge too. Using
transfer learning can help the results of cross-validation be generalized to PS
reliability assessment [18, 19, 20].
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