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Abstract

In complex and uncertain scenarios, multi-attribute decision-making
(MADM) presents a significant challenge, especially when existing MADM
approaches fail to distinguish among the ranking orders (ROs) of alternatives.
An important tool to address such challenges is the use of aggregation
operators (AOs), which integrate multiple input values into a single repre-
sentative output. Therefore, in this study, we introduce new operational laws
for intuitionistic fuzzy numbers (IFNs) and propose an advanced intuitionistic
fuzzy weighted geometric (AIFWG) AO for aggregating IFNs. We also inves-
tigate essential properties of the proposed AIFWG AO, such as idempotency,
monotonicity, and boundedness. These properties confirm the reliability of
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the proposed AIFWG AO, making it well-suited for real-life decision-making
applications. Building on this, we present a new MADM approach under
the IFN framework using the proposed AIFWG AO. To validate the effec-
tiveness and robustness of the proposed MADM approach, we solve three
MADM problems. The outcomes clearly demonstrate that our method not
only addresses the shortcomings of existing MADM approaches but also
provides a more reliable ranking of alternatives in uncertain situations.

Keywords: Aggregating operator, IFNs, ranking order, MADM.

1 Introduction

Multi-attribute decision-making (MADM) addresses difficult situations by
considering numerous attributes. It is crucial in real-life decision-making,
particularly when there are significant repercussions or several options to
consider. This article explains how MADM may improve decision-making
for individuals and organizations. MADM can be used in several disciplines,
including business, engineering, economics, healthcare, and politics. In busi-
ness, MADM is used to select the best supplier, hire workers, make lucrative
investments, and determine the best marketing approach. In engineering,
MADM is used to optimize design, material selection, and system perfor-
mance. In healthcare, MADM evaluates treatment effectiveness, allocates
resources, and assesses quality. In politics, MADM is utilized to make policy
decisions, prioritize initiatives, and distribute resources.

However, uncertainty is an unavoidable aspect of decision-making pro-
cess. To deal with this, several approaches have been developed, one of
these is the famous Fuzzy Set Theory (FST) introduced by Zadeh [33] in
1965, which has become quite well-known. Fuzzy Sets (FS) have opened
up new ways of making decisions, giving us a more nuanced and better
option than traditional methods when faced with the mystery of ambiguity.
By incorporating membership grade (MG) rather than binary classification,
FST provides a powerful way to model uncertainty and vagueness. FST’s
impact can be felt in many areas of academia, as it brings new life to several
fields. Also, a lot of other works were made using Fuzzy Set extensions.

In 1986, Atanassov [2] introduced the notion of intuitionistic fuzzy sets
(IFSs), which alongwith a MG also incorporate a non-membership grade
(NMG) satisfying the condition 0 ≤ MG +NMG ≤ 1, where MG ,NMG ∈
[0, 1]. Compared to traditional FSs, IFSs provide enhanced flexibility in mod-
eling uncertain information. Since then, numerous researchers have widely
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utilized the notion of IFSs in various decision-making applications [3–5, 7,
9, 10, 15–18, 26, 28, 31, 32, 34]. Krishankumar et al. [15] proposed entropy
measure for IFSs and applied it to select the cloud vendor. Garg et al. [9]
proposed distance measure and based on it, developed a decision-making
model within the context of IFSs. Patel et al. [18] introduced similarity
measures for IFSs and applied them to face-recognition and software quality
assessment. Augustine [3] developed correlation coefficient for IFSs and
applied it solve MADM problems. Thao and Chou [26] proposed entropy
measure and similarity measure for IFSs and applied them to evaluate soft-
ware quality. Dhankhar and Kumar [5] developed an MADM approach based
on the proposed possibility degree measure for IFNs. Mahanta and Panda [17]
proposed a distance measure for IFSs and used it to solve various decision-
making problems. Zou et al. [34] developed improved IF weighted geometric
AOs within the context of IFNs. Garg and Kumar [7] presented an improved
possibility degree measure for IFNs and employed it develop an MADM
approach. Patel et al. [19] proposed similarity measure for IFSs and presented
an image fusion approach. Thao et al. [27] developed a distance measure for
IFSs using score function and proposed a MADM approach based on the
proposed distance measure.

Aggregation operator (AO) is an important aspect of solving MADM
problems. It is a mathematical tool used to aggregate multiple preference
values into single value. In the area of AOs, a lot of work has been done
by researchers [1, 8, 11, 14, 20–24, 30]. Senapati et al. [24] presented new
operational rules for IFNs and weighted AOs based on Aczel-Alsina t-norm
and t-conorm. Seikh and Mandal [23] proposed IF AOs based on Dombi
norms and used them to solve MADM problems. Alcantud [1] introduced IF
weighted geometric AOs and utilized them to solve group decision-making
problems. Rahman et al. [20] presented logarithmic AOs under the IFN
environment. Khan et al. [14] proposed IF power AO based on Schweizer-
Sklar norms within the context of IFN environment. Unver [29] proposed
weighted arithmetic and geometric AOs based on defined Gaussian norms
under the context of IFNs. Hussain et al. [12] developed prioritized geometric
and weighted prioritized geometric AOs based on Sugeno-Weber norms and
proposed a decision making approach to identify the best digital security
method. Sharma et al. [25] introduced power arithmetic and weighted power
arithmetic AOs based on Einstein norms and developed a MADM approach
based on them within the IF environment. Hussain et al. [13] proposed AOs
based on Hamy mean and Aczel-Alsina norms and developed a decision
making model based on them to evaluate the construction material.
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1.1 Research Gaps and Motivations of This Study

The research gaps identified in the literature and the underlying motivations
for this study are outlined as follows:

(i) Several existing AOs used to handle the intuitionistic fuzzy information
fails to effectively capture uncertainty and provide less accurate decision
outcomes. Thus, there is a need to develop more flexible AO which
ensures reliable and robust decision making outcomes.

(ii) In this study, we observed that the MADM approaches proposed by Garg
and Kumar [7] and Zou et al. [34] exhibit limitations, particularly in their
inability to differentiate the ranking orders of alternatives under certain
conditions. Therefore, it is essential to develop a new MADM approach
that overcomes these shortcomings presented in the MADM approaches
of Garg and Kumar [7] and Zou et al. [34] and provide reliable results.

1.2 Contributions of This Study

The main contributions of this study are outlined as follows:

(i) We present new operational laws for IFNs including, multiplication
operation and scalar power operation.

(ii) We introduce an advanced intuitionistic fuzzy weighted geometric
(AIFWG) AO to aggregate the information. We also examine key desir-
able properties of the proposed AIFWG AO, such as idempotency,
monotonicity and boundedness.

(iii) We present a novel MADM approach for the IFNs environment by using
the proposed AIFWG AO.

(iv) We present a comparative analysis to highlight the strengths of the pro-
posed MADM against existing MADM approaches given in [7, 34]. The
proposed MADM approach is highly effective and applicable approach
for addressing the MADM problems within the environment of IFNs.

To achieve the above objectives, this paper is organized in the following
manner: Section 2 covers the preliminaries relevant to this study. In Section 3,
we present new operational laws for intuitionistic fuzzy numbers (IFNs)
and develop an advanced intuitionistic fuzzy weighted geometric (AIFWG)
aggregation operator. Section 4 introduces a novel MADM approach based
on the proposed AIFWG operator for IFNs. Section 5 provides illustrative
examples to demonstrate the proposed MADM approach and highlights its
advantages compared to existing MADM approaches. Finally, Section 6
highlights major findings and suggests future study directions.
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2 Preliminaries

Definition 1 [2]. In universal set X , an IFS IF is represented by

IF = {⟨x, η(x), υ(x)⟩|x ∈ X}

where η(x), υ(x) ∈ [0, 1], represents MG and NMG of x to IF , respectively,
such that 0 ≤ η(x) + υ(x) ≤ 1 holds, and in turn, the hesitance of x to IF is
defined as π(x) = 1 − η(x) − υ(x), where 0 ≤ π(x) ≤ 1, x ∈ X . Usually,
the pair ⟨η, υ⟩ is called an IFN.

Definition 2 [2]. For comparing two IFNs Φ1 = ⟨η1, υ1⟩ and Φ2 = ⟨η2, υ2⟩
the operating rules are given as:

(i) Φ1 ⪰ Φ2 ⇔ η1 ≥ η2 and υ1 ≤ υ2;
(ii) Φ1 = Φ2 ⇔ η1 = η2 and υ1 = υ2.

Definition 3 [6]. For the IFNs Φ1 = ⟨η1, υ1⟩,Φ2 = ⟨η2, υ2⟩ . . . , . . . ,
and Φn = ⟨ηn, υn⟩, the aggregated value by using the intuitionistic fuzzy
Einstein weighted geometric interactive averaging (IFEWGIA) AO is given
as follows:

IFEWGIA(Φ1,Φ2, . . .Φn)

= <2 {
∏n

t=1(1− υt)
φt −

∏n
t=1(1− ηt − υt)

φt}∏n
t=1(1 + υt)φt +

∏n
t=1(1− υt)φt

,∏n
t=1(1 + υt)

φt −
∏n

t=1(1− υt)
φt∏n

t=1(1 + υt)φt +
∏n

t=1(1− υt)φt >. (1)

where φt denotes the weight of the IFN Φt, φt ∈ [0, 1],
∑n

t=1 φt = 1, and
t = 1, 2, . . . , n.

Definition 4 [34]. For the IFNs Φ1 = ⟨η1, υ1⟩, Φ2 = ⟨η2, υ2⟩ . . . , . . . , and
Φn = ⟨ηn, υn⟩, the aggregated value by using the improved intuitionistic
fuzzy weighted geometric (IIFWG) AO is given as follows:

IIFWG(Φ1,Φ2, . . .Φn) = <1− 1

λ

(
1−

n∏
t=1

(1− λ(1− ηt))
φt

)
,

1− 1

λ

(
1−

n∏
t=1

(1− λ(1− υt))
φt

) > (2)

where φt denotes the weight of the IFN Φt, φt ∈ [0, 1],
∑n

t=1 φt = 1, t =
1, 2, . . . , n and 0 < λ < 1.
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Definition 5 [7]. Consider Φ1 = ⟨η1, υ1⟩ and Φ2 = ⟨η2, υ2⟩ be two IFNs,
then the possibility degree measure for comparing Φ1 and Φ2 is defined as:

(i)

P (Φ1 ⪰ Φ2) = min

(
max

(
1 + η1 − 2η2 − υ2

π1 + π2
, 0

)
, 1

)
, (3)

where, either π1 ̸= 0 or π2 ̸= 0.
(ii) If π1 = π2 = 0, then

P (Φ1 ⪰ Φ2) =


1: η1 > η2

0: η1 < η2

0.5: η1 = η2

. (4)

3 Advanced Intuitionistic Fuzzy Weighted Geometric
Aggregation Operator

In this section, we introduce the advanced intuitionistic fuzzy weighted
geometric (AIFWG) aggregation operator (AO) to aggregate the intuitionistic
fuzzy numbers (IFNs).

Definition 6. Let Φ = ⟨η, υ⟩, Φ1 = ⟨η1, υ1⟩, Φ2 = ⟨η2, υ2⟩, . . . and Φn =
⟨ηn, υn⟩ be IFNs. The operation laws proposed for these IFNs are outlined
below:

(i) Φ1⊗Φ2⊗· · ·⊗Φn = ⟨1− 1
ϵ (1−

∏n
t=1(1−ϵ(1−ηt))),

1
ϵ (1−

∏n
t=1(1−

ϵυt))⟩
(ii) Φκ = ⟨1− 1

ϵ (1− (1− ϵ(1− ηt))
κ), 1ϵ (1− (1− ϵυt)

κ)⟩
where κ > 0 and 0 < ϵ < 1.

Definition 7. The proposed AIFWG operator for aggregating the IFNs Φ1 =
⟨η1, υ1⟩, Φ2 = ⟨η2, υ2⟩ . . . , . . . , and Φn = ⟨ηn, υn⟩ is shown as follows:

AIFWG(Φ1,Φ2, . . .Φn) =

n⊗
t=1

Φφt
t

= Φφ1
1

⊗
Φφ2
2

⊗
. . .
⊗

Φφn
n (5)

where φt represents the weight of IFN Φt, φt ∈ [0, 1],
∑n

t=1 φt = 1, t =
1, 2, . . . , n.
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Theorem 1. For the IFNs Φ1 = ⟨η1, υ1⟩, Φ2 = ⟨η2, υ2⟩ . . . , . . ., and Φn =
⟨ηn, υn⟩, the aggregated value by using the proposed AIFWG AO is an IFN
and given as follows:

AIFWG(Φ1,Φ2, . . .Φn) = <1− 1

ϵ

(
1−

n∏
t=1

(1− ϵ(1− ηt))
φt

)
,

1

ϵ

(
1−

n∏
t=1

(1− ϵυt)
φt

) > (6)

where φt represents the weight of IFN Φt, φt ∈ [0, 1],
∑n

t=1 φt = 1, t =
1, 2, . . . , n and 0 < ϵ < 1. In this study, we take ϵ = 0.99 for the proposed
AIFWG operator stated in Equation (6).

Proof. Let Φ1 = ⟨η1, υ1⟩, Φ2 = ⟨η2, υ2⟩ . . . , . . ., and Φn = ⟨ηn, υn⟩ be n
IFVs. By using the proposed operating rules given in Definition 6, for t =
1, 2, . . . , n, we have

Φφt
t =

〈
1− 1

ϵ
(1− (1− ϵ(1− ηt))

φt),
1

ϵ
(1− (1− ϵυt)

φt)

〉
,

n⊗
t=1

Φφt
t =

〈
1− 1

ϵ

(
1−

n∏
t=1

(1− ϵ(1− ηt))
φt

)
,

1

ϵ

(
1−

n∏
t=1

(1− ϵυt)
φt

)〉
.

Hence, by using Equation (5), we have

AIFWG(Φ1,Φ2, . . .Φn) =
n⊗

t=1

Φφt
t ,

AIFWG(Φ1,Φ2, . . .Φn) = <1− 1

ϵ

(
1−

n∏
t=1

(1− ϵ(1− ηt))
φt

)
,

1

ϵ

(
1−

n∏
t=1

(1− ϵυt)
φt

) >.
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Let η = 1− 1
ϵ (1−

∏n
t=1(1−ϵ(1−ηt))

φt) and υ = 1
ϵ (1−

∏n
t=1(1−ϵυt)

φt).
We must show that η and υ meet the following attribute:

(i) 0 ≤ η ≤ 1 and 0 ≤ υ ≤ 1,
(ii) 0 ≤ η + υ ≤ 1.

First, we prove that 0 ≤ η ≤ 1. Since Φ1 = ⟨η1, υ1⟩, Φ2 =
⟨η2, υ2⟩ . . . , . . ., and Φn = ⟨ηn, υn⟩ are the IFNs, we get 0 ≤ ηt ≤ 1,
0 ≤ υt ≤ 1 and 0 ≤ ηt + υt ≤ 1 for all t = 1, 2, . . . , n. It implies that
0 ≤ (1 − ηt) ≤ 1 for all t = 1, 2, . . . , n. Since 0 ≤ ϵ ≤ 1, 0 ≤ φt ≤ 1 and∑n

t=1 φt = 1, we get 0 ≤ (1 − ϵ(1 − ηt))
φt ≤ 1 for all t = 1, 2, . . . , n. It

implies that 0 ≤
∏n

t=1(1 − ϵ(1 − ηt))
φt ≤ 1. Hence, 0 ≤ η ≤ 1. Similarly,

we can prove that 0 ≤ υ ≤ 1. Now, we prove that 0 ≤ η + υ ≤ 1. We have

η + υ = 1− 1

ϵ

(
1−

n∏
t=1

(1− ϵ(1− ηt))
φt

)
+

1

ϵ

(
1−

n∏
t=1

(1− ϵυt)
φt

)

= 1− 1

ϵ

(
n∏

t=1

(1− ϵυt)
φt −

n∏
t=1

(1− ϵ(1− ηt))
φt

)
≤ 1.

Since η ≥ 0 and υ ≥ 0, we get η + υ ≥ 0. Hence, 0 ≤ η + υ ≤ 1.

Example 1. Let Φ1 = ⟨0.3, 0.5⟩, Φ2 = ⟨0.5, 0.4⟩, and Φ3 = ⟨0.2, 0.7⟩ be
three IFNs with corresponding weights φ1 = 0.4, φ2 = 0.2, and φ3 = 0.4.
The aggregated value of these IFNs, obtained using Equation (6), is

AIFWG(Φ1,Φ2,Φ3) = <1− 1

0.99

1−

(1− 0.99(1− 0.3))0.4.
(1− 0.99(1− 0.5))0.2.
(1− 0.99(1− 0.2))0.4

,

1

0.99

1−

(1− 0.99× 0.5)0.4.
(1− 0.99× 0.4)0.2.
(1− 0.99× 0.7)0.4

 >
= ⟨0.2831, 0.5768⟩.

Property 1 (Idempotency). Let Φ1,Φ2, . . . and Φn be IFNs and let the
weights of the IFNs Φ1,Φ2, . . . and Φn be φ1, φ2, . . . and φn, respectively,
where φt ∈ [0, 1],

∑n
t=1 φt = 1 and ∀ t = 1, 2, . . . , n. If Φ1 = Φ2, . . . =

Φn = Φ, then
AIFWG(Φ1,Φ2, . . . ,Φn) = Φ
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Proof. Given that the IFNs Φ1,Φ2, . . . and Φn have corresponding weights
φ1, φ2, . . . and φn, respectively, where each φt ∈ [0, 1],

∑n
t=1 φt = 1 and

t = 1, 2, . . . , n. If Φ1 = Φ2, . . . = Φn = Φ, then based on the proposed
AIFWG operator stated in Equation (5), we have

AIFWG(Φ1,Φ2, . . . ,Φn) = Φφ1
1

⊗
Φφ2
2

⊗
· · ·
⊗

Φφn
n

= Φφ1
⊗

Φφ2
⊗

· · ·
⊗

Φφn

= Φφ1+φ2+···+φ3

= Φ.

Property 2 (Boundedness). Let Φ1,Φ2, . . . and Φn be IFNs, let Φ− = min
{Φ1,Φ2, . . . ,Φn} and let Φ+ = max{Φ1,Φ2, . . . ,Φn}. Then,

Φ− ≤ AIFWG(Φ1,Φ2, . . . ,Φn) ≤ Φ+.

Proof. Since Φ− = min{Φ1,Φ2, . . . ,Φn} and Φ+ = max{Φ1,Φ2, . . . ,Φn},
then by using the proposed AIFWG operator given in Equation (5), we obtain

AIFWG(Φ1,Φ2, . . . ,Φn) =
n⊗

t=1

Φφt
t ≤

n⊗
t=1

(Φ+
t )

φt = (Φ+)
∑n

t=1 φt
,

AIFWG(Φ1,Φ2, . . . ,Φn) =
n⊗

t=1

Φφt
t ≥

n⊗
t=1

(Φ−
t )

φt = (Φ−)
∑n

t=1 φt
.

Because
∑n

t=1 φt = 1, we get Φ− ≤ AIFWG(Φ1,Φ2, . . . ,Φn) ≤ Φ+.

Property 3 (Monotonicity). Let Φ1,Φ2, . . . ,Φn,Φ
∗
1,Φ

∗
2, . . . , and Φ∗

n be
IFNs. If Φt ≤ Φ∗

t , where t= 1, 2, . . . ,n, then

AIFWG(Φ1,Φ2, . . . ,Φn) ≤ AIFWG(Φ∗
1,Φ

∗
2, . . . ,Φ

∗
n).

Proof. Based on the proposed AIFWG AO given in Equation (5), we have

AIFWG(Φ1,Φ2, . . . ,Φn) =
n⊗

t=1

Φφt
t ,

AIFWG(Φ∗
1,Φ

∗
2, . . . ,Φ

∗
n) =

n⊗
t=1

Φ∗φt
t
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Because Φt ≤ Φ∗
t , where t = 1, 2, . . . , n, we get

⊗n
t=1Φ

φt
t ≤

⊗n
t=1Φ

∗φt
t .

Therefore, we obtain

AIFWG(Φ1,Φ2, . . . ,Φn) ≤ AIFWG(Φ∗
1,Φ

∗
2, . . . ,Φ

∗
n).

4 A Novel MADM Approach Based on the Proposed
AIFWG Aggregation Operator (AO) of IFNs

In the following, we introduce a novel MADM approach utilizing the
proposed AIFWG AO of IFNs. Let Ξ1,Ξ2, . . . ,Ξm be m alternatives
and let Λ1,Λ2, . . . ,Λn be n attributes with their corresponding weights
φ1, φ2, . . . , φn, where φt ∈ [0, 1] and

∑n
t=1 φt = 1. The decision-maker

assesses the alternative Ξs with respect to the attribute Λt using a IFN
Φ̃st = ⟨η̃st, υ̃st⟩ to form a decision matrix D̃ = (Φ̃st)m×n, given as follows:

D̃ =

Λ1 Λ2 . . . Λn


Ξ1 Φ̃11 Φ̃12 · · · Φ̃1n

Ξ2 Φ̃21 Φ̃22 . . . Φ̃2n
...

...
...

. . .
...

Ξm Φ̃m1 Φ̃m2 . . . Φ̃mn

,

The steps involved in the proposed MADM approach are outlined as
follows:

Step 1: Transform the decision matrix D̃ = (Φ̃st)m×n = (⟨η̃st, υ̃st⟩)m×n

into the normalized decision matrix (NDMx) D = (Φst)m×n =
(⟨ηst, υst⟩)m×n, as defined below:

Φst =

{
⟨η̃st, υ̃st⟩: for benefit type attribute
⟨υ̃st, η̃st⟩: for cost type attribute,

(7)

where, s = 1, 2, . . . ,m and t = 1, 2, . . . , n.

Step 2: Using the proposed AIFWG AO defined in Equation (6), we aggre-
gate the IFNs Φs1,Φs2, . . . ,Φsn from the sth row of the NDMx D =
(Φst)m×n to obtain the overall aggregated IFN Φs = ⟨ηs, υs⟩, expressed as:

Φs = ⟨ηs, υs⟩

= AIFWG(Φs1,Φs2, . . . ,Φsn)
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=

〈
1− 1

ϵ

(
1−

n∏
t=1

(1− ϵ(1− ηt))
φt

)
,

1

ϵ

(
1−

n∏
t=1

(1− ϵυt)
φt

)〉
. (8)

Step 3: Compute the score value S(Φs) for the obtained IFN Φs = ⟨ηs, υs⟩
corresponding to the alternative Ξs, as follows:

S(Φs) =
1

3
(2ηs − υs(1 + πs) + 1), (9)

where, πs = 1− ηs − υs.

Step 4: Arrange the obtained score values in descending order to determine
the ranking order (RO) of the alternatives Ξs(s = 1, 2, . . . ,m), and select the
best alternative.

Figure 1 represents comprehensive flow chart of the proposed MADM
method.

5 Illustrative Examples of Proposed MADM Approach

Example 2 [7]. With the rising population and infrastructure, New Delhi
faces severe traffic congestion, especially during peak hours. To address this,
the New Delhi Development Authority (NDDA) plans to build a flyover at a
busy intersection and has issued a global tender to select the best contractor.
The evaluation is based on five attributes: project cost (Λ1), completion
time (Λ2), technical capability (Λ3), financial status (Λ4), and company
background (Λ5), with corresponding weights φ1 = 0.3, φ2 = 0.25, φ3 =
0.1, φ4 = 0.15, and φ5 = 0.2. Four companies: PNC Infratech Ltd. (Ξ1),
Hindustan Construction Company (Ξ2), J.P. Construction (Ξ3), and Gammon
India Ltd. (Ξ4) have submitted bids, and decision maker assess them under
an IFS environment by using an IFN Φ̃st = ⟨η̃st, υ̃st⟩ to form the decision
matrix D̃ = (Φ̃st)m×n, given as follows:

D̃ =

Λ1 Λ2 Λ3 Λ4 Λ5


Ξ1 ⟨0.3, 0.6⟩ ⟨0.5, 0.4⟩ ⟨0.7, 0.2⟩ ⟨0.5, 0.2⟩ ⟨0.7, 0.1⟩
Ξ2 ⟨0.5, 0.3⟩ ⟨0.6, 0.2⟩ ⟨0.5, 0.4⟩ ⟨0.6, 0.3⟩ ⟨0.4, 0.2⟩
Ξ3 ⟨0.5, 0.4⟩ ⟨0.7, 0.2⟩ ⟨0.8, 0.1⟩ ⟨0.6, 0.2⟩ ⟨0.5, 0.3⟩
Ξ4 ⟨0.6, 0.2⟩ ⟨0.4, 0.3⟩ ⟨0.7, 0.2⟩ ⟨0.4, 0.4⟩ ⟨0.2, 0.8⟩

.
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Figure 1 Flowchart of the proposed MCDM method.
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In order to solve this MADM problem, we utilize the proposed MADM
approach described in this paper as follows:

Step 1: As Λ1 and Λ2 are cost-type attributes, therefore by using Equation (7),
we obtain the NDMx, where

D̃ =

Λ1 Λ2 Λ3 Λ4 Λ5


Ξ1 ⟨0.6, 0.3⟩ ⟨0.4, 0.5⟩ ⟨0.7, 0.2⟩ ⟨0.5, 0.2⟩ ⟨0.7, 0.1⟩
Ξ2 ⟨0.3, 0.5⟩ ⟨0.2, 0.6⟩ ⟨0.5, 0.4⟩ ⟨0.6, 0.3⟩ ⟨0.4, 0.2⟩
Ξ3 ⟨0.4, 0.5⟩ ⟨0.2, 0.7⟩ ⟨0.8, 0.1⟩ ⟨0.6, 0.2⟩ ⟨0.5, 0.3⟩
Ξ4 ⟨0.2, 0.6⟩ ⟨0.3, 0.4⟩ ⟨0.7, 0.2⟩ ⟨0.4, 0.4⟩ ⟨0.2, 0.8⟩

.

Step 2: Using the proposed AIFWG AO defined in Equation (8), we obtain
the overall aggregated IFN Φs = ⟨ηs, υs⟩ of the alternative Ξs, where Φ1 =
⟨0.5527, 0.3001⟩, Φ2 = ⟨0.3360, 0.4433⟩, Φ3 = ⟨0.4017, 0.4636⟩, and Φ4 =
⟨0.2791, 0.5599⟩.

Step 3: Using Equation (9), we compute the score value S(Φs) corresponding
to the alternative Ξs, where S(Φ1) = 0.5871, S(Φ2) = 0.3770, S(Φ3) =
0.4258, and S(Φ4) = 0.3027.

Step 4: Since, S(Φ1) > S(Φ3) > S(Φ2) > S(Φ4), therefore, the RO of
alternatives Ξ1,Ξ2,Ξ3, and Ξ4 is “Ξ1 ≻ Ξ3 ≻ Ξ2 ≻ Ξ4”. Hence, PNC
Infratech Ltd. (Ξ1) is the best option.

Table 1 and Figure 2 present a comparison of the RO of the alterna-
tives Ξ1,Ξ2,Ξ3, and Ξ4 obtained using different MADM approaches for
Example 2. It is clear from Table 1 and Figure 2 that Garg and Kumar [7]
MADM approach obtains the RO “Ξ1 ≻ Ξ4 ≻ Ξ3 ≻ Ξ2” whereas both
Zou et al. [34] MADM approach and the proposed MADM approach obtain
the RO “Ξ1 ≻ Ξ3 ≻ Ξ2 ≻ Ξ4”. The difference in results can be attributed
to the ranking methods, where Garg and Kumar [7] MADM approach uses
possibility degree measure to rank alternatives, while Zou et al. [34] MADM
approach and the proposed MADM approach use score function. Despite

Table 1 The ROs of the alternatives obtained by different MADM approaches for Example 2
MADM Approaches ROs
Garg and Kumar [7] MADM approach Ξ1 ≻ Ξ4 ≻ Ξ3 ≻ Ξ2

Zou et al. [34] MADM approach Ξ1 ≻ Ξ3 ≻ Ξ2 ≻ Ξ4

Proposed MADM approach Ξ1 ≻ Ξ3 ≻ Ξ2 ≻ Ξ4
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Figure 2 Graphical comparison of POs obtained by various MADM methods for Example 2.

this difference, the optimal alternative identified by [7, 34] and the pro-
posed method remains Ξ1, confirming the reliability of the proposed MADM
approach.

Example 3. Consider three alternatives Ξ1,Ξ2, and Ξ3, and three attributes
Λ1,Λ2, and Λ3 with corresponding weights φ1 = 0.3, φ2 = 0.4, and φ3 =
0.3. The decision maker wants to assess the alternatives with respect to the
attributes under an IFS environment by using an IFN Φ̃st = ⟨η̃st, υ̃st⟩ to form
the decision matrix D̃ = (Φ̃st)m×n, given as follows:

D̃ =

Λ1 Λ2 Λ3( )
Ξ1 ⟨0.3, 0.4⟩ ⟨0, 1⟩ ⟨0.7, 0.2⟩
Ξ2 ⟨0, 1⟩ ⟨0.6, 0.3⟩ ⟨0.4, 0.2⟩
Ξ3 ⟨0.5, 0.4⟩ ⟨0, 1⟩ ⟨0.2, 0.6⟩

.

In order to solve this MADM problem, we utilize the proposed MADM
approach described in this paper as outlined below:

Step 1: As all the attributes are benefit-type, normalizing the decision matrix
is not required.

Step 2: Using the proposed AIFWG AO defined in Equation (8), we obtain
the overall aggregated IFN Φs = ⟨ηs, υs⟩ of the alternative Ξs, where Φ1 =
⟨0.0910, 0.8813⟩, Φ2 = ⟨0.1481, 0.8038⟩, and Φ3 = ⟨0.0713, 0.9051⟩.
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Step 3: Using Equation (9), we compute the score value S(Φs) corresponding
to the alternative Ξs, where S(Φ1) = 0.0921, S(Φ2) = 0.1513, and S(Φ3) =
0.0721.

Step 4: Since, S(Φ2) > S(Φ1) > S(Φ3), therefore, the RO of alternatives
Ξ1,Ξ2, and Ξ3 is “Ξ2 ≻ Ξ1 ≻ Ξ3”. Hence, Ξ2 is the best alternative.

Table 2 and Figure 3 present a comparison of the RO of the alternatives
Ξ1,Ξ2, and Ξ3 obtained using different MADM approaches for Example 3. It
is clear from Table 2 and Figure 3 that Garg and Kumar [7] MADM approach
obtains the RO “Ξ1 = Ξ2 = Ξ3”, where it cannot distinguish RO between
the alternatives Ξ1,Ξ2, and Ξ3. While both Zou et al. [34] MADM approach
and the proposed MADM approach obtain the same RO “Ξ2 ≻ Ξ1 ≻ Ξ3”.
Thus, the proposed MADM approach effectively addresses and overcomes
the shortcomings of Garg and Kumar [7] MADM approach.

Table 2 The ROs of the alternatives obtained by different MADM approaches for Example 3
MADM Approaches ROs
Garg and Kumar [7] MADM approach Ξ1 = Ξ2 = Ξ2

Zou et al. [34] MADM approach Ξ2 ≻ Ξ1 ≻ Ξ3

Proposed MADM approach Ξ2 ≻ Ξ1 ≻ Ξ3

Figure 3 Graphical comparison of POs obtained by various MADM methods for Example 3.
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Example 4. Consider three alternatives Ξ1,Ξ2, and Ξ3, and three attributes
Λ1,Λ2, and Λ3 with corresponding weights φ1 = 0.3, φ2 = 0.4, and
φ3 = 0.3. The decision maker wants to assess the alternatives with respect
to the attributes under an IFS environment by using an IFN Φ̃st = ⟨η̃st, υ̃st⟩
to form the decision matrix D̃ = (Φ̃st)m×n, given as follows:

D̃ =

Λ1 Λ2 Λ3( )
Ξ1 ⟨0.95, 0.01⟩ ⟨0.7, 0.01⟩ ⟨0.85, 0.002⟩
Ξ2 ⟨0.85, 0⟩ ⟨0.7, 0.02⟩ ⟨0.95, 0.004⟩
Ξ3 ⟨0.5, 0.2⟩ ⟨0.2, 0.5⟩ ⟨0.6, 0.3⟩

.

In order to solve this MADM problem, we utilize the proposed MADM
approach described in this paper as outlined below:

Step 1: As all the attributes are benefit-type attributes, normalizing the
decision matrix is not required.

Step 2: Using the proposed AIFWG AO defined in Equation (8), we obtain
the overall aggregated IFN Φs = ⟨ηs, υs⟩ of the alternative Ξs, where Φ1 =
⟨0.8133, 0.0076⟩, Φ2 = ⟨0.8133, 0.0092⟩, and Φ3 = ⟨0.3674, 0.3629⟩.
Step 3: Using Equation (9), we compute the score value S(Φs) corresponding
to the alternative Ξs, where S(Φ1) = 0.8725, S(Φ2) = 0.8719, and S(Φ3) =
0.4246.

Step 4: Since, S(Φ1) > S(Φ2) > S(Φ3), therefore, the RO of alternatives
Ξ1,Ξ2, and Ξ3 is “Ξ1 ≻ Ξ2 ≻ Ξ3”. Hence, Ξ1 is the best alternative.

Table 3 and Figure 4 present a comparison of the RO of the alternatives
Ξ1,Ξ2, and Ξ3 obtained using different MADM approaches for Example 4.
It is clear from Tables 3 and 4 that Zou et al. [34] MADM approach obtains
the RO “Ξ1 = Ξ2 ≻ Ξ3”, where it cannot distinguish RO between the
alternatives Ξ1 and Ξ2. While Garg and Kumar [7] MADM approach and
the proposed MADM approach obtain the same ranking “Ξ1 ≻ Ξ2 ≻ Ξ3”.
Thus, the proposed MADM approach effectively addresses and overcomes
the shortcomings of the Zou et al. [34] method.

Table 3 The ROs of the alternatives obtained by different MADM approaches for Example 4
MADM Approaches ROs
Garg and Kumar [7] MADM approach Ξ1 ≻ Ξ2 ≻ Ξ3

Zou et al. [34] MADM approach Ξ1 = Ξ2 ≻ Ξ3

Proposed MADM approach Ξ1 ≻ Ξ2 ≻ Ξ3
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Figure 4 Graphical comparison of POs obtained by various MADM methods for Example 4.

6 Conclusion

In this paper, we have introduced new operational laws for intuitionistic
fuzzy numbers (IFNs) along with an advanced intuitionistic fuzzy weighted
geometric (AIFWG) aggregation operator (AO). The desirable properties of
the proposed AIFWG AO have also been presented to establish its validity.
Based on the AIFWG AO, a new multi-attribute decision-making (MADM)
approach within the IFNs framework has been developed. To showcase the
advantages and validate the proposed MADM approach, three numerical
MADM examples have been solved. The results of Examples 2, 3 and 4
clearly demonstrate that the proposed MADM approach is robust and highly
effective. It effectively addresses the drawbacks found in existing MADM
approaches developed by Garg and Kumar [7] and Zou et al. [34], where
they cannot distinguish the ranking orders of the alternatives. Although the
proposed MADM approach is effective but it has certain limitations. First,
we are assigning weights directly to attributes, which may introduce bias
and reduce the reliability of the results. Objective weighting methods, like
CRITIC, MEREC, or entropy can be used to obtain weights of attributes and
ensure consistency. Second, our proposed approach is limited to individual
decision making, whereas real-life scenarios require group decision-making
to incorporate the diverse opinions of multiple experts. Third, the proposed



476 Devraj Singh et al.

approach rely only on proposed AIFWG AO without incorporating classical
MADM techniques such as EDAS, TOPSIS, VIKOR, MABAC, or TAOV,
which could make the approach better. In the future, we aim to extend this
work by developing group decision-making approaches using the proposed
AIFWG AO within the context of IFNs, Pythagorean fuzzy numbers and q-
rung orthopair fuzzy numbers. Furthermore, we intend to apply the proposed
approach to real-life decision-making problems, such as pattern recogni-
tion, waste management, supply chain management, optimal site evaluation,
financial risk assessment, and renewable energy project evaluation.
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