
Software Reliability Growth Modeling
Based on Fault Count Increment
Due to Features Enhancement

Deepti Aggrawal1,∗, Adarsh Anand2 and Zuha Shahid2

1USME, East Delhi Campus, DTU, Delhi 42, India
2Department of OR, DU, India
E-mail: deepti.aggrawal@gmail.com; adarsh.anand86@gmail.com;
zuhashahid.du.or.21@gmail.com
∗Corresponding Author

Received 15 November 2021; Accepted 15 February 2022;
Publication 29 March 2022

Abstract

With every up-gradation made in the software there are chances that the
number of new faults might creep in the software. This concept has been
readily worked upon in the past and is still an active area of research.
Software industry has been readily evolving with time and has seen many
advancements wherein innovation rate and creation of knowledge has played
a pivotal role for continued growth of firms. Often, the use of coming up with
new set of features in the base product has brought in answers to many user’s
queries. But these up-gradations also known as add-ons also bring in certain
new flaws in the software system which is newly created. In the current paper,
this fundamental has been worked upon with the help of certain proposed
models. Results are supplemented with numerical examples.

Keywords: SRGMs, new feature addition, fault-removal.

Journal of Graphic Era University, Vol. 10 1, 27–40.
doi: 10.13052/jgeu0975-1416.1013
© 2022 River Publishers



28 D. Aggrawal et al.

1 Introduction

Reliability has always been area of instrumental research and significant
improvement in software reliability has demanded new and improvised meth-
ods for creating near to perfect software and thereby determining the quality.
Software release time is another important and crucial filed wherein; many
researchers have immensely contributed. Like the works by eminent scholars;
Yamada, Obhaand Osaki [3]; Abdel et al. [4]; Kapur et al. [5], etc. majorly
who have contributed in measuring the failure rate of the software. Predicting
the field performance has also gained significant attention when it comes to
the contributions and literature in this very area (Musa et al. [2]).

Apart from these certain dimensions, people have also studied immensely
about the positive aspect of coming up of multi up-gradations in the software
system [7–12]. But like it is evident from literature, every side has two coins.
There are some bad things associated when you try to dig in some good
things. It is this very idea, that we have modelled in this this paper where we
have proposed some new mathematical models that talks about the negative
impact of coming up of up-gradations after a certain point of time.

In today’s time no product comes with single generation. There are
merely any software products available which comes with single generation.
Let us take an example of Python Software. Currently the version which is
going on is Python 3.10.2, and an important point to note here is that Python
3.9+ cannot be used on Windows 7 or earlier. So, these are certain aspects
one has to keep in mind before downloading the software otherwise there
are chances that the software might not be installed on the system. One can
see the various active versions of the Python Releases in the Table 1 below
(https://www.python.org/downloads/):

Table 1 A glimpse of active Python Releases
Python Version Maintenance Status First Released End of Support
3.10 bugfix 4th Oct 2021 Oct 2026
3.9 bugfix 5th Oct 2020 Oct 2025
3.8 security 14 Oct 2019 Oct 2024
3.7 security 27 June 2018 June 2023
2.7 end of life 3rd July 2010 January 2020

Now as can be seen from the table, the current version is 3.10 and it
has very lately been released in the market and the maintenance support will
be provided till 2026 and similarly its previous version (Python 3.9) was first
release in 2020 and it will be supported till 2025. Like ways the other releases

https://www.python.org/downloads/


Software Reliability Growth Modeling Based on Fault Count Increment 29

can be understood and it can be observed that each up-grade comes with
certain new set of features and enhancements.

Although Goel and Okumoto [1] were the pioneers in the domain of
software reliability growth modelling but still they also did not highlight
anything with respect to the Software products that comes with multiple
versions. Infact, majority of the work proposed in this domain primarily
revolved around the thought process revolving around fluctuations in the fault
count in its initial count and later count. In other words, they say that the
software is understood to go ahead and it penetrates in the “useful life phase”
where higher number of flaws gets removed and in accordance, there is a
gradual decrement in the failure rate level. One can understand this behaviour
with the help of a curve which is given in Figure 1 below.

Figure 1 Traditional Failure Curve (Source: Pan [6]).

Figure 2 Failure Curve due to Features enhancement (Source: Pan [6]).



30 D. Aggrawal et al.

It can be observed from the Figure 1 that it is unable to cater to the
error growth which might creep in due to the software add-ons or certain
new enhancements during the debugging phase. One can look at Figure 2
and understand the behaviour of the failure rate curve. It can be very well
seen that during the “useful-life phase”; as any software company under-
goes a makeover for the product by features addition or so, the software
experiences a radical escalation in failure rate. Now this happens each and
every time an upgrade is made in the offering and eventually the failure
rate levels off with due course of time. One can associate the finding of
the defects and their fixing during this phase to be a reason for the same.
Every time any new amendment is done in the software, the complexity is
bound to increase and every time we are trying to increase certain func-
tionalities, the chances of more and more errors creeping into the system
increases.

As described above, many researchers have extensively worked on this
domain, and many studies would be there in the pipeline, but this work
discusses the increase in the fault content explicitly after the time point when
new additions are being done. Therefore, the objective of this paper is to
propose a modelling framework under the assumption that software shall
experience a severe intensification in failure count; each time any new feature
is added in the product.

Software Reliability Growth Models (SRGMs) have played a signifi-
cant role in understanding the fault debugging process. A wide variety of
models are available in literature for the same. Infect, the domain of multi
up gradation has received good attention of the researchers and scholars
have extended this concept by inculcating various real life scenarios like
those of fault severity, change point, optimal scheduling policy and patching
[15–20]. The framework proposed here in this paper is also based on NHPP
framework. Using the logistic rate function, the K-G model [13] (which is
the building block of this paper) can be understood using the equation given
below:

dm(t)

dt
=

b

1 + β · e−b·t
(a−m(t)) (1)

Where m(t) denotes the number of faults removed from the software by
time t. Similarly, a, b and β are usual symbolic representations and their
meanings can be understood from the notation section.

The basic assumption of NHPP process can be given as follows.



Software Reliability Growth Modeling Based on Fault Count Increment 31

2 Basic Assumptions

Based on the fundamental of the definition of counting process; and the Non
homogeneous Poisson process we also assume that N(t); t ≥ 0 is a counting
process that represents the cumulative fault counts by time t. As described in
literature [7–12]; the mean value function (M.V.F) can be shown as below:

Pr{N(t) = n} = (m(t))n

n!
e−m(t), n = 0, 1, 2 . . . (2)

And

m(t) =

∫ t

0
λ(x)dx (3)

A model is usually dependent on certain set of assumptions. This
proposed framework is also in-line with the assumptions described by
[8, 20–22]. But apart from the usual set of assumptions, here we have also
considered the fact that fault debugging rate may change at the time point
when an up-gradation is done in the software (say after a fix time z).

3 Notations
a: Total software defects lying dormant
z: Time after which firms start adding new features.
b1: Debugging rate (before time z).
b2: Debugging rate (after time z).
m(t): Cumulative number of faults removed.
α: Rate of error accumulation (due to feature enhancements).
β1: Parameter indicating learning behaviour before the time s.
β2: Parameter indicating learning behaviour after the time s.

4 Model Development

As described earlier, majority of the work proposed in the domain of error
generation has revolved around this increment happening from the beginning.
But going by the work done by [21]; wherein they have worked on almost all
the types of scenarios and come up with a different articulation altogether,
here we have formulated a modeling framework for a software system that
incorporates the influence of accumulation of new features in the software.
We have tried to mathematically portray the fact that integrating new features



32 D. Aggrawal et al.

might increase software complexity and could result in ending up in having
more than usual bugs in the system.

We understand this situation as follows: before any up gradations are
made in the software system (that is before time s); the fault content is
assumed to remain unchanged. But when new functionalities and new amend-
ments are made in the software code, some new faults creep in the software
system. Therefore it is assumed that “the software firm starts incorporating
additional features” after time ‘z’ and each extra piece puts in more defects at
the rate ‘α’. The proposed modeling framework having this dynamicity can
be described as follows:

dm(t)

dt
=


b1

1 + β1 · e−b1t
(a−m(t)) 0 ≤ t < z

b2
1 + β2 · e−b2t

(a(t)−m(t)) t > z

(4)

Now, a(t) can take three functional forms as shown in Table 2; and
accordingly there will be three different forms of m(t).

Table 2 Different forms of a(t)
Model I II III
Before time s a a a
After time s a · (eα·t) a(1 + α · t) a+ α ·m(t)

The following set of differential equations can be framed for the aforesaid
proposals and thereby three models can be studied here and solved under the
initial set of condition i.e. at

t = 0, m(t) = 0 and

t = s, m(t) = m(z)

So, For Proposed Model I (PM-I):

dm(t)

dt
=


b1

1 + β1 · e−b1t
(a−m(t)) 0 ≤ t < z

b2
1 + β2 · e−b2t

(a · (eα·t)−m(t)) t > z

(5)



Software Reliability Growth Modeling Based on Fault Count Increment 33

And the corresponding mean value function for the aforesaid Equation (5)
can be understood as follows:

m(t) =



a ·
[

1− e−b1∗t

1 + β1 ∗ e−b1∗t

]
0 ≤ t < z

a ∗
[

b2 ∗ eαt

(α+ b2)(1 + β2 ∗ e−b2∗t)

]
t > z

+
(1− e−b1∗τ ) ∗ (1 + β2 ∗ e−b2∗τ )

(1 + β1 ∗ e−b1∗τ ) ∗ ((1 + β2 ∗ e−b2∗t))

∗e−b2∗(t−τ)

−

[
b2 ∗ eα∗te−b2∗(t−τ)

(α+ b2)(1 + β2 ∗ e−b2∗t)

]
(6)

Similarly, for Proposed Model II (PM-II):

dm(t)

dt
=


b1

1 + β1 · e−b1t
(a−m(t)) 0 ≤ t < z

b2
1 + β2 · e−b2t

(a(1 + αt)−m(t)) t > z

(7)

m(t) =



a ·
[

1− e−b1∗t

1 + β1 ∗ e−b1∗t

]
0 ≤ t < z

a ·

[
1− α

b2
∗ (1− t ∗ b2)

1 + β2 ∗ e−b2∗t

]
t > z

+
(1− e−b1∗τ ) ∗ (1 + β2 ∗ e−b2∗τ )

(1 + β1 ∗ e−b1∗τ ) ∗ ((1 + β2 ∗ e−b2∗t))

∗e−b2∗(t−τ)

−

[
1− α

b2
∗ (1− τ ∗ b2)

1 + β2 ∗ e−b2∗t

]
∗ e−b2∗(t−τ)

(8)



34 D. Aggrawal et al.

For Proposed Model III (PM-III)

dm(t)

dt
=


b1

1 + β1 · e−b1t
(a−m(t)) 0 ≤ t < z

b2
1 + β2 · e−b2t

(a+ α ·m(t)−m(t)) t > z

(9)

Model III is very interesting to note. It talks about addition of faults to
the original fault content due to new addendums done in the product. In
fact like the other two models, one can see that the parameter α (i.e. rate
of error accumulation (due to feature enhancements)) plays a noteworthy role
all through valuation of the expected number of debugged faults.

5 Data

To illustrate the estimation procedure and application of the proposed
SRGMs, validation has been carried out on the real life software failure
dataset. This data is taken from Brooks and Motley [14] and comprises of
1301 faults were detected during the testing done for 35 months duration.
The size of the radar system software system comprised of 124 KLOC.

6 Parameter Estimation and Comparison

6.1 Model Validation

Model validation is the confirmatory test that is required to check how our
model is performing or behaving. In line with this, the parameters of the
models under consideration here; are estimated using SPSS Software and the
values are given in Table 3.

Table 3 Parameter estimation
Parameters PM-I (Equation 6) PM-II (Equation 8) PM-III (Equation 10)

a 1356 1322 1367

b1 0.177 0.2133 0.222

b2 0.226 0.2112 0.245

β1 2.6 2 3

β2 15 16 18

α 0.064 0.063 0.059



Software Reliability Growth Modeling Based on Fault Count Increment 35

6.2 Model Comparison

The proposed models have been compared with each other on the basis
of different comparison criteria like those of; “Mean Square Fitting Error”
(MSE), “Coefficient of Multiple Determination” (R2) [20, 21], “Bias” [22],
“Variation” and last but not the least; “Root Mean Square Prediction Error”
(RMSPE) [7–12]. The values are given in Table 4 below.

Table 4 Model comparison
Parameters PM-I (Equation 6) PM-II (Equation 8) PM-III (Equation 10)
R2 0.994 0.998 0.997
bias 3.071 1.833 1.166
variation 69.341 76.494 51.29
RMSPE 62.07 76.516 56.30
MSE 21523 19906 12656

Now, from Table 3, it is clear that “MSE”, “Bias”, “Variation” and
“RMSPE” of the proposed model are nearly equal to each other. The “R2”
value of the proposed model III is moderately greater and for non-beneficial
criteria, it is relatively smaller in comparison to that of the other two models.
So, Model III performs best for the data set under consideration. Also,
the reasonably notable values of α makes this assumption more solid and
suggests that add-ons in the software plays a vital role in increasing the
fault contents. And hence should be taken into account s and when the new
advancements are incorporated in the system.

7 Conclusion

The projected models talked about importance of understanding and embed-
ding the feature intensification attribute for studying the reliability growth of
the software. The software firms are bound to regularly up-grade themselves
and thus, the fault count increment is a natural phenomenon. As and when
any new features or add-ons are made in the current offering, software shall
experience a drastic proliferation in failure level. Due to the feature up-
grades, and addition of new functionalities, the complications in the software
as a whole are expected to upsurge. Even when one tries to get hold of
these defects some new faults creep in and escalate the total bug count.
In this paper, these fundamentals have been worked upon with numerical
validation and the results suggest that the rate of error generation due feature



36 D. Aggrawal et al.

enhancements plays a significant role in overall reliability determination of
the software.

References

[1] Goel AL, Okumoto K (1979) Time dependent error detection rate
model for software reliability and other performance measures. IEEE
Transactions on Reliability R-28(3): 206–211.

[2] Musa JD, Iannino A, Okumoto K (1987) Software Reliability: Measure-
ment, Prediction, Application. McGraw- Hill New York, 1:5–15.

[3] Yamada S, Ohba M, Osaki S (1983) S-shaped software reliability growth
modelling for software error detection. IEEE Trans on Reliability
R-32(5):475–484.

[4] Abdel AA, Chan PY and Littlewood B (1986) Evaluation of Competing
Software Reliability Predictions. IEEE Trans on Software Engineering
12 (9):950–967.

[5] Kapur PK, Garg RB, Kumar S (1999) Contributions to hardware and
software reliability. Singapore: World Scientific.

[6] Pan J (1999) Software Reliability. Dependable Embedded Systems:
1–15. http://www.ece.cmu.edu/∼koopman/des s99/sw reliability/.

[7] Anand A, Das S, Aggrawal D, Kapur PK (2018) Reliability analysis for
upgraded software with updates. In Quality, IT and business operations
(pp. 323–333). Springer, Singapore.

[8] Anand A, Gupta P, Tamura Y, Ram M (2020) Software multi up-
gradation modeling based on different scenarios. In Advances in Relia-
bility Analysis and its Applications (pp. 293-305). Springer, Cham.

[9] Anand A, Ram M (Eds.) (2020) Systems Performance Modeling
(Vol. 4). Walter de Gruyter GmbH & Co KG.

[10] Bhatt N, Anand A, Yadavalli VSS, Kumar V (2017) Modeling and
characterizing software vulnerabilities. International Journal of Math-
ematical, Engineering and Management Sciences: 2(4), 288–299.

[11] Das S, Aggrawal D, Anand A (2019) An alternative approach for
reliability growth modeling of a multi-upgraded software system. In
Recent advancements in Software Reliability Assurance, pp. 93–105.
CRC Press.

[12] Deepika, Singh O, Anand A, Singh JN (2017) Testing domain dependent
software reliability growth models. International Journal of Mathemati-
cal, Engineering and Management Sciences: 2(3), 40–149.

http://www.ece.cmu.edu/~koopman/des_s99/sw_reliability/


Software Reliability Growth Modeling Based on Fault Count Increment 37

[13] Kapur PK, Garg RB (1992) A software reliability growth model for an
error removal phenomenon. Software Engineering Journal, 7:291–294.

[14] Brooks WD, Motley RW (1980) Analysis of discrete software reliability
models – Technical report RADC-TR-80-84. New York: Rome Air
development Center.

[15] Singh, O., Anand, A., Aggrawal, D., & Singh, J. (2014). Modeling multi
up-gradations of software with fault severity and measuring reliability
for each release. International Journal of System Assurance Engineering
and Management, 5(2), 195–203.

[16] Singh, O., Aggrawal, D., Anand, A., & Kapur, P. K. (2015). Fault
severity based multi-release SRGM with testing resources. Interna-
tional Journal of System Assurance Engineering and Management, 6(1),
36–43.

[17] Deepika, Anand, A., Singh, J., & Singh, J. N. (2019). Modeling
change point based multi release software with different fault debugging
functions. Nonlinear Studies, 26(3).

[18] Anand, A., Das, S., Agarwal, M., & Yadavalli, V. S. S. (2019). Optimal
Scheduling Policy for a Multi-upgraded Software System under Fuzzy
Environment. Journal of Mathematical and Fundamental Sciences,
51(3), 278–293.

[19] Das, S., Anand, A., Agarwal, M., & Ram, M. (2020). Release time
problem incorporating the effect of imperfect debugging and fault gen-
eration: an analysis for multi-upgraded software system. International
Journal of Reliability, Quality and Safety Engineering, 27(02), 2040004.

[20] Anand, A., Kaur, J., & Inoue, S. (2020). Reliability modeling of multi-
version software system incorporating the impact of infected patching.
International Journal of Quality & Reliability Management.

[21] Anand, A., Gupta, P., Tamura, Y., & Ram, M. (2020). Software Multi
Up-Gradation Modeling Based on Different Scenarios. In Advances
in Reliability Analysis and its Applications (pp. 293–305). Springer,
Cham.



38 D. Aggrawal et al.

Biographies

Deepti Aggrawal is currently working as Assistant Professor at USME,
Delhi Technological University, India. She obtained her PhD degree from
Department of Operational Research, University of Delhi. She was Oper-
ations Manager in Axis Bank till she joined as a research scholar in the
Department of Operational Research in 2011. Her Research areas include
Marketing and Software Reliability. She is a life member of SREQOM and
has publications in journals of national and international repute.

Adarsh Anand did his doctorate in the area of Innovation Diffusion Mod-
eling in Marketing and Software Reliability Assessment. Presently he is
working as an Assistant Professor in the Department of Operational Research,
University of Delhi (INDIA). He has been conferred with Young Promising
Researcher in the field of Technology Management and Software Reliability
by Society for Reliability Engineering, Quality and Operations Management
(SREQOM) in 2012. He is a lifetime member of the Society for Reliability



Software Reliability Growth Modeling Based on Fault Count Increment 39

Engineering, Quality and Operations Management (SREQOM). He is also
on the editorial board of International Journal of System Assurance and
Engineering management (Springer). He has Guest edited several Special
Issues for Journals of international repute. He has edited two books namely:
“System Reliability Management (Solutions and Technologies)” and “Recent
Advancements in Software Reliability Assurance” under the banner of Tay-
lor and Francis (CRC-Press). He has publications in journals of national
and international repute. His research interest includes modeling innovation
adoption and successive generations in marketing, software reliability growth
modelling and social media analysis.

Zuha Shahid received her B.Sc. in Applied Mathematics from Jamia Mil-
lia Islamia, India, in 2019 and M.Sc. in Operational Research from the
Department of Operational Research, University of Delhi, India, in 2021.
She currently works as a research intern at the Department of Operational
Research, University of Delhi. Her current research interest includes software
reliability.




	Introduction
	Basic Assumptions
	Notations
	Model Development
	Data
	Parameter Estimation and Comparison
	Model Validation
	Model Comparison

	Conclusion

