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Abstract

Mitigating crop loss and maximizing resource usage in agriculture are con-
tingent upon the timely and precise identification of wheat illnesses. In this
paper, we offer a YOLOv8-based method that uses drone-captured images to
detect wheat diseases in real time. Four distinctive image classes represent
our dataset: Ground, Yellow Rust, Brown Rust, and Healthy. Smart spray
drones can target disease management by recognizing non-crop regions in the
field, a task made possible in large part by the Ground class. This class allows
our model to distinguish between areas that need to be treated and those that
don’t, improving chemical spraying accuracy and cutting down on waste.
Using data gathered from wheat fields, the model was trained and tested, and
it performed excellently in differentiating between crops that were diseased
and those that weren’t. The model achieved a highest precision of 0.803 and
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recall of 0.850 across various classes and the overall performance included
a mean average precision of 0.605, demonstrating robust performance in
field conditions, which qualifies it for use in agricultural monitoring systems
that operate in real-time. This effort is a step toward automated, data-driven
precision agriculture, which will assist farmers in allocating resources and
managing diseases in a timely and effectively manner.

Keywords: YOLOvVS, drone imaging, machine learning, precision farming,
disease detection.

1 Introduction

Wheat disease detection is a critical challenge in agriculture, as diseases such
as Brown Rust and Yellow Rust can significantly reduce crop yield and qual-
ity [1]. These fungal infections spread rapidly, particularly under favourable
conditions, leading to widespread damage if not controlled in time. Early
detection is essential because it allows for timely intervention, reducing
the severity of the outbreak and preventing its spread across large areas of
farmland. By identifying diseased plants early, farmers can apply targeted
treatments, such as fungicides, more efficiently, thereby saving resources and
minimizing the environmental impact of overuse. Moreover, early detection
helps ensure food security by preserving wheat production, which is a staple
crop globally. Automated detection systems, particularly those using drones
and advanced image processing techniques, can greatly enhance the ability
to monitor large fields in real-time, offering a scalable solution for timely
disease management [2].

YOLOV8 (You Only Look Once version 8) is the latest iteration of the
YOLO family of object detection models, known for their speed and accuracy
in real-time detection tasks [3, 4]. YOLO models are based on a single-stage
detection approach, where an image is processed in a single pass to identify
multiple objects and their locations simultaneously. Unlike traditional object
detection methods, which involve multiple steps, YOLO simplifies the pro-
cess by predicting both bounding boxes and class probabilities directly from
the full image in one go. YOLOv8 uses more advanced architecture compared
to its predecessors, improving detection precision, especially in complex or
cluttered images. This is crucial for detecting small objects, such as diseased
spots on wheat leaves. YOLOv8 offers more streamlined tools for training
and fine-tuning the model, making it easier to modify and deploy for specific
tasks like wheat disease detection with customized classes [5-7].
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Drone imagery has emerged as a powerful tool in modern agriculture,
revolutionizing crop monitoring and pest management. By using unmanned
aerial vehicles (UAVs), or drones, farmers can capture high-resolution images
and data over vast fields, providing valuable insights into crop health, soil
conditions, and pest infestations. Equipped with advanced sensors like RGB
cameras, multispectral or thermal sensors, drones allow farmers to monitor
crops more efficiently and at a scale impossible with traditional methods.
Drone imagery offers precise, high-resolution data, enabling the detection of
subtle changes in plant health, such as early signs of disease or pest activity.
This allows for timely intervention before issues escalate. Drones can provide
real-time data, helping farmers make informed decisions quickly. This is
particularly important for time-sensitive tasks like disease management or
irrigation scheduling [8-10].

The early and accurate detection of crop diseases is essential for main-
taining healthy crops, protecting yields, and ensuring food security. Diseases
such as fungal infections, rusts, and blights can spread rapidly, often going
unnoticed until they have caused significant damage. By identifying diseases
early, farmers can intervene before widespread infection occurs, minimizing
crop loss and protecting future harvests. This also reduces treatment costs,
as early detection allows for targeted pesticide or fungicide applications,
which lowers chemical usage and prevents unnecessary environmental harm.
Furthermore, controlling diseases early helps preserve crop quality, ensuring
that infections do not degrade the appearance or nutritional content of the
produce, which is crucial for market value [11].

Preventing the spread of diseases is another major benefit of early detec-
tion. By containing infections to a localized area, farmers can stop them from
spreading to other parts of the field or even to neighbouring farms. This
containment is vital for large-scale farming operations. Early detection also
enhances resource management by enabling precision farming techniques,
where treatments are focused on specific areas rather than being applied
uniformly across the entire field [12—-14].

We developed a real-time wheat disease detection system using YOLOVS,
an advanced object detection model, combined with drone-captured imagery
to address the challenge of timely and precise identification of wheat ill-
nesses [15]. The work was conducted in several key steps: First, we collected
a dataset consisting of four distinct image classes — Ground, Yellow Rust,
Brown Rust, and Healthy — captured by drones in wheat fields at GBPUAT
Pantnagar. A total of 335 labelled images were used for training, with an
additional 64 labelled images reserved for validation. The next step involved
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training the YOLOvV8 model on this dataset to detect and classify the images
based on the specific crop diseases or healthy conditions. YOLOv8 was
selected for its speed, accuracy, and ability to handle cluttered or complex
images, making it particularly suitable for detecting small disease spots on
wheat leaves. The model uses a single-stage detection approach, allowing
it to simultaneously predict bounding boxes and class probabilities, which
enabled fast and effective disease identification in real-time [16, 17]. The
model’s ability to differentiate between diseased and healthy areas can
reduces chemical usage and improves resource management. The integration
of Ground images played a crucial role in the model’s ability to recognize
areas that do not need pesticide treatment, further optimizing the spraying
process. The overall performance of the model, with a highest precision
of 0.803 and recall of 0.850, demonstrated its effectiveness in real-world
field conditions. This level of performance provides a robust foundation
for real-time agricultural monitoring and disease management, offering a
scalable solution for precision farming. This approach represents a significant
step towards automated, data-driven solutions for crop health monitoring,
enabling farmers to efficiently allocate resources and mitigate crop loss due
to diseases, thereby ensuring the sustainability and productivity of wheat
farming [18-20].

2 Literature Review

Na Ma et al. (2023) proposed a lightweight real-time wheat seed detec-
tion model, YOLOvVS-HD, built upon the YOLOVS architecture. The model
introduces several innovations to enhance both efficiency and accuracy.
First, shared convolutional layers are incorporated into the YOLOVS detec-
tion head, significantly reducing the number of parameters and achiev-
ing a more lightweight design, which improves the model’s runtime
speed.

Rosemary Ngozi Ariwa et al. (2024) presented a novel approach to plant
disease detection utilizing the YOLO deep learning model, implemented
using Python and its associated libraries. The researchers employed the
YOLOVS8 algorithm to develop a maize leaf detection system, which signifi-
cantly outperformed other machine learning algorithms such as CNN (84%),
KNN (81%), Random Forest (85%), and SVM (82%). The YOLOv8-based
system achieved an impressive accuracy of 99.8%, highlighting its superi-
ority in detecting maize leaf diseases compared to traditional classification
methods.
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Baohua Yang et al. (2022) Proposed an improved YOLOv4 (you only
look once v4) with CBAM (convolutional block attention module) including
spatial and channel attention model was proposed that could enhance the fea-
ture extraction capabilities of the network by adding receptive field modules.
In addition, for improving the generalization ability of the model, not only
local wheat data (WD), but also two public data sets (WEDD and GWHDD)
were used to construct the training set, the validation set, and the test set.

Henry O. Velesaca et al. (2021) presents a comprehensive survey
on recent computer vision-based food grain classification techniques. It
includes state-of-the-art approaches intended for different grain varieties.
The approaches proposed in the literature are analyzed according to the
processing stages considered in the classification pipeline, making it easier
to identify common techniques and comparisons.

Tu-Liang Lin et al. (2022) employ Faster Region-Convolutional Neu-
ral Networks (R-CNNs) and Mask R-CNNs to develop a sophisticated
knowledge-based system for the automatic identification of plant pests and
diseases. Their work stands out by combining object detection and instance
segmentation techniques to handle complex agricultural images, which often
contain overlapping leaves, occlusions, and variable lighting conditions.
Results demonstrated that Mask R-CNN achieved superior performance in
detecting and segmenting diseased areas compared to Faster R-CNN, espe-
cially in scenarios where the affected regions were irregularly shaped or
partially hidden.

Sapna Nigam et al. (2023) proposed an EfficientNet architecture-based
model for the automatic identification of major wheat rust diseases. To
develop and evaluate the model, they prepared a comprehensive dataset
specifically targeting wheat rusts. In addition to EfficientNet, they explored
various classical Convolutional Neural Network (CNN) architectures, includ-
ing VGG19, ResNet152, DenseNet169, InceptionNetV3, and MobileNetV2,
for comparing the performance in wheat rust disease detection.

B. Nageswararao Naik et al. (2022) proposed a method for detecting and
classifying chilli leaf diseases using a squeeze-and-excitation-based Convolu-
tional Neural Network (CNN) model. To enhance the accuracy and robustness
of the model, they utilized 12 different pretrained deep learning networks,
including AlexNet, DarkNet53, DenseNet201, EfficientNetBO, InceptionV3,
MobileNetV2, NasNetLarge, ResNet101, ShuffleNet, SqueezeNet, VGG19,
and XceptionNet. By leveraging these architectures, their approach aims to
effectively identify and classify various chilli leaf diseases, contributing to
improved agricultural disease management.
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Objectives

1. To develop a YOLO-based real-time detection model for wheat diseases
using drone-captured images, aiming to accurately classify wheat health
into four categories: Ground, Yellow Rust, Brown Rust, and Healthy.

2. To enhance smart spraying capabilities by utilizing the Ground class
to identify non-crop areas, thereby improving the targeting accuracy of
pesticide and fungicide applications while reducing chemical waste.

3. To investigate the impact of drone imagery on precision agriculture,
exploring how UAV technology can provide high-resolution data for
early detection of crop diseases, optimizing resource allocation, and
ensuring timely intervention.

3 Materials and Methods
3.1 Dataset

A dataset was developed for drone-based monitoring to detect wheat crop
diseases in real time, consisting of various images captured directly from the
fields of GBPUAT Pantnagar. These images represent four key categories:
Brown Rust, Yellow Rust, Healthy crops, and Ground. The dataset was
carefully compiled to ensure comprehensive coverage across these categories.
A total of 335 labelled images from the four classes — Ground, Healthy,
Brown Rust, and Yellow Rust — were used to train the proposed YOLOvVS
model, with an additional 64 labelled images used for validation. Ground
images play a vital role in automating drone-driven pesticide spraying by
helping the model identify areas where pesticide application is not needed.
This extensive dataset enables the model to accurately distinguish between
diseased crops and ground areas, promoting targeted and effective disease
management in agriculture.

3.2 Data Preprocessing and Annotation

For data preprocessing and annotation, several steps were undertaken to
enhance the quality and diversity of the dataset, ensuring better model perfor-
mance. To address the potential imbalance and improve the model’s ability to
generalize, various data augmentation techniques such as rotation, flipping,
and zooming were applied. These augmentations helped simulate different
real-world conditions, such as varying perspectives and scales, which are
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commonly encountered during drone-based image capture in the field. By
augmenting the data, we were able to significantly increase the variability
within the dataset, which enhances the model’s robustness when identifying
disease patterns and ground areas under different circumstances.

For the image annotation process, we have utilized the Labellmg tool,
a widely-used annotation software that allows manual labelling of objects
within images. Each image was carefully annotated to define bounding boxes
around areas of interest corresponding to four key classes: Brown Rust,
Yellow Rust, Healthy crops, and Ground. This manual annotation process
ensured precise and accurate labelling, which is critical for the proposed
YOLOvV8 model to effectively learn the features of each class. The detailed
annotations, combined with the augmented dataset, created a solid foundation
for training the model in detecting wheat diseases and ground areas in real
time.

3.3 YOLOv8 Model Architecture

1. Input Layer:
Drone Captured Images (4 Classes: Brown Rust, Yellow Rust,
Healthy, Ground): The input to the model consists of drone-captured
images taken from wheat fields. These images cover four main cate-
gories:
Brown Rust and Yellow Rust (both are diseases affecting wheat crops),
Healthy (images of wheat crops without any visible diseases),
Ground (images of non-crop areas such as soil or empty patches). These
classes provide the necessary variety for training the model to distin-
guish diseased areas from healthy crops and ground regions [21-23].
Augmentation (Rotation, Flipping, Zooming): To improve the robust-
ness of the model and allow it to generalize better, various data
augmentation techniques are applied. These include:
Rotation: Rotating the images at different angles to simulate drone
movements.
Flipping: Horizontally and vertically flipping the images to account for
different drone perspectives.
Zooming: Zooming in and out on images to reflect changes in altitude
and distance from the crops. These augmentations increase the dataset’s
variability, helping the model recognize features under different condi-
tions.
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2. Backbone:
Feature Extraction Layers: The backbone of the YOLOvV8 model is
responsible for extracting meaningful features from the input images.
This process includes:
Detecting edges, textures, color patterns, and shapes from the input
images.
Learning key characteristics that differentiate between diseased and
healthy crops, and ground areas. Common backbones like CSPDarkNet
or other convolutional networks used in YOLO help build hierarchical
feature maps from the input data.
The backbone operates on multiple scales, allowing it to capture both
fine details (such as disease spots on leaves) and larger, more general
patterns (such as crop health or soil background). The proposed model
has 225 layers, 3,011,628 parameters, and 3,011,612 gradients [24, 25].

3. Neck:
FPN/PAFPN (Feature Pyramid Network / Path Aggregation Feature
Pyramid Network): The Neck serves as a bridge between the Backbone
and the Head. It refines the extracted features by:
Enhancing multi-scale feature extraction, which is crucial for detecting
objects of varying sizes. For instance, rust diseases can appear as small
patches, while ground areas are large and continuous.
Combining low-level and high-level feature maps from the Backbone
to ensure that the model is effective at detecting both fine and broad
features in the images.
Using FPN (Feature Pyramid Networks) or PAFPN (Path Aggregation
Feature Pyramid Networks), which aggregate information from different
layers of the backbone to ensure that important details are preserved at
every scale [26].

4. Head:
Bounding Box Prediction: The Head predicts the location of objects
(in this case, diseased areas, healthy crops, and ground) by outputting
bounding boxes. This is done by:
Predicting coordinates (X, y, width, height) that define the boundary
around each object in the image.
Each bounding box corresponds to one of the four classes (Brown Rust,
Yellow Rust, Healthy, or Ground). The model generates multiple boxes
for different objects in the image and refines them during training.
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Class Prediction: Along with predicting the bounding boxes, the model
also needs to classify what each detected object is. The class prediction
head is responsible for:
Assigning a class to each bounding box, determining whether it contains
Brown Rust, Yellow Rust, Healthy crops, or Ground.
This classification is done using probabilities or confidence scores,
which reflect how sure the model is about its prediction. The class with
the highest score is chosen as the label for the object [27-29].

5. Output:
Labelled Bounding Boxes (Brown Rust, Yellow Rust, Healthy,
Ground): The final output consists of bounding boxes around the
detected objects, each labelled with one of the four categories (Brown
Rust, Yellow Rust, Healthy, or Ground). These bounding boxes are
essential for identifying diseased regions that need treatment or areas
(like ground) where no action is necessary.
Confidence Scores for Disease Classification and Ground Identifica-
tion: Along with the bounding boxes, the model provides confidence
scores for each classification. These scores range from 0 to 1 and
represent the model’s certainty about the predicted class.
These confidence scores are crucial for making decisions about pes-
ticide spraying since high-confidence predictions are more reliable
for targeting diseased areas, while low-confidence predictions might
require further inspection. Figure 1 below illustrates the key steps of
the YOLOVS architecture [30-32].

3.4 YOLOvS Architecture and its Advantages

YOLOVS8 belongs to the YOLO family of real-time object detection models. It
builds on the advances made by its predecessors (such as YOLOvV7 and earlier
versions) while incorporating key improvements in accuracy, speed, and flex-
ibility. The architecture of YOLOVS is designed to efficiently perform object
detection, classification, and localization tasks. YOLOVS typically uses a
version of the CSPDarknet backbone, which was introduced in YOLOV4.
CSPDarknet is a variation of the Darknet architecture that uses Cross-Stage
Partial connections. YOLOVS uses a modified version of the Feature Pyra-
mid Network (FPN) and Path Aggregation FPN (PAFPN) [33]. The most
highlighted advantages of YOLOvS8 model are listed below.
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-Labeled Bounding Boxes

-Confidence Scores for
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Figure 1 The key steps of the YOLOVS architecture.

Anchor-Free Detection: Simplifies model design and training, leading to
improved performance on smaller datasets.

Enhanced Multi-Scale Feature Extraction: Improves object detection
across different object sizes, making it more effective for applications like
disease detection in agriculture.

Speed and Accuracy Balance: YOLOvS achieves real-time detection speeds
while maintaining high detection accuracy.

Efficient Use of Resources: Designed to run on devices with limited compu-
tational power, such as drones, making it ideal for real-time monitoring and
spraying applications in agriculture [34—36].

3.5 Training Process

The training of the proposed YOLOv8 model for wheat disease detection
was conducted using Google Colab with a Tesla T4 GPU (15,102 MiB
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Figure 2 Visualization of training bounding boxes detected by YOLOvVS model for wheat
disease detection.

VRAM), which provided ample computational resources for handling the
model’s requirements. The training environment utilized YOLOv8.2.99, run-
ning on Python 3.10.12 and PyTorch 2.4.1 with CUDA support (cul2l),
ensuring compatibility with the hardware. This setup enabled efficient GPU
acceleration, reducing training time and optimizing performance. The model
architecture consists of 168 layers with 3,006,428 parameters, and no gradi-
ents were retained in the final fused model. The training involved setting the
initial learning rate to 0.01, with a batch size of 16 to balance computational
efficiency and learning. The model was trained for 100 epochs, using the
Adam optimizer with a momentum of 0.9 and a weight decay of 0.0005 to
prevent overfitting and improve generalization. The class 0 represents the
“Ground”, class 1 represents the “Healthy”, class 2 represents the “Yellow
Rust”, and the class 3 represents the “Brown Rust”. The Figures 2, 3, and 4
display the training samples of the YOLOvV8 model. They provide a visual
representation of the training process of the YOLOv8 model, showcasing
its ability to detect multiple classes (ground, healthy, and diseased crops)
across a variety of augmented images. The bounding boxes with class labels
demonstrate how well the model has learned to localize and classify regions
within drone-captured wheat field images.
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Figure 3 Visualization of training bounding boxes detected by YOLOvVS model for wheat
disease detection.
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Figure 4 Visualization of training bounding boxes detected by YOLOv8 model for wheat
disease detection.
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3.6 Evaluation Metrics

Evaluation metrics are essential to assess the performance of an object
detection model like YOLOVS. These metrics help to understand how well
the model is detecting and classifying objects in images. For object detection
tasks, especially for models like YOLOVS, the evaluation is generally based
on precision, recall, average precision (AP), and mean average precision
(mAP), along with additional performance indicators such as F1-score and
inference time [37, 38].

Precision: Precision measures the accuracy of the positive predictions made
by the model. In object detection, it is defined as the ratio of true positive
detections (correctly detected objects) to all detections (true positives + false
positives).

Recall: Recall measures the model’s ability to find all the relevant objects
in the images. In object detection, it is the ratio of true positives (correct
detections) to the total number of ground truth objects (true positives + false
negatives).

Average Precision (AP): Average Precision is a comprehensive metric that
considers both precision and recall across different confidence thresholds. AP
is calculated as the area under the precision-recall curve. The higher the AP,
the better the model is at detecting objects at various confidence levels.

Mean Average Precision (mAP): mAP is the mean of the average precision
values for all classes in a dataset. It is widely regarded as the primary perfor-
mance metric for object detection models like YOLOvV8. mAP is calculated
by averaging the AP over different classes and Intersection over Union (IoU)
thresholds [39, 40].

C
mAP =1/C / APi
=1

o Common mAP Thresholds:

o mAP at 0.5: This evaluates AP with IoU set at 0.5, which means
a detection is considered correct if the IoU between the predicted
and ground truth box is at least 0.5.

o mAP at [0.5:0.95]: This evaluates AP across multiple loU thresh-
olds ranging from 0.5 to 0.95 in steps of 0.05, providing a more
stringent and detailed evaluation of the model’s performance.
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F1-Score: The F1-score is the harmonic mean of precision and recall, provid-
ing a single metric that balances both. It is especially useful when precision
and recall are important, and neither can be neglected.

Inference Time: Inference time refers to the amount of time taken by the
model to process an input image and produce a prediction. For real-time
object detection applications, such as drone-based crop monitoring, inference
time is crucial for assessing the model’s efficiency.

Confusion Matrix: The confusion matrix is a visualization tool used to
understand the performance of a classification model. It summarizes the
counts of true positives, true negatives, false positives, and false negatives
across all classes [41-43].

4 Results And Discussion

Figure 5 presents the recall-confidence and precision-confidence curves,
while Figure 6 shows the Fl-confidence and precision-recall confidence
curves. The graph represents four classes: Ground (blue), Healthy (orange),
Yellow Rust (green), and Brown Rust (red). Recall-Confidence Curve for the
different classes in the YOLOvVS8 model’s evaluation, shows the relationship
between recall and confidence for each class in the dataset. The thick blue line
represents the combined performance of the model across all classes, with a
recall of 0.91 at a confidence threshold of 0.0. This indicates strong overall
detection ability when confidence thresholds are low. The YOLOvS model

Recall-Confidence Curve Precision-Confidence Curve

— Ground
Healthy
— Yellow_Rust
— Brown_Rust
— aldasses091at0000 08

— Ground
Healthy
— Yellow_Rust
— Brown_Rust
=== all classes 1.00 at 0.957

Recall

Confidence Confidence

Figure 5 Recall-confidence and precision-confidence curves for YOLOv8 model.
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Figure 6 F1-confidence and precision-recall curves for YOLOv8 model.

demonstrates strong detection capabilities, with high recall for healthy crops
(above 0.8) even at higher confidence levels.

The precision-confidence graph demonstrates the precision for the four
classes: Ground (blue), Healthy (orange), Yellow Rust (green), and Brown
Rust (red), along with the overall performance (thick blue line). The thick
blue line, representing the combined performance for all classes, shows that
the model achieves perfect precision (1.00) at a confidence threshold of
0.957. The combined precision (thick blue line) reaches 1.00 at a confidence
threshold of 0.957, demonstrating that at high confidence levels, the model
makes highly accurate predictions across all classes. The YOLOv8 model
achieves perfect precision (1.00) for all classes when operating at a high
confidence threshold, emphasizing its capability to make highly accurate
predictions with fewer false positives.

In Figure 7, the training and validation performance of the model for
wheat disease detection across 100 epochs is shown. The training box loss
decreased consistently from approximately 2.2 to 1.0 over 100 epochs. This
indicates improved localization of bounding boxes as training progressed.
The training classification loss reduced significantly from around 3.5 to
approximately 1.0. This suggests the model effectively learned to classify the
different wheat disease categories. The Distribution Focal Loss (DFL) loss
steadily decreased from 2.2 to 1.3, reflecting improvements in bounding box
regression. The validation box, classification, and DFL losses followed simi-
lar trends to the training losses. They started higher and gradually decreased
to approximately 1.5, 2.0, and 2.0 respectively. Precision started at a moderate
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Figure 7 Training and validation performance metrics of the YOLOv8 model for wheat
disease detection across 100 epochs.

level with some fluctuations but improved steadily. By the end of training,
it stabilized at around 0.7. Recall also showed improvement, starting at 0.0
and increasing to approximately 0.55. This indicates the model’s ability to
correctly identify positive samples improved over time. The mAP @50 metric
increased steadily from near 0.0 to approximately 0.7. This highlights the
model’s accuracy in detecting wheat diseases at high IoU thresholds. The
mAP@50-95 metric also improved from near 0.0 to around 0.3. This reflects
the model’s robustness across varying loU thresholds.

During the training phase, the model performs well for Healthy and
Brown Rust, with high accuracy shown by diagonal values in both normalized
and standard matrices (e.g., 0.95 for Healthy and 0.61 for Brown Rust).
However, Yellow Rust is challenging to classify, with significant misclassifi-
cations into Brown Rust and Background. Ground and Background classes
also show some confusion, likely due to visual similarities. Overall, the
model demonstrates strong performance, but further optimization is needed
to enhance the detection of Yellow Rust and minimize misclassifications.
Figure 8 demonstrate model’s overall strong performance, with notable
strengths in detecting Healthy and Brown Rust. Table 1 provides a compre-
hensive summary of all the performance metric values, presented in a tabular
format. Figures 9 to 12 display the training and validation images generated
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Figure 8 Confusion matrices representing model performance.

Table 1 Training and validation performance metrics of the YOLOv8

Initial ~ Final

Metric Value  Value Trend

Training Box Loss 2.2 1.0 Consistently decreased, indicating improved
bounding box localization.

Training Classification 3.5 1.0 Significant reduction, reflecting better disease

Loss classification accuracy.

Training DFL Loss 2.2 1.3 Gradual decline, showing enhanced regression
for bounding box coordinates.

Validation Box Loss 2.75 1.5 Decreased steadily, suggesting better
generalization in localization.

Validation 10.0 2.0 Sharp decline, confirming effective disease

Classification Loss classification on validation data.

Validation DFL Loss 35 2.0 Gradual reduction, reflecting improved
generalization in bounding box regression.

Precision (B) 0.0 0.7 Increased steadily, indicating better
identification of true positives.

Recall (B) 0.0 0.55  Improved consistently, reflecting the model’s
ability to capture more true positives.

mAP@50 (B) 0.0 0.7 Demonstrated steady improvement, highlighting
accuracy at high IoU thresholds.

mAP@50-95 (B) 0.0 0.3 Improved gradually, reflecting robustness across

varying IoU thresholds.
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Table 2 Performance metrics across all classes

Class Images Instances Precision (P) Recall (R) mAP@50 mAP@50-95
All 78 104 0.661 0.572 0.605 0.367
Ground 11 22 0.724 0.682 0.749 0.372
Healthy 13 20 0.631 0.850 0.791 0.581
Yellow Rust 28 29 0.803 0.423 0.531 0.336
Brown Rust 26 33 0.484 0.333 0.350 0.181

after model training, highlighting the detected disease classes during both the
training and validation phases.

During the validation, the model achieved a commendable precision of
0.661 and a recall of 0.572 across all classes. The mean Average Preci-
sion (MAP@50) is 0.605, reflecting the model’s strong ability to localize
and classify objects accurately. The mAP@50-95, a more stringent metric
assessing localization performance across varying IoU thresholds, reached
0.367, providing a solid foundation for real-time applications like smart
spraying. Table 2 below presents the overall performance across all classes.

Ground Class: The model performs exceptionally well in detecting ground
areas with a precision of 0.724 and a high recall of 0.682, showcasing its
ability to identify non-plant areas effectively. The mAP@50 score for this
class is 0.749, indicating that the model provides accurate bounding box pre-
dictions with high confidence, making it suitable for excluding unnecessary
areas from spraying. The mAP@50-95 score of 0.372 further validates its
robustness in varying IoU thresholds.

Healthy Class: The model’s detection of healthy plants is particularly strong,
with an excellent recall of 0.850, demonstrating that it is highly effective at
identifying healthy wheat plants. A precision of 0.631 and mAP@50 of 0.791
indicate that the model is reliably identifying healthy crops, contributing
positively to overall field monitoring. The mAP @50-95 score of 0.581 shows
that even at stricter IoU thresholds, the model maintains its accuracy, ensuring
minimal misclassifications.

Yellow Rust Class: Yellow rust detection shows precision of 0.803, indicat-
ing the model’s ability to make highly confident predictions for this disease.
Though the recall is lower at 0.423, the model’s precision in detection ensures
that when it identifies yellow rust, it does so with a high degree of certainty.
The mAP@50 of 0.531 indicates that the model still maintains reasonable
detection performance, while the mAP@50-95 score of 0.336 suggests areas
for further refinement in detecting this class at higher IoU thresholds.
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Brown Rust Class: Although the brown rust class achieved a relatively lower
precision of 0.484 and recall of 0.333, the mAP@50 score of 0.350 indicates
that the model is still able to detect and localize brown rust cases. This is
particularly significant given that brown rust detection is challenging due
to its visual similarity to healthy crops in certain conditions. Despite this,
the model shows room for improvement, and with further fine-tuning, its
performance could improve in this area.

5 Discussion

The YOLOv8 model presented in this study for wheat disease detection
demonstrates promising potential for real-time agricultural applications,
particularly in precision farming and disease management. The model’s
performance across four distinct classes — Ground, Healthy, Yellow Rust, and
Brown Rust — shows a high level of accuracy in identifying and classifying
areas within the wheat fields, which is critical for tasks such as targeted spray-
ing and crop monitoring. The overall model performance metrics, including
a precision of 0.661, recall of 0.572, and a mAP@50 of 0.605, indicate that
the YOLOVS architecture is well-suited for detecting the defined classes with
a high level of accuracy. These metrics provide confidence in the model’s
ability to effectively localize and classify different classes in real-world
scenarios. The mAP@50-95 of 0.367 is also a solid baseline for agricultural
applications, particularly given the complexity of drone-captured images,
which include variations in lighting, crop density, and disease severity. The
model’s ability to detect the ground class is particularly strong, with precision
at 0.724 and recall at 0.682. The model exhibited excellent performance in
detecting healthy wheat plants, with a recall of 0.850 and mAP@50 of 0.791,
demonstrating its capability to accurately identify unaffected crops. For the
Yellow Rust class, the model achieved a precision of 0.803, showcasing its
ability to make highly confident predictions when yellow rust is present.
Although the recall is lower at 0.423, the model’s high precision ensures
that false positives are minimized. The detection of brown rust proved to be
more challenging, with a precision of 0.484 and a recall of 0.333. Despite
these lower values, the model was still able to achieve a mAP@50 of 0.350,
indicating that brown rust was localized and detected to a reasonable extent.

These results underscore the applicability of the YOLOvV8 model for
real-time wheat disease detection in agricultural settings. The model’s high
precision for healthy crops and non-crop areas (ground) ensures that the
system is reliable in distinguishing between diseased and non-diseased areas,
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which is crucial for optimizing resource allocation in precision agriculture.
The model’s robustness in detecting yellow rust with high precision is
particularly beneficial in managing this common wheat disease.

However, there is room for improvement, particularly in the detection
of brown rust, where additional training or data augmentation techniques
could help improve recall and overall detection accuracy. Similarly, opti-
mizing the model to handle varying degrees of disease severity and visual
complexities may further improve its performance, especially under different
environmental conditions such as lighting and crop density variations.

In future work, we aim to refine the model through techniques such as
transfer learning, where pre-trained weights can be fine-tuned on larger, more
diverse datasets. Additionally, incorporating more advanced augmentation
techniques and experimenting with different loss functions may help in
balancing precision and recall, particularly for more challenging classes like
brown rust. Furthermore, deploying the model in field conditions using drone-
based real-time inference will provide valuable insights into its practical
performance and areas for improvement.

The objective of integrating the model with smart spray drones aims to
revolutionize crop disease management by automating detection and response
processes in large-scale agricultural operations. YOLO, a real-time object
detection algorithm, can be employed to identify early signs of crop diseases,
pests, or other anomalies by processing high-resolution images captured by
the drones. These drones, equipped with advanced sensors and cameras, can
scan vast agricultural fields in a fraction of the time it would take for manual
inspections. YOLO-based system can instantly identify and classify various
disease symptoms, such as leaf discoloration or wilting, which are often
subtle and difficult to detect with the naked eye.

The advantages of such a framework are numerous. First, it enables
precise, data-driven decision-making by providing farmers with timely and
accurate insights into the health of their crops. This eliminates the need
for widespread pesticide use and reduces the risks of over-spraying, as the
drones can deliver treatment directly to affected areas, optimizing resource
use. Furthermore, the system’s automation ensures consistent monitoring of
large fields, reducing human error and labor costs. For example, in cotton
farming, a smart spray drone integrated with YOLO could identify a local-
ized infestation of worms and deploy targeted pesticide application, saving
both time and cost compared to blanket spraying. This approach not only
enhances crop yield but also promotes more sustainable farming practices by
minimizing environmental impact.
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6 Conclusion

The YOLOvS8 model offers a highly effective solution for real-time wheat
disease detection. Its strong performance in detecting ground areas and
healthy crops makes it well-suited for use in precision agriculture, while
its high precision in detecting yellow rust ensures accurate identification
of diseased areas. The model provides a solid foundation for scalable,
real-time agricultural applications that can enhance crop monitoring and
disease management in wheat farming. The YOLOv8-based model can be
integrated with farm management systems to assist farmers in making data-
driven decisions. By providing real-time feedback on disease outbreaks and
crop health, the system could guide spraying schedules, irrigation planning,
and harvesting, leading to improved crop management efficiency. Future
enhancements could involve integrating the YOLOvV8 model with drone
and satellite imagery for wider area surveillance and multi-spectral analy-
sis. Additionally, incorporating temporal data and environmental parameters
(such as humidity, temperature, and soil health) through IoT sensors could
significantly improve disease prediction accuracy. Deploying the system via
mobile or edge devices can make it more accessible to farmers in remote
areas, promoting widespread adoption of smart farming technologies.
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