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Abstract

Recently, open source software (OSS) has been widely used in many fields
due to the spread and development facilitated by networks. The characteris-
tics of OSS include no cost and high performance, which make it a significant
component of modern society. However, the number of reported faults is
increasing due to its vulnerabilities. Detecting these faults requires substan-
tial costs, and correcting the growing number of faults necessitates a large
workforce. In this paper, we propose a method for Reliability Assessment of
OSS using deep learning based on the human immune system. Additionally,
we present several numerical examples based on the proposed method.
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1 Introduction

Open source software (OSS) is available for anyone to use, modify, and redis-
tribute. Therefore, it can achieve a high level of quality through continuous
improvements made by various contributors. Moreover, the software system
facilitates easy development with minimal effort due to the use of OSS. As
a result, the number of OSS users is increasing in modern society, whether
they are individuals or companies. However, it is challenging to modify OSS
in response to the growing number of users. Currently, many developers and
users are involved in fault modification. Despite these efforts, new faults are
continually introduced into OSS. Therefore, optimizing the effort required
for fault modification is essential for resolving these issues.

In this paper, we demonstrate numerical examples of fault big data using
deep learning to estimate fault modification time, aiming to assess the relia-
bility of OSS. By estimating fault modification time, it becomes possible to
optimize the effort required for fault modification. To obtain more accurate
results, we adjust the ratio of training data to testing data for deep learning
and verify the validity of the proposed method.

2 Previous Research
2.1 0SS

OSS is software that is freely available on the Internet at no cost to anyone.
OSS is improved by contributions from many people, and it has evolved
into high-performance software. As a result, OSS with a large number
of users is modified more frequently, which helps ensure a certain level
of reliability. Additionally, the reliability of OSS can be verified by users
themselves because the source code is publicly available. For these reasons,
OSS has become entrenched in modern society as a cost-effective and high-
performance software solution. Representative OSS used in modern society
includes Java, Python, OpenStack, Linux, and MySQL, which are employed
in various domains such as operating systems, development languages, and
databases [1, 2, 3, 4].

However, there are some disadvantages, such as the difficulty in promptly
correcting problems when they occur and the vulnerability to attacks by
malicious individuals targeting OSS users. Furthermore, the large number
of OSS projects and their users makes it challenging to grasp the overall
situation.
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2.2 Cloud Computing

Cloud computing [5, 6, 7] represents a new paradigm of computing services,
including networks and databases, delivered over the Internet. Traditionally,
system construction required substantial cost and preparation, but cloud
computing enables users to access the necessary environment for system
development over the Internet, leading to significant reductions in cost and
time. Additionally, since users do not need to own their own servers, they
can create the optimal environment for themselves by using only the required
resources. Cloud computing is utilized across a wide range of fields by both
companies and individuals. It allows necessary information and environments
to be stored in the cloud and accessed from any device, facilitating informa-
tion sharing between companies. On the other hand, cloud computing is a
service that has already been completed, which means it may not be suitable
for highly detailed or customized settings.

2.3 Reliability

Software may not function properly or may not work at all due to errors
during development or unforeseen issues. Software reliability [8, 9] refers
to the ability of software to operate correctly in any environment with-
out such defects. Software quality and reliability improve through repeated
assessments and modifications. Evaluating the frequency of software faults is
known as reliability assessment.

2.4 Software Reliability Growth Model

The software reliability growth model [10, 11, 12] is a stochastic model
based on software faults. During software development, faults are detected
and corrected through testing. Therefore, testing time is crucial for assess-
ing software reliability. The software reliability growth model can visualize
these events and estimate the number of software faults, which is useful for
predicting the optimal timing for software release.

2.5 Deep Learning

Deep learning [13, 14] is a type of machine learning method that utilizes deep
neural networks. In deep learning, learning is performed by adding multiple
intermediate layers to the neural network. In conventional machine learning,
feature extraction—which quantifies the characteristics of input data—is
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performed by humans. In contrast, deep learning automatically extracts and
learns features. This process improves learning accuracy because the features
are optimized. Additionally, increasing the amount of input data allows for
the construction of more accurate models.

2.6 Neural Network

The neural network is a mathematical model that mimics the network struc-
ture of the brain. It mainly consists of an input layer, one or more intermediate
layers, and an output layer, and it can learn from input data. Conventional
neural networks typically have three layers—one for each type—while net-
works with four or more layers used to suffer from decreased accuracy.
However, this issue has been addressed in deep learning, which supports deep
neural networks with four or more layers, as shown in Figure 1. Moreover,
recent advances in handling big data have made it possible to construct even
more powerful deep neural networks.

3 Proposed Method

3.1 Self-Modification Approach Based on Human Immune
System

Our research group has been working on cloud edge computing, big data,
OSS, deep learning, and stochastic models. Deep learning and stochastic
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Figure 2 An example of human immune system.

models with statistical independence can address problems that cannot be
solved by data-driven approaches alone, as these models often function as
black boxes. Specifically, many efforts have been made to mimic mechanisms
from the natural world, such as neural networks inspired by the brain’s
structure, genetic algorithms based on evolutionary principles, and drones
modeled after insect functions. These approaches can also solve fundamental
issues related to self-modification.

In this method, each cell in the human immune system mimics the
actions that individual cells take against pathogenic bacteria and viruses,
while the fault modifications and countermeasures are carried out using the
same procedures. Figure 2 illustrates a schematic diagram of this research.
Most existing studies focus solely on cloud environments, with no methods
proposed to assess and optimize operational performance by simultaneously
considering edge computing and data structures. By integrating data-driven
and biological approaches from different perspectives, as shown in Figure 2,
it is possible to predict the reliability of complex network environments in
cloud-edge infrastructures and support self-modification through Al

3.2 Learning Method

In this paper, we focus on fault modification time and fault reporters. We
consider a system that predicts changes in fault modification time by observ-
ing and learning the conditions under which faults are detected and modified.
Specifically, we examine the following weighted modification time.

F(i) = (ci — 0i)vi, (1)

where ¢; is the modification completion time for the ¢-th fault. o; is the
detected time for the ¢-th fault. In addition, ~y; is the i-th fault severity. In
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this case, (¢; — 0;) is the fault modification time. Therefore, F'(7) represents
the weighted fault modification time for the ¢-th fault severity. The value of
F(i) is large, when the reliability becomes large.

4 Numerical Examples

In this paper, we used the fault big data obtained from the OpenStack Project
[15]. We present several numerical examples of two cases. one is which 90%
of the fault data was used as training data and the remaining 10% as testing
data, and the other is which 80% of the fault data was used as training data
and the remaining 20% as testing data. The following parameters were used
as the training data of deep learning.

e Fault detection time

e Fault modification completion time
e Fault reporter

e Software product

e Software component
e Fault condition

e Fault resolution Status
e Hardware type

e Operation system type
e Fault severity

e Software version

e Fault Summary

4.1 Percentage of Training Data: 90%

First, we analyzed the data using deep learning with 90% of the data for
training and 10% for testing. Figures 3, 4, 5, 6, and 7 present the estimated
error for validation and training data, the estimated weighted fault modifi-
cation time for fault severity, the estimated scatter plot of weighted fault
modification time, the estimated weighted cumulative fault modification time,
and the estimated scatter plot of weighted cumulative fault modification time.

4.2 Percentage of Training Data: 80%

Next, we conducted an analysis using deep learning with 80% of the data
for training and 20% for testing. Figures 8, 9, 10, 11, and 12 show the
estimated error for validation and training data, the estimated weighted fault



Sensitivity Analysis for Deep Learning Data Sets 315

—— Error for Training —— Error for Validation

0 20 40 60 80 100
Epoch

Figure 3 The estimated error for validation and training data (In the case of 90% of training
data).
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Figure 4 The estimated weighted fault modification time for fault severity (In the case of
90% of training data).

modification time for fault severity, the estimated scatter plot of weighted
fault modification time, the estimated weighted cumulative fault modification
time, and the estimated scatter plot of weighted cumulative fault modification
time.
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Figure 5 The estimated scatter plot of weighted fault modification time (In the case of 90%
of training data).
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Figure 6 The estimated weighted cumulative fault modification time (In the case of 90% of
training data).

4.3 Percentage of Training Data: 70%

Finally, we analyzed the data using deep learning with 70% of the data for
training and 30% for testing. Figures 13, 14, 15, 16, and 17 display the
estimated error for validation and training data, the estimated weighted fault
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Figure 7 The estimated scatter plot of weighted cumulative fault modification time (In the

case of 90% of training data).
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Figure 8 The estimated error for validation and training data (In the case of 80% of training

data).

modification time for fault severity, the estimated scatter plot of weighted
fault modification time, the estimated weighted cumulative fault modification
time, and the estimated scatter plot of weighted cumulative fault modification

time.
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Figure 9 The estimated weighted fault modification time for fault severity (In the case of
80% of training data).
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Figure 10 The estimated scatter plot of weighted fault modification time (In the case of 80%
of training data).

4.4 Discussion

In the cases of using 90% and 80% of the data for training, the estimated
results are favorable. From these results, we have found that the estimates
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Figure 11 The estimated weighted cumulative fault modification time (In the case of 80%
of training data).
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Figure 12 The estimated scatter plot of weighted cumulative fault modification time (In the
case of 80% of training data).

improve when the percentage of training data is set at 90% and 80%. In
contrast, the estimates with 70% of the training data deviate significantly from
the testing data.

We have observed that even over extended periods, using 80% or more
of the training data can lead to accurate predictions of the number of faults.
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Figure 13 The estimated error for validation and training data (In the case of 70% of training
data).
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Figure 14 The estimated weighted fault modification time for fault severity (In the case of
70% of training data).

Moreover, Table 1 presents the mean square error (MSE) for the estimated
fault modification time. From this table, we found that the MSE value
decreases as the percentage of training data increases. Table 2 shows the
estimated MSE of existing studies. These results show that the method in
this paper is capable of estimating with significantly higher accuracy than the
methods in existing studies.
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Figure 15 The estimated scatter plot of weighted fault modification time (In the case of 70%
of training data).
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Figure 16 The estimated weighted cumulative fault modification time (In the case of 70%
of training data).
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Figure 17 The estimated scatter plot of weighted cumulative fault modification time (In the
case of 70% of training data).

Table 1 The estimated MSE for the fault modification time
MSE
Percentage of Training Data: 90% 2206683.8
Percentage of Training Data: 80% | 244221180.0
Percentage of Training Data: 70% | 6723100000.0

Table 2 The estimated MSE of existing studies
MSE
Percentage of Training Data: 90% 2071716900.0
Percentage of Training Data: 80% 4595891700.0
Percentage of Training Data: 70% | 134495720000.0

5 Concluding Remarks

In this paper, we proposed a method for reliability assessment using deep
learning based on the human immune system. In the proposed model, the
fault modification time is estimated and visualized using fault big data as
training data. The results indicate that it is possible to estimate the fault
modification time with high accuracy, despite some errors. This capability
allows for the optimization of personnel required for fault modification,
potentially alleviating issues related to effort shortages. By applying this
method, it becomes possible to create an application that allows anyone to
predict various outcomes using complex big data.
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In the future, we aim to use it in fields that require even more accurate
predictions, such as the medical field, and to conduct research focused on
improving estimation accuracy by optimizing features and variables.
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