Design Investigations on Solar Cooking Devices for Rural India

  • S.K. Shukla Department of Mechanical Engineering, Indian Institute of Technology (BHU), Varanasi
  • R.K. Khandal
Keywords: Parabolic disc collector, Exergy analysis, Concentration ratio, Stagnation temperature, Optimum collector temperature, ambient temperature


This article discusses the usefulness of Second Law analysis (exergy analysis) for comparing and optimizing the performance of solar collectors. Here, the exergetic formulas for both the parabolic and flat plate collectors are deduced and a parametric study is made using hourly solar radiation. The exergy output is optimized with respect to the collector temperature and different parameters are calculated. It is found that most of the parameters such as exergy output, exergetic and thermal efficiencies, stagnation temperature, increases with a rise in solar intensity for both the collectors. However initially, the value of exergetic efficiency varies in accordance with the solar intensity but declines further with an increase in solar intensity for parabolic collector.


Download data is not yet available.

Author Biographies

S.K. Shukla, Department of Mechanical Engineering, Indian Institute of Technology (BHU), Varanasi

S.K. Shukla, the corresponding author, Department of Mechanical Engineering, Indian Institute of Technology (BHU), Varanasi – 221005, India. E-mail:

R.K. Khandal

R.K. Khandal is Vice Chancellor, UPTU Lucknow, India.


Bejan, A., Kearney, D.W., Kreith, F., Second law analysis and synthesis of solar collector

systems’, ASME J. Solar Energy Engg, 1981; 103: 23–28.

Bejan, A., Extraction of exergy from solar collectors under time-varying conditions’,

Int. J. Heat Fluid Flow, 1982; 3: 67–72

Dincer, I., Thermal energy storage systems as a key technology in energy conservation’,

International Journal of Energy Research, 2002; 26: 568–588.

Farahat, S., Sahaddi, F. and Ajam, H., Exergetic optimization of flat plate solar collectors’,

Renewable Energy, 2009; 34(4):1169–1174.

Funk, P.A., Evaluating the international standard procedure for testing solar cookers

and reporting performance’, Solar Energy, 2000; 68(1):1–7.

Fuziwara, M., Exergy analysis for the performance of solar collectors’, ASME J. Solar

Energy Engg., 1983;105(2):163–167.

Kar, A.K., Exergy optimization of flow rates in flat plate solar collectors’, International

Journal of Energy Research, 1989; 13(3):317–326.

Kar, A.K., Exergy efficiency and optimum operation of solar collectors’, Appl. Energy,

; 21: 301–314.

Kaushik, S.C., Singhal, M.K., Tyagi, S.K., Solar collector technologies for power generation

and space air conditioning applications: A state of the art’, Internal Report,

Centre for Energy Studies, Indian Institute of Technology, Delhi, India 2001.

Kotas, T.J. ‘The Exergy Methods of Thermal Plant Analysis’, Butterworths, London,

Kurtbas, I., Durmus, A., Efficiency and exergy analysis of a new solar air heater’, Renewable

Energy, 2004; 29: 1489–1501.

Misra, R.D. Second Law Assessment of Solar Thermal Power Generation, MTech Major

Thesis, Centre for Energy Studies, Indian Institute of Technology, Delhi,1996.

Orbach, A., Fischl, R., Herczfeld, P.R., Konyk Jr, S. ‘Optimal and suboptimal control

strategies and sensitivity study for solar liquid collector systems’, in: Proc. ISES, Atlanta,

USA, 1979.

Saltiel, C., Sokolov, M., Optimal control of a multi component solar collector system’,

Solar Energy, 1985; 34: 463–473.

Rathore, N., and Shukla, S.K., Experimental investigations and comparison of energy

and exergy efficiencies of the box type and Solar Parabolic Cooker’, Int. J. Energy

Technology and Policy, 2009; 7(2): 201-212.

Singh, N. and Kaushik, S.C. Technology Assessment and Economic Evaluation – Solar

Thermal Power Systems: A State of Art, Report, Centre for Energy Studies, Indian

Institute of Technology, Delhi, India 1993.

Tyagi, S.K., Wang, S., Singhal, M.K., Kaushik, S.C. and Park, S.R., Exergy analysis and

parametric study of concentrating type solar collectors’, International Journal of Thermal

Sciences, 2007; (46): 1304–1310.

Winn, R.C., Winn, C.B. (1981) ‘Optimal control of mass flow rate in flat plate solar collectors’,

ASME J. Solar Energy Engg, 1981;103:113–120.

WHO (World Health Organization). Addressing the links between indoor air pollution,

household energy and human health. Based on the WHOUSAID Consultation on

the Health Impact of Household Energy in Developing Countries (Meeting Report).

Geneva: World Health Organization; 2002.

S.K. Shukla, Comparison of Energy and Exergy Efficiencies of Community and Domestic

Solar Cookers, International Journal of Green Energy, 2009; 6 (5): 437-449.

Altfeld, K., Leiner, W., Fiebig, M., Second law optimization of flat plate solar air heaters.

J. Solar Energy. 1988; 41(2): 127-132.

Hepbasli, A., A key review on exergetic analysis and assessment of renewable energy

resources for a sustainable future. J. Renewable and sustainable energy reviews. 2008;

: 593-661.

Howell, J.R., Bannerot, R.B., Optimum solar collector operation for maximizing cycle

work output. J Solar Energy. 1977;19:149-153.

Luminosu, I., Fara, L., Determination of the optimal operation mode of a flat solar collector

by exergetic analysis and numerical simulation. J. Energy 2005; 30(5): 731-747.

Mahanta, D.K., Saha, S.K., Internal irreversibility in a water heating solar flat plate

collector. J. Energy Conversion and Management 2002; 43:2425-2435.

Öztürk, H.H., Experimental determination of energy and exergy efficiency of the solar

parabolic-cooker. J. Solar Energy 2004; 77:67-71.

Petala, R., Exergy analysis of the solar cylindrical-parabolic cooker. J. Solar Energy

;79: 221-233.

Rosen, M. A., Second-Law of Analysis: Approach and Implication. International Journal

of Energy Research. 1999; 23: 415-429.

Saha, S. K. and Datta Gupta, K. K., Thermodynamic optimization of solar thermal collectors.

Proceedings of National Solar Energy Society of India, Integrated Renewable

Energy for Rural Development, Dec., 1990. 48-51.

Torres-Reyes, E., Cervantes-De Gortari, J.G., Ibarra-Salazar, B.A., Picon-Nuñez, M., A

design method of flat plate solar collectors based on minimum entropy generation. J.

Exergy Int. 2001;1: 46-52.