Sensitivity Analysis for Deep Learning
Data Sets Considering the Human
Immune System

Haruki Takeda'*, Shoichiro Miyamoto!, Lei Zhou!,
Yoshinobu Tamura', and Shigeru Yamada?®

LGraduate School of Sciences and Technology for Innovation, Yamaguchi
University, Ube, Japan

2Department of Social Management Engineering, Graduate School of Engineering,
Tottori University, Tottori, Japan

E-mail: e038vgv@yamaguchi-u.ac.jp; d009wcu@yamaguchi-u.ac.jp;
zhou-lei@yamaguchi-u.ac.jp; tamuray@yamaguchi-u.ac.jp;
bex2yama@muse.ocn.ne.jp

*Corresponding Author

Received 21 June 2024; Accepted 29 September 2024

Abstract

Recently, open source software (OSS) has been widely used in many fields
due to the spread and development facilitated by networks. The characteris-
tics of OSS include no cost and high performance, which make it a significant
component of modern society. However, the number of reported faults is
increasing due to its vulnerabilities. Detecting these faults requires substan-
tial costs, and correcting the growing number of faults necessitates a large
workforce. In this paper, we propose a method for Reliability Assessment of
OSS using deep learning based on the human immune system. Additionally,
we present several numerical examples based on the proposed method.

Keywords: Reliability assessment, deep learning, open source software.

Journal of Graphic Era University, Vol. 12_2, 309-328.
doi: 10.13052/jgeu0975-1416.1228
© 2024 River Publishers

310 Haruki Takeda et al.

1 Introduction

Open source software (OSS) is available for anyone to use, modify, and redis-
tribute. Therefore, it can achieve a high level of quality through continuous
improvements made by various contributors. Moreover, the software system
facilitates easy development with minimal effort due to the use of OSS. As
a result, the number of OSS users is increasing in modern society, whether
they are individuals or companies. However, it is challenging to modify OSS
in response to the growing number of users. Currently, many developers and
users are involved in fault modification. Despite these efforts, new faults are
continually introduced into OSS. Therefore, optimizing the effort required
for fault modification is essential for resolving these issues.

In this paper, we demonstrate numerical examples of fault big data using
deep learning to estimate fault modification time, aiming to assess the relia-
bility of OSS. By estimating fault modification time, it becomes possible to
optimize the effort required for fault modification. To obtain more accurate
results, we adjust the ratio of training data to testing data for deep learning
and verify the validity of the proposed method.

2 Previous Research
2.1 0SS

OSS is software that is freely available on the Internet at no cost to anyone.
OSS is improved by contributions from many people, and it has evolved
into high-performance software. As a result, OSS with a large number
of users is modified more frequently, which helps ensure a certain level
of reliability. Additionally, the reliability of OSS can be verified by users
themselves because the source code is publicly available. For these reasons,
OSS has become entrenched in modern society as a cost-effective and high-
performance software solution. Representative OSS used in modern society
includes Java, Python, OpenStack, Linux, and MySQL, which are employed
in various domains such as operating systems, development languages, and
databases [1, 2, 3, 4].

However, there are some disadvantages, such as the difficulty in promptly
correcting problems when they occur and the vulnerability to attacks by
malicious individuals targeting OSS users. Furthermore, the large number
of OSS projects and their users makes it challenging to grasp the overall
situation.

Sensitivity Analysis for Deep Learning Data Sets 311

2.2 Cloud Computing

Cloud computing [5, 6, 7] represents a new paradigm of computing services,
including networks and databases, delivered over the Internet. Traditionally,
system construction required substantial cost and preparation, but cloud
computing enables users to access the necessary environment for system
development over the Internet, leading to significant reductions in cost and
time. Additionally, since users do not need to own their own servers, they
can create the optimal environment for themselves by using only the required
resources. Cloud computing is utilized across a wide range of fields by both
companies and individuals. It allows necessary information and environments
to be stored in the cloud and accessed from any device, facilitating informa-
tion sharing between companies. On the other hand, cloud computing is a
service that has already been completed, which means it may not be suitable
for highly detailed or customized settings.

2.3 Reliability

Software may not function properly or may not work at all due to errors
during development or unforeseen issues. Software reliability [8, 9] refers
to the ability of software to operate correctly in any environment with-
out such defects. Software quality and reliability improve through repeated
assessments and modifications. Evaluating the frequency of software faults is
known as reliability assessment.

2.4 Software Reliability Growth Model

The software reliability growth model [10, 11, 12] is a stochastic model
based on software faults. During software development, faults are detected
and corrected through testing. Therefore, testing time is crucial for assess-
ing software reliability. The software reliability growth model can visualize
these events and estimate the number of software faults, which is useful for
predicting the optimal timing for software release.

2.5 Deep Learning

Deep learning [13, 14] is a type of machine learning method that utilizes deep
neural networks. In deep learning, learning is performed by adding multiple
intermediate layers to the neural network. In conventional machine learning,
feature extraction—which quantifies the characteristics of input data—is

312 Haruki Takeda et al.

Intermediate layer

Input layer Output layer

%

Figure 1 Deep neural network.

Q00
PN
00O

performed by humans. In contrast, deep learning automatically extracts and
learns features. This process improves learning accuracy because the features
are optimized. Additionally, increasing the amount of input data allows for
the construction of more accurate models.

2.6 Neural Network

The neural network is a mathematical model that mimics the network struc-
ture of the brain. It mainly consists of an input layer, one or more intermediate
layers, and an output layer, and it can learn from input data. Conventional
neural networks typically have three layers—one for each type—while net-
works with four or more layers used to suffer from decreased accuracy.
However, this issue has been addressed in deep learning, which supports deep
neural networks with four or more layers, as shown in Figure 1. Moreover,
recent advances in handling big data have made it possible to construct even
more powerful deep neural networks.

3 Proposed Method

3.1 Self-Modification Approach Based on Human Immune
System

Our research group has been working on cloud edge computing, big data,
OSS, deep learning, and stochastic models. Deep learning and stochastic

Sensitivity Analysis for Deep Learning Data Sets 313

0SS Core Reporter,
Member Assignee modify faults
Dendritic Cell T-cell, B-cell bacteria, virus

Identify trends with historical fault big data and deep
learning.

Figure 2 An example of human immune system.

models with statistical independence can address problems that cannot be
solved by data-driven approaches alone, as these models often function as
black boxes. Specifically, many efforts have been made to mimic mechanisms
from the natural world, such as neural networks inspired by the brain’s
structure, genetic algorithms based on evolutionary principles, and drones
modeled after insect functions. These approaches can also solve fundamental
issues related to self-modification.

In this method, each cell in the human immune system mimics the
actions that individual cells take against pathogenic bacteria and viruses,
while the fault modifications and countermeasures are carried out using the
same procedures. Figure 2 illustrates a schematic diagram of this research.
Most existing studies focus solely on cloud environments, with no methods
proposed to assess and optimize operational performance by simultaneously
considering edge computing and data structures. By integrating data-driven
and biological approaches from different perspectives, as shown in Figure 2,
it is possible to predict the reliability of complex network environments in
cloud-edge infrastructures and support self-modification through Al

3.2 Learning Method

In this paper, we focus on fault modification time and fault reporters. We
consider a system that predicts changes in fault modification time by observ-
ing and learning the conditions under which faults are detected and modified.
Specifically, we examine the following weighted modification time.

F(i) = (ci — 0i)vi, (1)

where ¢; is the modification completion time for the ¢-th fault. o; is the
detected time for the ¢-th fault. In addition, ~y; is the i-th fault severity. In

314 Haruki Takeda et al.

this case, (¢; — 0;) is the fault modification time. Therefore, F'(7) represents
the weighted fault modification time for the ¢-th fault severity. The value of
F(i) is large, when the reliability becomes large.

4 Numerical Examples

In this paper, we used the fault big data obtained from the OpenStack Project
[15]. We present several numerical examples of two cases. one is which 90%
of the fault data was used as training data and the remaining 10% as testing
data, and the other is which 80% of the fault data was used as training data
and the remaining 20% as testing data. The following parameters were used
as the training data of deep learning.

e Fault detection time

e Fault modification completion time
e Fault reporter

e Software product

e Software component
e Fault condition

e Fault resolution Status
e Hardware type

e Operation system type
e Fault severity

e Software version

e Fault Summary

4.1 Percentage of Training Data: 90%

First, we analyzed the data using deep learning with 90% of the data for
training and 10% for testing. Figures 3, 4, 5, 6, and 7 present the estimated
error for validation and training data, the estimated weighted fault modifi-
cation time for fault severity, the estimated scatter plot of weighted fault
modification time, the estimated weighted cumulative fault modification time,
and the estimated scatter plot of weighted cumulative fault modification time.

4.2 Percentage of Training Data: 80%

Next, we conducted an analysis using deep learning with 80% of the data
for training and 20% for testing. Figures 8, 9, 10, 11, and 12 show the
estimated error for validation and training data, the estimated weighted fault

Sensitivity Analysis for Deep Learning Data Sets 315

—— Error for Training —— Error for Validation

0 20 40 60 80 100
Epoch

Figure 3 The estimated error for validation and training data (In the case of 90% of training
data).

—— Testing Data —— Estimate

600 -

u

o

o
1

400

300 A

200 A

Modification Time for Fault Priority

.

o

o
1

I

0 1 e AN PR A RN LRl

i
|

0 250 500 750 1000 1250 1500 1750
Number of Faults

Figure 4 The estimated weighted fault modification time for fault severity (In the case of
90% of training data).

modification time for fault severity, the estimated scatter plot of weighted
fault modification time, the estimated weighted cumulative fault modification
time, and the estimated scatter plot of weighted cumulative fault modification
time.

316 Haruki Takeda et al.

e Estimate (Modification Time for Fault Priority)

600 -

500 A

400

300 A

Estimate

200 A

100 A

0 100 200 300 400 500 600
Testing Data

Figure 5 The estimated scatter plot of weighted fault modification time (In the case of 90%
of training data).

—— Testing Data —— Estimate

140000 -

120000 -

100000 -

80000
60000
40000 - /

20000 4

Cumulative Modification Time for Fault Priority

04

T T T T T T T T
0 250 500 750 1000 1250 1500 1750
Number of Faults

Figure 6 The estimated weighted cumulative fault modification time (In the case of 90% of
training data).

4.3 Percentage of Training Data: 70%

Finally, we analyzed the data using deep learning with 70% of the data for
training and 30% for testing. Figures 13, 14, 15, 16, and 17 display the
estimated error for validation and training data, the estimated weighted fault

Estimate

Sensitivity Analysis for Deep Learning Data Sets

Estimate (Cumulative Modification Time for Fault Priority)

140000 -

120000 -

100000 -

80000 A

60000 -

40000 -

20000 A

0

T T T T T
0 20000 40000 60000 80000
Testing Data

T T
100000 120000

317

Figure 7 The estimated scatter plot of weighted cumulative fault modification time (In the

case of 90% of training data).

40000 -

30000 -

Error

20000 -

10000 A

—— Error for Training Error for Validation

T
20 40 60 80 100
Epoch

Figure 8 The estimated error for validation and training data (In the case of 80% of training

data).

modification time for fault severity, the estimated scatter plot of weighted
fault modification time, the estimated weighted cumulative fault modification
time, and the estimated scatter plot of weighted cumulative fault modification

time.

318 Haruki Takeda et al.

—— Testing Data —— Estimate

800 -

600

400 -

200 A

Modification Time for Fault Priority

0 . | bt

0 500 1000 1500 2000 2500 3000 3500
Number of Faults

Figure 9 The estimated weighted fault modification time for fault severity (In the case of
80% of training data).

e Estimate (Modification Time for Fault Priority)

700 A

600

500 A

Estimate
»
o
o

300 A

200 -

100 A

0 200 400 600 800
Testing Data

Figure 10 The estimated scatter plot of weighted fault modification time (In the case of 80%
of training data).

4.4 Discussion

In the cases of using 90% and 80% of the data for training, the estimated
results are favorable. From these results, we have found that the estimates

Sensitivity Analysis for Deep Learning Data Sets 319

—— Testing Data Estimate

250000 -

200000 1 pY

150000 A

100000 A 7

50000 A =

Cumulative Modification Time for Fault Priority

0 500 1000 1500 2000 2500 3000 3500
Number of Faults

Figure 11 The estimated weighted cumulative fault modification time (In the case of 80%
of training data).

e Estimate (Cumulative Modification Time for Fault Priority)

250000 A

200000 A

150000 -

Estimate

100000 -

50000 -

T T T T T
0 50000 100000 150000 200000 250000
Testing Data

Figure 12 The estimated scatter plot of weighted cumulative fault modification time (In the
case of 80% of training data).

improve when the percentage of training data is set at 90% and 80%. In
contrast, the estimates with 70% of the training data deviate significantly from
the testing data.

We have observed that even over extended periods, using 80% or more
of the training data can lead to accurate predictions of the number of faults.

320 Haruki Takeda et al.

—— Error for Training —— Error for Validation

40000 -

35000 A

30000 4

25000 A

Error

20000

15000 -

10000 A

5000 T A

0 20 40 60 80 100
Epoch

Figure 13 The estimated error for validation and training data (In the case of 70% of training
data).

—— Testing Data —— Estimate

N o ©
o o =]
S S S

Modification Time for Fault Priority
S
o

0 1000 2000 3000 4000 5000
Number of Faults

Figure 14 The estimated weighted fault modification time for fault severity (In the case of
70% of training data).

Moreover, Table 1 presents the mean square error (MSE) for the estimated
fault modification time. From this table, we found that the MSE value
decreases as the percentage of training data increases. Table 2 shows the
estimated MSE of existing studies. These results show that the method in
this paper is capable of estimating with significantly higher accuracy than the
methods in existing studies.

Sensitivity Analysis for Deep Learning Data Sets 321

e Estimate (Modification Time for Fault Priority)

700 4

600

500 -

IS

o

o
L

Estimate

w

o

o
!

200 A

100 4

0 200 400 600 800
Testing Data

Figure 15 The estimated scatter plot of weighted fault modification time (In the case of 70%
of training data).

—— Testing Data —— Estimate

700000 -

600000 -

500000 -

400000 -

300000 A

200000 -

100000 -

Cumulative Modification Time for Fault Priority

0 -

0 1000 2000 3000 4000 5000
Number of Faults

Figure 16 The estimated weighted cumulative fault modification time (In the case of 70%
of training data).

322 Haruki Takeda et al.

e Estimate (Cumulative Modification Time for Fault Priority)

600000 A

500000 -

400000 -

imate

300000 A

Esti

200000 A

100000 4

0 100000 200000 300000 400000 500000 600000 700000
Testing Data
Figure 17 The estimated scatter plot of weighted cumulative fault modification time (In the
case of 70% of training data).

Table 1 The estimated MSE for the fault modification time
MSE
Percentage of Training Data: 90% 2206683.8
Percentage of Training Data: 80% | 244221180.0
Percentage of Training Data: 70% | 6723100000.0

Table 2 The estimated MSE of existing studies
MSE
Percentage of Training Data: 90% 2071716900.0
Percentage of Training Data: 80% 4595891700.0
Percentage of Training Data: 70% | 134495720000.0

5 Concluding Remarks

In this paper, we proposed a method for reliability assessment using deep
learning based on the human immune system. In the proposed model, the
fault modification time is estimated and visualized using fault big data as
training data. The results indicate that it is possible to estimate the fault
modification time with high accuracy, despite some errors. This capability
allows for the optimization of personnel required for fault modification,
potentially alleviating issues related to effort shortages. By applying this
method, it becomes possible to create an application that allows anyone to
predict various outcomes using complex big data.

Sensitivity Analysis for Deep Learning Data Sets 323

In the future, we aim to use it in fields that require even more accurate
predictions, such as the medical field, and to conduct research focused on
improving estimation accuracy by optimizing features and variables.

Acknowledgments

This work was supported in part by the JSPS KAKENHI Grant No.
23K11066 in Japan.

References

[1] S. Yamada and Y. Tamura, OSS reliability measurement and assessment,
Springer International Publishing Switzerland, 2016.

[2] Y. Tamura and S. Yamada, “AIR application for reliability analysis
considering debugging process and network traffic in mobile clouds,”
Simulation Modelling Practice and Theory, pp. 165-175, doi: 10.1016/
j-simpat.2014.03.010, 2015.

[3] S. Miyamoto, Y. Tamura and S. Yamada, “A Method of Reliability
Assessment Based on Trend Analysis for Open Source Software.,” Inter-
national Journal of Reliability, Quality & Safety Engineering, Vol. 31,
No. 4, pp. 1-15, doi: 10.1142/50218539324500049, 2024.

[4] S. Miyamoto, Y. Tamura and S. Yamada, “A Method of OSS Reliabil-
ity Assessment Based on Public Repository Analysis.,” International
Journal of Reliability, Quality & Safety Engineering, Vol. 30, No. 5,
pp- 1-12, doi: 10.1142/S0218539323500213, 2023.

[5] M. O. Ozcan, F. Odaci, and I. Ari, “Remote Debugging for Container-
ized Applications in Edge Computing Environments, ” Proceedings of
the 2019 IEEE International Conference on Edge Computing (EDGE),
Milan, Italy, pp. 30-32, doi: 10.1109/EDGE.2019.00021, 2019.

[6] A. A. Ahmad et al., “Scalability analysis comparisons of cloud-based
software services, ” Journal of Cloud Computing: Advances, Systems
and Applications, 10.1186/s13677-019-0134-y, 23 Jul. 2019.

[7] Y. Ngoko and C. Crin, An Edge Computing Platform for the Detection
of Acoustic Events, in Proc. 2017 IEEE Int. Conf. Edge Computing,
Honolulu, HI, pp. 240-243, doi: 10.1109/IEEE.EDGE.2017.44, 2017.

[8] M. R. Lyu, ed., Handbook of Software Reliability Engineering, IEEE
Computer Society Press, Los Alamitos, CA, 1996.

324 Haruki Takeda et al.

[9] C. V. Ramamoorthy and F. B. Bastani, “Software Reliability-Status and
Perspectives, ” IEEE Transactions on Software Engineering 4, pp. 354—
371, 1982.

[10] M. R. Lyu, ed, Handbook of Software Reliability Engineering, IEEE
Computer Society Press, Los Alamitos, CA, 1996.

[11] S. Yamada, Software Reliability Modeling: Fundamentals and Applica-
tions, Springer-Verlag, Tokyo/Heidelberg, 2014.

[12] Y. Tamura and S. Yamada, “Deep Learning Based on Fine Tuning
with Application to the Reliability Assessment of Similar Open Source
Software, 7 International Journal of Mathematical, Engineering and
Management Sciences, Vol. 8, No. 4, pp. 632-639, 2023.

[13] Y. Tamura and S. Yamada, “Prototype of 3D Reliability Assessment
Tool Based on Deep Learning for Edge OSS Computing, ” Mathematics,
Vol. 10, No 9, pp. 1-12, doi: 10.3390/math10091572, 2022.

[14] H. P. Martinez, Y. Bengio, and G. N. Yannakakis, “Learning deep physi-
ological models of affect,” IEEE Computational Intelligence Magazine,
Vol. 8, No. 2, pp. 20—33, 2013.

[15] The OpenStack project, Build the future of Open Infrastructure,
https://www.openstack.org

Biographies

Haruki Takeda received the B.S.E. degrees from Yamaguchi University in
Japan, in 2024. Since 2024, he has been entered at Yamaguchi University
Graduate School, Yamaguchi, Japan. His research interests the reliability
assessment method of OSS at Graduate School of Sciences and Technology
for Innovation, Yamaguchi University, Ube, Japan.

https://www.openstack.org

Sensitivity Analysis for Deep Learning Data Sets 325

Shoichiro Miyamoto received the B.S.E. and M.S. degrees from Yamaguchi
University in Japan, in 2022 and 2023, respectively. Since 2022, he has
been entered at Yamaguchi University Graduate School, Yamaguchi, Japan.
His research interests the reliability assessment method of OSS at Graduate
School of Sciences and Technology for Innovation, Yamaguchi University,
Ube, Japan.

Lei Zhou received the M.S. degree from Nanjing Tech University in China,
and Ph.D. degree from Tokyo Metropolitan University in 2020, respectively.
Since 2021, she has been working as an Assistant Professor at the Graduate
School of Sciences and Technology for Innovation, Yamaguchi University,
Ube, Japan. Her research interests the design and maintenance policies for
linear consecutive-k-out-of-n: G systems at Graduate School of Sciences and
Technology for Innovation, Yamaguchi University, Ube, Japan.

326 Haruki Takeda et al.

Yoshinobu Tamura received the B.S.E., M.S., and Ph.D. degrees from
Tottori University in 1998, 2000, and 2003, respectively. From 2003 to 2006,
he was a Research Assistant at Tottori University of Environmental Studies.
From 2006 to 2009, he was a Lecturer and Associate Professor at Fac-
ulty of Applied Information Science of Hiroshima Institute of Technology,
Hiroshima, Japan. From 2009 to 2017, he was an Associate Professor at
the Graduate School of Sciences and Technology for Innovation, Yamaguchi
University, Ube, Japan. From 2017 to 2019, he has been working as a
Professor at the Faculty of Knowledge Engineering, Tokyo City University,
Tokyo, Japan. Since 2020, he has been working as a Professor at the Faculty
of Information Technology, Tokyo City University, Tokyo, Japan. Since 2021,
he has been working as a Professor at the Graduate School of Sciences and
Technology for Innovation, Yamaguchi University, Ube, Japan. His research
interests include reliability assessment for open source software, big data,
clouds, reliability. He is a regular member of the Institute of Electronics,
the Information and Communication Engineers of Japan, the Operations
Research Society of Japan, the Society of Project Management of Japan, the
Reliability Engineering Association of Japan, and the IEEE. He has authored
the book entitled as OSS Reliability Measurement and Assessment (Springer
International Publishing, 2016). Dr. Tamura received the Presentation Award
of the Seventh International Conference on Industrial Management in 2004,
the IEEE Reliability Society Japan Chapter Awards in 2007, the Research
Leadership Award in Area of Reliability from the ICRITO in 2010, the Best
Paper Award of the IEEE International Conference on Industrial Engineer-
ing and Engineering Management in 2012, the Honorary Professor from
Amity University of India in 2017, the Best Paper Award of the 24th ISSAT
International Conference on Reliability and Quality in Design in 2018, the
Outstanding Paper Award of the IEEE International Conference on Industrial
Engineering and Engineering Management in 2022, and the Amity Global
Academic Excellence Award of the IEEE 4th International Conference on
Intelligent, Engineering & Management in 2023.

Sensitivity Analysis for Deep Learning Data Sets 327

Shigeru Yamada was born in Hiroshima Prefecture, Japan, on July 6,
1952. He received the B.S.E., M.S., and Ph.D. degrees from Hiroshima
University, Japan, in 1975, 1977, and 1985, respectively. From 1993/10 to
2018/3, he had been working as a professor at the Department of Social
Management Engineering, Graduate School of Engineering, Tottori Univer-
sity, Tottori-shi, Japan. He is an Emeritus Professor of Tottori University.
He has been also a Honorary Professor at Amity University,India, since
2015.His research interests include software reliability engineering,quality
management engineering, and project management. He has published over
600 reviewed technical papers in the area of software reliability engineering,
project management, reliability engineering, and quality control. He has
authored several books entitled such as Introduction to Software Management
Model (Kyoritsu Shuppan,1993), Software Reliability Models: Fundamen-
tals and Applications (JUSE, Tokyo, 1994), Statistical Quality Control for
TQM (Corona Publishing, Tokyo, 1998), Software Reliability: Model, Tool,
Management (The Society of Project Management, 2004), Quality-Oriented
Software Management (Morikita Shuppan, 2007), Elements of Software
Reliability—Modeling Approach — (Kyoritsu Shuppan, 2011), Project Man-
agement (Kyoritsu Shuppan, 2012), Software Engineering — Fundamentals
and Applications — (Science, Tokyo, 2013), Software Reliability Modeling:
Fundamentals and Applications (Springer-Verlag, Tokyo/Heidelberg, 2014),
and OSS Reliability Measurement and Assessment (Springer International
Publishing, Switzerland, 2016). Dr. Yamada received the Best Author Award
from the Information Processing Society of Japan in 1992, the TELECOM
System Technology Award from the Telecommunications Advancement
Foundation in 1993, the Best Paper Award from the Reliability Engineering
Association of Japan in 1999, the International Leadership Award in Reli-
ability Engg. Research from the ICQRIT/SREQOM in 2003, the Best Paper
Award at the 2004 International Computer Symposium, the Best Paper Award
from the Society of Project Management in 2006, the Leadership Award
from the ISSAT (International Society of Science and Applied Technologies,

328 Haruki Takeda et al.

U.S.A.) in 2007, the Outstanding Paper Award at the IEEE International Con-
ference on Industrial Engineering and Engineering Management (IEEM2008)
in 2008, the International Leadership and Pioneering Research Award in
Software Reliability Engineering from the SREQOM/ICQRIT in 2009, the
Exceptional International Leadership and Contribution Award in Software
Reliability at the ICRITO’2010, the 2011 Best Paper Award from the IEEE
Reliability Society Japan Chapter in 2012, the Leadership Award from the
ISSAT in 2014, the Project Management Service Award from the Society
of Project Management, “Honorary Canon” Appointment from the Korean
Reliability Society in 2014, Title of “Honorary Professor” Recognition from
Amity University, India, in 2015, Contribution Award for Promoting OR
from the Operations Research Society of Japan in 2017, Research Award
for Outstanding Contributions in Software Reliability Engineering from the
ISSAT in 2017, Best Paper Award at the ISSAT International Conference on
Reliability and Quality in Design in 2018, Society Award from the Society
of Project Management in 2020, and IEEE Reliability Society Japan Joint
Chapter 2020 Reliability Engineering Award in 2021. He is a life member
of the IEICE, a life member of the Information Processing Society of Japan,
member of the Operations Research Society of Japan (Fellow Member), the
Japanese Society for Quality Control, and the Society of Project Manage-
ment, and the IEEE Life Member. He is also an Honorary Canon of the
Korean Reliability Society.

	Introduction
	Previous Research
	OSS
	Cloud Computing
	Reliability
	Software Reliability Growth Model
	Deep Learning
	Neural Network

	Proposed Method
	Self-Modification Approach Based on Human Immune System
	Learning Method

	Numerical Examples
	Percentage of Training Data: 90%
	Percentage of Training Data: 80%
	Percentage of Training Data: 70%
	Discussion

	Concluding Remarks

